Удельная проводимость что это
Удельная электропроводность
Уде́льная проводи́мость (Уде́льная электропрово́дность) — мера способности вещества проводить электрический ток. (Точнее следует говорить об электропроводности среды, т.к. не имеется в виду обязательно химически чистое вещество; эта величина различна для разных веществ или смесей, сплавов и т.п.). В линейном изотропном веществе плотность возникающего тока прямо пропорциональна электрическому полю (см. Закон Ома)
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, т.е. не совпадает в различных точках проводника.
В анизотропных средах формула остаётся той же, но σ является тензором 2 ранга, и векторы плотности тока и напряжённости поля, вообще говоря, не коллинеарны.
Величина, обратная удельной проводимости, называется удельным сопротивлением.
В системе СИ удельная электропроводность измеряется в единицах 1/(Ом·м) (1 на Ом·метр), См/м. В СГСЭ единицей удельной электропроводности является обратная секунда (с −1 ).
Полезное
Смотреть что такое «Удельная электропроводность» в других словарях:
УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ — физ. величина s, равная электропроводности цилиндрич. проводника единичной длины и единичной площади сечения; У. э. связана с уд. сопротивлением r соотношением s=1/r. Её принято измерять в единицах: сименс (Ом 1) на метр или на сантиметр (См/м… … Физическая энциклопедия
удельная электропроводность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductivityelectrical conductivityspecific conductivity … Справочник технического переводчика
удельная электропроводность — savitasis laidis statusas T sritis automatika atitikmenys: angl. conductivity; electrical conductivity; specific conductivity vok. spezifischer Leitwert, m rus. удельная проводимость, f; удельная электропроводность, f pranc. conductibilité… … Automatikos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai. Matavimo vienetas – simensas metrui (S/m). atitikmenys: angl. electric conductivity vok. spezifischer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis chemija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai (S/m). atitikmenys: angl. electric conductivity; electrical conductivity rus. удельная электропроводность … Chemijos terminų aiškinamasis žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis fizika atitikmenys: angl. electric conductivity; electrical conductivity vok. spezifische Leitfähigkeit, f; spezifischer Leitwert, m rus. удельная электропроводность, f pranc. conductivité électrique … Fizikos terminų žodynas
Удельная электропроводность — (σ) физическая величина, равная электропроводности (См. Электропроводность) цилиндрического проводника единичной длины и единичной площади поперечного сечения; У. э. связана с удельным сопротивлением (См. Удельное сопротивление)… … Большая советская энциклопедия
удельная электропроводность — Syn: удельная электропроводимость … Металлургический словарь терминов
удельная электропроводность воды — Электропроводность единицы объема воды. [ГОСТ 30813 2002] Тематики водоснабжение и канализация в целом EN electrical conductivity DE elektrische Leitfahigkeit FR conductivite electrique … Справочник технического переводчика
удельная электропроводность при накоплении — (напр. отложений) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN cumulated conductivity … Справочник технического переводчика
Электрическая проводимость
Классическая электродинамика | ||||||||||||
Электричество · Магнетизм | ||||||||||||
| ||||||||||||
См. также: Портал:Физика |
Содержание
Удельная проводимость
Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.
Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:
векторы же плотности тока и напряжённости поля в этом случае, вообще говоря, не коллинеарны.
Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) ортогональную систему координат (собственные оси тензора проводимости), в которой тензор проводимости диагонализуется. В таких координатах соотношение упрощается и записывается так:
(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]
Величина, обратная удельной проводимости, называется удельным сопротивлением.
Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:
Связь с коэффициентом теплопроводности
Закон Видемана — Франца устанавливает однозначную связь удельной электрической проводимости с коэффициентом теплопроводности :
Электропроводность металлов
Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.
Опыты Толмена и Стюарта
Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.
Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.
При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции — направленная противоположно ускорению ( — масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:
Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов, равна
где L — длина провода на катушке. [4]
Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:
Тогда за время торможения через гальванометр пройдёт заряд
Удельная проводимость некоторых веществ
Удельная проводимость приведена при температуре 20 °C [5] :
Удельная электропроводность
Смотреть что такое «Удельная электропроводность» в других словарях:
УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ — физ. величина s, равная электропроводности цилиндрич. проводника единичной длины и единичной площади сечения; У. э. связана с уд. сопротивлением r соотношением s=1/r. Её принято измерять в единицах: сименс (Ом 1) на метр или на сантиметр (См/м… … Физическая энциклопедия
удельная электропроводность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductivityelectrical conductivityspecific conductivity … Справочник технического переводчика
Удельная электропроводность — Удельная проводимость (Удельная электропроводность) мера способности вещества проводить электрический ток. (Точнее следует говорить об электропроводности среды, т.к. не имеется в виду обязательно химически чистое вещество; эта величина различна… … Википедия
удельная электропроводность — savitasis laidis statusas T sritis automatika atitikmenys: angl. conductivity; electrical conductivity; specific conductivity vok. spezifischer Leitwert, m rus. удельная проводимость, f; удельная электропроводность, f pranc. conductibilité… … Automatikos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai. Matavimo vienetas – simensas metrui (S/m). atitikmenys: angl. electric conductivity vok. spezifischer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis chemija apibrėžtis Dydis, atvirkščiai proporcingas savitajai varžai (S/m). atitikmenys: angl. electric conductivity; electrical conductivity rus. удельная электропроводность … Chemijos terminų aiškinamasis žodynas
удельная электропроводность — savitasis elektrinis laidis statusas T sritis fizika atitikmenys: angl. electric conductivity; electrical conductivity vok. spezifische Leitfähigkeit, f; spezifischer Leitwert, m rus. удельная электропроводность, f pranc. conductivité électrique … Fizikos terminų žodynas
удельная электропроводность — Syn: удельная электропроводимость … Металлургический словарь терминов
удельная электропроводность воды — Электропроводность единицы объема воды. [ГОСТ 30813 2002] Тематики водоснабжение и канализация в целом EN electrical conductivity DE elektrische Leitfahigkeit FR conductivite electrique … Справочник технического переводчика
удельная электропроводность при накоплении — (напр. отложений) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN cumulated conductivity … Справочник технического переводчика
Руководство по материалам электротехники для всех. Часть 1
Привет гиктаймс! Я решил опубликовать по частям свое руководство по материалам, используемым не только в электротехнике, но и вообще в технике, в том числе самодельщиками. С описанием, примерами применения, заметками по работе. Руководство написано максимально просто, и будет понятно всем, от школьника до пенсионера.
В этой части начинаем разбирать проводники — Серебро, Медь, Алюминий.
Добро пожаловать под кат (ТРАФИК)
Введение, которое обычно никто не читает
Ковыряясь в поисках ответов на свои вопросы в разных учебниках по материаловедению, методичках, научпоп книгах я ужасался, насколько академический стиль изложения возводит стену между желающим узнать и знаниями. Насколько стремление авторов обойти острые грани, тёмные места превращает учебники в однородную бескрайнюю пустыню скуки и отчаяния. При этом запредельный уровень абстракции делает крайне сложным для неофита использование полученных знаний в практике. Поэтому я решил сделать свое руководство, с блекджеком и блудными девицами.
Это руководство — живое, по мере получения новых материалов, уточнений, комментариев от вас, дорогие читатели оно будет дополняться, изменяться, становиться лучше. Всегда самая свежая версия руководства лежит у меня на сайте в бложике Я обеими руками поддерживаю движение Open Source и Open Hardware, считаю, что обмен знаниями должен быть свободным, это принесет пользу для всех, поэтому пособие распространяется под лицензией Creative Commons 3.0 BY-NC-SA, что значит, вы можете делать с ним что угодно: выкладывать, распространять, модифицировать, соблюдая только три ограничения:
Проводники:
*Серебро
*Медь
*Алюминий
*Железо
*Золото
*Никель
*Вольфрам
*Ртуть
Так себе проводники:
*Углерод
*Нихромы
*Сплавы для изготовления термостабильных сопротивлений
*Припои
*Олово
*Легкоплавкие припои
Прочие проводники
*Термопарные сплавы
*Оксид Индия-Олова
Диэлектрики (Совсем не проводники):
*Неорганические диэлектрики
**Фарфор
**Стекло
**Слюда
**Алюмооксидные керамики
**Асбест
**Вода
*Органические диэлектрики полусинтетические
**Бумага, картон
**Шёлк
**Воск, парафин
**Трансформаторное масло
**Фанера, ДСП
*Органические диэлектрики синтетические
**Материалы на базе фенол-формальдегидных смол
**Карболит (бакелит)
**Гетинакс
**Текстолит
**Стеклотекстолит
**Лакоткань
**Резина
**Эбонит
**Полиэтилен
**Полипропилен
**Полистирол, АБС-пластик
**Фторопласт-4 (политетрафторэтилен PTFE)
**Поливинилхлорид — ПВХ
**Полиэтилентерефталат (ПЭТФ)
**Силиконы
**Полиимид
**Полиамиды
**Полиметилметакрилат — ПММА
**Поликарбонат
*График истории промышленного применения полимеров
*Изоленты
**Прорезиненная тканевая изолента
**Тканевые изоленты
**Резиновые самовулканизирующиеся изоленты
**Силиконовые самослипающиеся ленты
**Полиимидная лента
**ПВХ изоленты
**Канцелярская липкая лента «скотч»
*Изоляционные трубки
**Трубка из ПВХ — «кембрик»
**Фторопластовая трубка
**Стеклотканевая с силиконом
**Термоусадочная трубка
*Дополнительные сведения о полимерах
Проводники
Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».
Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.
Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных металлов:
Металл | Удельное сопротивление Ом*мм2/м |
---|---|
Серебро | 0,015. 0,0162 |
Медь | 0,01724. 0,018 |
Золото | 0,023 |
Алюминий | 0,0262. 0,0295 |
Иридий | 0,0474 |
Вольфрам | 0,053. 0,055 |
Молибден | 0,054 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217. 0,227 |
Титан | 0,5562. 0,7837 |
Висмут | 1,2 |
Видим лидеров нашего списка: Ag, Cu, Au, Al.
Серебро
Ag — Серебро. Драгоценный металл. Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы делать из него провода. На 5% лучшая электропроводность по сравнению с медью, при разнице в цене почти в 100 раз.
Примеры применения
В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скинэффекта течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.
В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, стоимость этой малой добавки серебра к стоимости изделия незначительно. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу бокорезами по отделению контактов в кучку для последующего аффинажа.
Контакты силового реле на 16 Ампер. Согласно документации производителя
контакты содержат серебро и кадмий.
Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.
В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.
Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).
Компонент электропроводящих клеев и красок. Электропроводящие чернила часто
содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель
испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие
мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких
чернил.
Недостатки
Несмотря на то, что серебро — благородный металл, он окисляется в среде с содержанием
серы:
4Ag + 2H2S + O2 → 2Ag2S + 2H2O
Образуется темный налет — «патина». Также источником серы может служить резина, по-
этому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.
Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.
Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.
Примеры применения
Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно — чистейшая медь.
Гибкие многожильные провода различного сечения.
Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.
Теплоотводы. Медь не только на 56% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.
Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.
При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.
Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.
Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.
Интересные факты о меди
Алюминий
Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди.
Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три
раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из
алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь, как проводник везде, если
бы не пара его противных свойств, но об этом в недостатках.
Чистый алюминий, как и чистое железо, в технике практически не применяется (исключения
— провода и фольга). Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия:
Примеры применения
Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения,
пригодные для укладки в грунт. В частности кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту, для защиты нижележащей изоляции от повреждений, к примеру лопатой при раскопке.
Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у
микросхем, процессоров, делают из алюминия.
Различные алюминиевые радиаторы.
Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин — это корпуса жёстких дисков, бытовых приборов, редукторов и т. д.
Анодированный алюминий (алюминий, у которого электрохимическим путем окисная пленка
на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная
пленка (Al2O3 — из того же вещества состоят драгоценные камни рубины и сапфиры) достаточно твёрдая и износостойкая, но к сожалению алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.
Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон
завернутый в фольгу потеряет сеть — он будет заэкранирован.
Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% падающего света (примерное значение, зависит от условий) (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.
Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.
Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.
Недостатки
Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой разницей в электрооотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда) начинает протекать гальваническая коррозия с разрушением алюминия.
Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.
Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется
и сохранит новую форму — это называется «пластическая деформация». Если сжать его не
так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий
начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо
затянутая клемма с алюминиевым проводом спустя 5-10-20 лет постепенно ослабнет и будет
болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ
запрещает тонкий алюминиевый провод для разводки электроэнергии по потребителям в
зданиях. В промышленности не сложно обеспечить регламент — так называемая «протяжка»
щитка, когда электрик периодически проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.
Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.
Интересные факты об алюминии
Источники
В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся по металлам.