с помощью постоянной хаббла можно определить следующий параметр вселенной

1. Отметьте знаком «+» верные ответы.

а) Скорости разбегания галактик: пропорциональны расстоянию от наблюдателя.

б) С помощью постоянной Хаббла можно определить следующий параметр Вселенной: возраст.

в) Если галактика удаляется со скоростью 3000 км/с, то расстояние до нее: 40 Мпк.

2. Принимая постоянную Хаббла Н = 75 км/(с * Мпк), определите расстояние до галактики, если красное смещение в ее спектре составляет 10000 км/с.

с помощью постоянной хаббла можно определить следующий параметр вселенной

D = v / H = 10000 / 75 = 133 (Мпк)

3. Сравнение смещений спектральных линий в различных частях одной и той же галактики показывает, что эти смещения неодинаковы по величине. Какой вывод можно сделать на основании этого факта?

Различные части галактики имеют разные скорости, что свидетельствует о вращении галактики.

4. Наши наблюдения показывают, что по всем направлениям в космосе расположено примерно равное число галактик и все они от нас удаляются. Значит ли это, что наша Галактика — центр всей Вселенной? Ответ обоснуйте.

Нет, наша Галактика — не центр Вселенной. У Вселенной нет центра. Пространство раздувается, но центра расширения нет. Из любого места наблюдения картина расширения будет одинакова.

5. Величина, обратная постоянной Хаббла, дает примерную оценку времени, которое прошлое момента начала расширения Вселенной. Подсчитайте это время.

с помощью постоянной хаббла можно определить следующий параметр вселенной

t = 1 / H = 4 ⋅ 10 17 (с), или 13 млрд лет.

Источник

Закон Хаббла

Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее.

Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной.

Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему — природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными — и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся — в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось.

Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период—светимость определяют и количество испускаемого ею света.

Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы — скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения).

Первое, что сделал Хаббл, — рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. — Прим. автора) — то есть туманность находится далеко за пределами Млечного Пути — нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений — галактик. Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой.

Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера, а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто:

где v — скорость удаления галактики от нас, r — расстояние до нее, а H — так называемая постоянная Хаббла. Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, — со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает.

Итак, главное и — казалось бы — невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики — изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного — если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной — и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной — и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва, и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v, которую мы наблюдаем сегодня. Пусть t — время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями:

Но ведь из закона Хаббла следует, что

Источник

Закон Хаббла

Одной из важнейших работ Эдвина Хаббла стало наблюдение за туманностью, находящейся в созвездии Андромеда. Изучая её с помощью стодюймового рефлектора, учёный смог классифицировать туманность как некоторую звёздную систему. Это же касается и туманности в созвездие Треугольник, которая также получила статус галактики. Открытие Хаббла расширило объёмы материального мира. Теперь Вселенная стала выглядеть пространством, наполненным галактиками – гигантскими скоплениями звёзд. Рассмотрим открытый им закон — закон Хаббла, один из самых фундаментальных законов современной космологии.

История и суть открытия

Космологический закон, характеризующий расширение Вселенной, известен ныне именно как закон Хаббла. Это главнейший наблюдательный факт в современной космологии. Он помогает в оценке времени расширения Вселенной. Вычисления производятся с учётом коэффициента пропорциональности, называемой постоянной Хаббла. Сам закон получил свой нынешний статус вначале, как результат работ Ж. Леметра, а позже и Э. Хаббла, который для этого использовал свойства цефеид. Эти интересные объекты имеют периодические изменения светимости, что делает возможным определить их удаление достаточно надёжно. При помощи зависимости «период-светимость», он измерил расстояния до некоторых цефеид. Ещё он определил красные смещения их галактик, что позволило вычислить радиальные скорости. Все эти эксперименты были проведены в 1929 году.

Величина коэффициента пропорциональности, которую вывел учёный, составила примерно 500 км/сек на 1 Мпк. Но в наше время параметры коэффициента изменились. Теперь он составляет 67,8 ± 0,77 км/сек на 1 Мпк. Эта нестыковка объясняется тем, что Хаббл не учёл поправки на поглощение, которая в его время ещё не была открыта. Плюс к этому, не были приняты во внимание собственные скорости галактик, вкупе со скоростью, общей для группы галактик. Также следует учитывать, что под расширением Вселенной понимается не простой разлёт галактик в пространстве. Это ещё и динамическое изменение самого пространства.

Постоянная Хаббла

Это составляющая величина закона Хаббла, которая увязывает значения расстояния до объекта, находящегося за пределами нашей галактики, и скорости его удаления. Положения этой постоянной определяют средние значения скоростей галактик. Используя постоянную Хаббла, можно определить, что галактика, расстояние до которой 10 Мпк, удаляется со скоростью 700 км/сек. А галактика, удалённая на 100 Мпк, будет иметь скорость уже в 7000 км/сек. Пока все обнаруженные объекты сверхдальнего космоса вписываются в рамки хаббловского закона.

Выводы из закона

Определив, что туманность Андромеды – галактика, состоящая из отдельных звёзд, Хаббл обратил внимание на смещение в спектральных линиях излучений соседних галактик. Смещение было сдвинуто в красную сторону, и учёный охарактеризовал это, как проявление эффекта Доплера. У него получилось, что галактики, по отношению к Земле, удаляются. Дальнейшие исследования помогли понять, что галактики тем быстрее убегают, чем дальше от нас они находятся. Именно этот факт и определил, что закон Хаббла – центростремительное разбегание Вселенной со скоростями, нарастающими по мере удаления от наблюдателя. Кроме того, что Вселенная расширяется, закон определяет, что она ещё имела своё начало во времени. Для понимания данного постулата, нужно попытаться происходящее расширение визуально запустить обратно. В таком случае можно дойти до начальной точки. В этой точке – маленьком комке протоматерии – и был сосредоточен весь объём нынешней Вселенной.

Значение в астрономии

Эйнштейн оценивал работу Хаббла достаточно высоко, а закон получил быстрое признание в науке. Именно наблюдения Хабблом (совместно с Хьюмасоном) красных смещений сделало вероятным допущение, что Вселенная не является стационарной. Закон, сформулированный великим учёным, фактически стал указанием, что во Вселенной присутствует некая структура, влияющая на разбегание галактик. Она имеет свойство сглаживать неоднородности космического вещества. Поскольку разбегающиеся галактики не замедляются, как это должно было быть вследствие действия их собственного тяготения, то должна существовать какая-то сила, их расталкивающая. И эта сила получила название тёмной энергии, которая имеет около 70% всей массы/энергии видимой Вселенной.

Сейчас расстояния до удалённых галактик и квазаров оцениваются посредством закона Хаббла. Главное, чтобы он действительно оказался верным для всей Вселенной, безграничной в пространстве и во времени. Ведь мы ещё не знаем свойств тёмного вещества, которое вполне может подкорректировать любые представления и законы.

Источник

Сюрприз: постоянная Хаббла на самом деле непостоянна

с помощью постоянной хаббла можно определить следующий параметр вселенной
Часть изображения, полученного в рамках наблюдения Hubble eXtreme Deep Field, в комбинированном ультрафиолете, видимом свете и инфракрасном излучении – самого глубокого взгляда во Вселенную из всех, что мы предпринимали. Различные видимые здесь галактики находятся на разных расстояниях и имеют разное красное смещение, что позволяет нам вывести закон Хаббла.

Вселенная огромна, и на миллиарды световых лет во всех направлениях заполнена звёздами и галактиками. С самого Большого взрыва свет путешествует, отправляясь с каждого создавшего его источника, и совсем малая часть этого света доходит до наших глаз. Но свет не просто перемещается через пространство из точки испускания и до того места, где мы находимся сегодня; кроме этого, расширяется сама ткань пространства.

Чем дальше от нас находится галактика, тем больше пространство между нами растягивает – и смещает в красную часть спектра – тот свет, что в итоге прибудет к нашим глазам. Заглядывая на всё более далёкие расстояния, мы видим увеличение красного смещения. Если построить график того, как видимая скорость удаления зависит от расстояния, мы получим красивое, прямолинейное взаимоотношение: закон Хаббла. Но наклон этой линии, постоянная Хаббла, на самом деле совсем не постоянен. И это одно из наиболее сильных заблуждений во всей астрономии.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Зависимость красного смещения от расстояния для удалённых галактик. Не попадающие на линию точки смещены из-за разности пекулярных скоростей, но они лишь немного отклоняются от наблюдаемой общей картины. Изначальные данные, полученные самим Эдвином Хабблом, и впервые использованные для демонстрации расширения Вселенной, умещаются в небольшой красный прямоугольник в левом нижнем углу.

Расширение Вселенной мы понимаем двояко: теоретически и через наблюдения. Наблюдая за Вселенной, мы видим несколько важных фактов, связанных с расширением:

с помощью постоянной хаббла можно определить следующий параметр вселенной
Двумерный срез ближайших к нам участков Вселенной, плотность которых выше (красное) и ниже (синее/чёрное) среднего значения. Линии и стрелки показывают направления пекулярных скоростей, но вся эта картина включена в ткань расширяющегося пространства.

Но эта проблема не является непреодолимой. Во Вселенной есть не просто несколько галактик, расстояние и красное смещение которых мы можем измерить; мы провели такие измерения буквально для миллионов галактик. Огромное количество галактик мы можем сгруппировать так, чтобы каждая группа находилась на определённом среднем расстоянии от нас, и мы могли бы подсчитать их среднее красное смещение. После такой процедуры мы обнаруживаем прямолинейную зависимость, определяющую закон Хаббла.

Но вот, в чём сюрприз. Если заглянуть на достаточно большие расстояния, становится видно, что скорость расширения уже не подчиняется прямолинейному закону, и начинает закругляться.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Зависимость скорости видимого расширения (ось у) от расстояния (ось х) соответствует тому, что Вселенная в прошлом расширялась быстрее, однако расширяется и сегодня. Это современная (2014 год) версия работы Хаббла, распространяющаяся на расстояния в тысячи раз большие. Заметим, что точки не формируют прямую линию, а значит, скорость расширения со временем меняется.

Используя термин «постоянная Хаббла», мы имеем в виду наклон этой линии. Если это не линия – то есть, если её наклон меняется – это говорит о том, что хаббловская скорость расширения Вселенной не является константой! Мы называем её постоянной Хаббла потому, что Вселенная расширяется с одной и той же скоростью в любой её точке: постоянная Хаббла постоянна в пространстве.

Но скорость расширения, и значение постоянной Хаббла, изменяются со временем. Это не загадка, а то, чего и следовало ожидать. Чтобы это понять, давайте посмотрим на это с другой точки зрения: теоретической.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Итан Сигель на фоне гиперстены Американского астрономического общества в 2017 году, вместе с первым уравнением Фридмана, справа.
#МоёЛюбимоеУравнение
Первое уравнение Фридмана предсказывает скорость расширения Вселенной на основании её содержимого

Первое уравнение Фридмана получается у нас, если начать со Вселенной, равномерно заполненной материей, излучением и всеми остальными формами энергии. Единственные используемые здесь предположения – Вселенная изотропна (одинаковая во всех направлениях), гомогенна (имеет одинаковую плотность повсюду) и подчиняется Общей теории относительности. Приняв это, вы получаете взаимоотношение величины H, скорости Хаббла (слева) и различных форм материи и энергии Вселенной (справа):

с помощью постоянной хаббла можно определить следующий параметр вселенной
Первое уравнение Фридмана, как его обычно записывают сегодня. Левая часть определяет скорость расширения и эволюцию пространства-времени, а правая включает все различные формы материи и энергии, а также пространственную кривизну

Что интересно, с расширением Вселенной плотности материи, излучения и энергии могут меняться. К примеру, с расширением Вселенной увеличивается её объём, но общее количество частиц остаётся неизменным. Это означает, что в расширяющейся Вселенной:

с помощью постоянной хаббла можно определить следующий параметр вселенной
Как материя (вверху), излучение (в середине) и космологическая константа (внизу) развиваются со временем в расширяющейся Вселенной

Вселенная с большей плотностью энергии расширяется быстрее. И наоборот, вселенная с меньшей плотностью энергии расширяется медленнее. С возрастом Вселенная расширяется: при расширении материя и излучение становятся менее плотными; с уменьшением плотности уменьшается и скорость расширения. В любой момент времени скорость расширения определяет значение постоянной Хаббла. В далёком прошлом скорость расширения была гораздо больше, а сегодня – наименьшая.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Различные компоненты и вклады в плотность энергии Вселенной, и периоды их доминирования. Если бы космические струны или стены доменов существовали в каком-то значимом количестве, они вносили бы существенный вклад в расширение Вселенной. Могут даже быть и какие-то другие компоненты Вселенной, которых нам уже больше не видно, или которые ещё только собираются проявить себя! К сегодняшнему моменту тёмная энергия доминирует, материя достаточно важна, а излучением можно пренебречь.

Так почему же очень удалённые галактики подчиняются этому прямолинейному соотношению? Потому, что весь свет, прибывающий к нашим глазам, от света, испущенного соседней галактикой, до света, испущенного галактикой, находящейся в миллиардах световых лет от нас, к моменту подхода к нам достигает возраста в 13,8 млрд лет. Ко времени прихода света всё во Вселенной прожило ту же самую постоянно меняющуюся Вселенную, что и мы. Постоянная Хаббла в прошлом, когда была испущена большая часть света, была выше, но на то, чтобы этот свет прибыл к нашим глазам, ушло миллиарды лет.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Свет может быть испущен с разной длиной волны, но расширение Вселенной растянет его в пути. Свет, испущенный галактикой 13,4 млрд лет назад в ультрафиолете, будет сдвинут в инфракрасный диапазон.

Со временем Вселенная расширялась, а значит, длина волны света увеличивалась. Тёмная энергия стала достаточно важной лишь в последние 6 млрд лет, и мы дошли до момента, когда она довольно быстро становится единственным компонентом Вселенной, влияющим на скорость её расширения. Если бы мы вернулись в то время, когда Вселенная была в два раза моложе, то скорость расширения была бы на 80% больше сегодняшней. А когда Вселенной было 10% от текущего возраста, скорость расширения была в 17 раз больше, чем сегодня.

Когда Вселенная станет в десять раз старше, чем сегодня, её скорость расширения составит 18% от сегодняшней.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Голубым закрашен диапазон возможных неопределённостей того, как плотность тёмной энергии может отклоняться в прошлом и будущем. Данные указывают на наличие истинной космологической «константы», но другие возможности пока никто не отверг. К сожалению, преобразование материи в излучение не может быть кандидатом на тёмную энергию; в результате его то, что раньше вело себя, как материя, просто ведёт себя, как излучение.

Всё из-за наличия тёмной энергии, ведущей себя, как космологическая константа. В далёком будущем материя и излучение станут относительно неважными по сравнению с тёмной энергией, а значит, плотность энергии Вселенной будет оставаться постоянной. В таких условиях скорость расширения достигнет устойчивой и конечной величины, и таким и останется. В далёком будущем постоянная Хаббла станет постоянной не только в пространстве, но и во времени.

В далёком будущем, измерив скорость и расстояние до всех видимых объектов, мы получим одинаковый наклон этой линии повсюду. Постоянная Хаббла станет истинно постоянной.

с помощью постоянной хаббла можно определить следующий параметр вселенной
Относительная важность различных компонентов энергии Вселенной в различное время в прошлом. Когда тёмная энергия приблизится в будущем к отметке в 100%, плотность энергии Вселенной будет оставаться постоянной на сколь угодно большом промежутке времени.

Если бы астрономы точнее обращались со словами, они назвали бы H параметром Хаббла, а не постоянной Хаббла, поскольку она меняется со временем. Но несколько поколений подряд мы могли измерять относительно небольшие расстояния, и H казалась постоянной, поэтому мы не стали её переименовывать. Нам приходится лишь уточнять, что H это функция времени, и только сегодня – когда мы называем её H0 — она постоянна. На самом деле параметр Хаббла изменяется со временем, и остаётся постоянным только по всему пространству. Но если бы мы дожили до далёкого будущего, мы увидели бы, что H в какой-то момент перестаёт меняться. Сегодня мы можем тщательно разделять реальные постоянные величины и те, что меняются со временем, но в далёком будущем благодаря тёмной энергии этой разницы уже не будет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *