с помощью каких предметов можно продемонстрировать явление звукового резонанса
§ 33. Отражение звука. Звуковой резонанс
Каждый из вас знаком с таким звуковым явлением, как эхо. Эхо образуется в результате отражения звука от различных преград — стен большого пустого помещения, леса, сводов высокой арки в здании (рис. 81).
Но почему мы не слышим эха в небольшой квартире? Ведь и в ней звук должен отражаться от стен, потолка, пола.
Оказывается, эхо слышно лишь в том случае, когда отражённый звук воспринимается отдельно от произнесённого. Для этого нужно, чтобы промежуток времени между воздействием этих двух звуков на барабанную перепонку уха составлял не менее 0,06 с.
Определим, через какое время после произнесённого вами короткого возгласа отражённый от стены звук достигнет вашего уха, если вы стоите на расстоянии 3 м от этой стены.
Звук должен пройти расстояние до стены и обратно, т. е. 6 м, распространяясь со скоростью 340 м/с. На это потребуется время т. е.
В данном случае интервал между двумя воспринимаемыми вами звуками — произнесённым и отражённым — значительно меньше того, который необходим, чтобы услышать эхо. Кроме того, образованию эха в комнате препятствует находящаяся в ней мебель, шторы и другие предметы, частично поглощающие отражённый звук. Поэтому в таком помещении речь людей и другие звуки не искажаются эхом и звучат чётко и разборчиво.
Большие полупустые помещения с гладкими стенами, полом и потолком обладают свойством очень хорошо отражать звуковые волны. В таком помещении благодаря набеганию предшествующих звуковых волн на последующие получается наложение звуков, и образуется гул. Для улучшения звуковых свойств больших залов и аудиторий их стены часто облицовывают звукопоглощающими материалами.
На свойстве звука отражаться от гладких поверхностей основано действие рупора — расширяющейся трубы обычно круглого или прямоугольного сечения (рис. 82). При использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счёт чего мощность звука увеличивается и он распространяется на большее расстояние.
Напомним, что при резонансе амплитуда установившихся вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с собственной частотой колебательной системы.
Например, довольно тяжёлый нитяной маятник (рис. 83) можно сильно раскачать, если периодически дуть на него (даже очень слабой струёй) в направлении его движения с частотой, равной его собственной частоте.
Резонанс может быть вызван и действием звуковых волн. Чтобы пронаблюдать это, проделаем следующий опыт. Возьмём два камертона А и В с одинаковыми собственными частотами и поставим их рядом, обратив отверстия ящиков, на которых они укреплены, навстречу друг другу (рис. 84). Ударяя резиновым молоточком по камертону А, приведём его в колебание, а затем приглушим пальцами. Мы услышим звук, издаваемый камертоном В, который отзывается на колебания камертона А подобно тому, как в опытах с маятниками (см. рис. 68, б) маятник 1 отзывался на колебания маятника 3.
Изменим период колебания камертона В, надев на его ножку небольшую муфточку С. Повторив опыт, обнаружим, что теперь камертон В уже не отзывается на колебания камертона А.
Звуковые волны, образованные камертоном А, дойдя до камертона В, возбуждают в нём вынужденные колебания. Поскольку собственные частоты колебаний камертонов одинаковы, то имеет место резонанс: камертон В колеблется с наибольшей возможной амплитудой и издаёт звук. Но при наличии на камертоне В муфты С его собственная частота колебаний меняется, и амплитуда колебаний уменьшается настолько, что звука мы не услышим.
Ящики, на которых установлены камертоны, способствуют усилению звука и наиболее полной передаче энергии от одного камертона к другому. Усиление звука происходит за счёт колебаний самого ящика и особенно столба воздуха в нём. Размеры ящика подбирают таким образом, чтобы собственная частота воздушного столба в нём совпадала с частотой колебаний камертона. При этом столб воздуха колеблется в резонанс с камертоном, т. е. амплитуда его колебаний и соответственно громкость звука достигают наибольших значений.
Камертон, снабжённый таким ящиком (резонатором), издаёт более громкий, но менее длительный звук (по закону сохранения энергии).
В музыкальных инструментах роль резонаторов выполняют части их корпусов. Например, в гитаре, скрипке и других подобных им струнных инструментах резонаторами служат деки, которые усиливают издаваемые струнами звуки и придают звучанию инструмента характерную для него окраску — тембр. Тембр звука зависит не только от формы и размера резонатора, но и от того, из какого дерева он изготовлен, и даже от состава лака, покрывающего его. Тембр определяется также материалом, из которого сделана струна, и тем, гладкая она или витая.
Резонаторы имеются и в голосовом аппарате человека. Источники звука в голосовом аппарате — голосовые связки. Они приходят в колебание благодаря продуванию воздуха из лёгких и возбуждают звук, основной тон которого зависит от их натяжения. Этот звук богат обертонами. Гортань усиливает те из обертонов, частота колебаний которых близка к её собственной частоте. Дальше звуковые волны попадают в полость рта. Для произнесения каждой гласной необходимо особое положение губ, языка и определённая форма резонаторной по?
Вопросы
1. Какова причина образования эха? Почему эхо не возникает в маленькой, заполненной мебелью комнате? Ответы обоснуйте.
2. Как можно улучшить звуковые свойства большого зала?
3. Почему при использовании рупора звук распространяется на большее расстояние?
4. Приведите примеры проявления звукового резонанса, не упомянутые в тексте параграфа.
5. Для чего камертоны устанавливают на резонаторных ящиках? Каково назначение резонаторов, применяемых в музыкальных инструментах?
6. Что является источником голоса человека?
Задание
Придумайте, с помощью каких предметов (кроме камертонов на резонаторных ящиках) можно продемонстрировать явление звукового резонанса. Проделайте придуманный вами опыт, опишите ваши действия и наблюдаемые результаты.
Вопросы § 33
Физика А.В. Перышкин
1.Какова причина образования эха? Почему эхо не возникает в маленькой, заполненной мебелью комнате? Ответы обоснуйте.
Эхо возникает при отражении звука от преграды и возвращения звуковой волны.
В маленькой комнате исходный и отраженный звук слышится почти одновременно и еще поглощается и рассеивается мебелью. В большом, полупустом помещении звук не рассеивается и расстояние время прихода отраженной звуковой волны больше.
2. Как можно улучшить звуковые свойства большого зала?
Для этого стены зала облицовывают звукопоглощающими материалами, которые препятствуют образованию эха или гула.
3. Почему при использовании рупора звук распространяется на большее расстояние?
При использовании рупора звук меньше рассеивается, поэтому он обладает большей мощностью и распространяется на большее расстояние.
4. Приведите примеры проявления звукового резонанса, не упомянутые в тексте параграфа.
Если открыть пианино и пропеть над струнами какую-нибудь ноту, то можно услышать, что инструмент откликается. Голос действует на все струны пианино, но откликаются только те, которые находятся в резонансе. Еще пример звукового резонанса — гитара. В правильно настроенной гитаре, при зажиме какой-либо струны определенным, можно увидеть, что колеблющейся зажатой струне резонирует другая.
5. Для чего камертоны устанавливают на резонаторных ящиках? Каково назначение резонаторов, применяемых в музыкальных инструментах?
Резонаторные ящики способствуют усилению звука, он становится более громким, хотя и менее длительным.
Резонаторы в музыкальных инструментах усиливают звук и создают определенный тембр инструмента.
6. Что является источником голоса человека?
Источником голоса человека являются голосовые связки.
Звуковой резонанс
Всего получено оценок: 218.
Всего получено оценок: 218.
Явление резонанса возникает в колебательных системах любой природы. Но наиболее часто наблюдается явление акустического (звукового) резонанса. Рассмотрим его подробнее.
Резонанс в колебательных системах
Напомним, что резонанс – это резкое увеличение амплитуды вынужденных колебаний, когда подводимая частота приближается к собственной частоте колебаний системы. Именно при этом создаются наилучшие условия подведения энергии к системе.
Рис. 1. Явление резонанса.
Звуковой резонанс
Для наблюдения явления звукового резонанса необходимо иметь звуковую колебательную систему с возможностью подведения к ней энергии с частотой близкой к ее собственной частоте колебаний. Простейшим случаем такой системы является струна акустической гитары. Зажимая струну на разных ладах, можно изменять частоту ее собственных свободных колебаний.
Кажется естественным, что ударяя по одной струне – нельзя заставить колебаться другую. Но это не совсем так.
Колеблющаяся струна создает вокруг себя звуковые колебания своей частоты. Эти воздушные колебания воздействуют и на другие струны, но, поскольку их собственные частоты отличаются, то создаются неблагоприятные условия подведения энергии к другим струнам. Например, первая (самая тонкая) струна популярной шестиструнной гитары настраивается на частоту 330 Гц. А вторая струна – на частоту 245 Гц. Ударяя по второй струне – мы никак не сможем заметно колебать первую струну.
Рис. 2. Резонанс струн гитары.
Колебания второй струны вызывают акустические колебания воздуха с частотой ее собственных колебаний. Колебания воздуха действуют и на первую струну. Однако, поскольку ее собственная частота заметно отличается от подводимой частоты, результирующие вынужденные колебания имеют очень малую амплитуду.
Зажимая вторую струну на пятом ладу, мы изменяем частоту ее собственных колебаний (фактически, немного уменьшая массу колеблющейся части струны). И теперь эта частота становится очень близка к собственной частоте колебаний первой струны. Создаются наиболее благоприятные условия для подведения энергии колебаний к первой струне, возникает звуковой резонанс, и первая струна начинает колебаться так сильно, что это становится заметно на глаз.
Воздушные резонаторы
Поскольку звуковые колебания хорошо распространяются в воздухе, любые полости с воздухом обладают собственными частотами свободных колебаний. Звуковые волны, отражаясь от одной границы полости, двигаются к другой границе, отражаются от нее, двигаются обратно, снова отражаются – возникают свободные колебания некоторой частоты. Теперь, если к полости подводить звук с такой частотой – возникнет акустический резонанс, и результирующая громкость звука значительно возрастет.
Резонирующие свойства звуковых полостей широко используются не только строителями концертных залов, но и Природой – звуковоспроизводящие органы всех живых существ (в том числе человека) имеют такие полости-резонаторы.
Что мы узнали?
Наиболее часто явление резонанса наблюдается для звука. Любая воздушная полость обладает некоторой собственной резонансной частотой и способна к акустическому резонансу. Такие полости используются в концертных залах, такие полости есть в звуковоспроизводящих органах всех живых существ.
Урок по теме «Звуковой резонанс»
руководитель методического объединения
( физика, химия, биология)
Шадури М. И._______________ «_15__»_____декабря_______2015__ г.
Составитель: преподаватель физики Гарагуля С.Л.
Тема урока: «Звуковой резонанс»
КОНСПЕКТ ОТКРЫТОГО УРОКА
Методическая цель урока : активизация познавательной деятельности суворовцев в процессе изучения звукового резонанса
Образовательная цель урока: познакомить суворовцев с явлением звукового (акустического) резонанса, сформировать у суворовцев понимание условий, необходимых для получения звукового резонанса. Рассмотреть практическое использование звукового резонанса.
Воспитательная цель урока: способствовать повышению культуры умственного труда, создать условия для повышения интереса к изучаемому материалу, подчеркивая практическую значимость приобретенных знаний и умений. Способствовать развитию творческого отношения к учебной деятельности в процессе совместной работы при изучении особенностей звукового резонанса.
Развивающая цель урока: создать условия для развития исследовательских и творческих навыков, навыков общения и совместной деятельности. Обеспечить условия для развития умений устанавливать причинно-следственные связи между явлением резонанса и условиями, необходимыми для его возникновения. Способствовать развитию умений учащихся обобщать полученные знания, проводить анализ, синтез, сравнения, делать необходимые выводы
Тип урока: урок ознакомления с новым материалом
Вид урока: смешанный
Форма организации урока: групповая
Используемые педагогические технологии: технология развивающего обучения,
Метод обучения: частично-поисковый
Материальное обеспечение урока:
Камертоны с резонаторами (частотой 440Гц)
Камертоны без резонаторов ( частотой 440Гц)
Камертоны другой частоты
Компьютер и мультимедийный проектор
Видеофрагмент №1 «Звуковой резонанс»
Видеофрагмент №2 «Акустическое оружие»
Видеофрагмент №3 «Влияние музыки на песок, воду и огонь»
Фотографии резонаторы в музыкальных инструментах, резонаторы у зайца и у слона.
Лис ватмана и маркеры
Основные этапы открытого урока
Подготовка суворовцев к занятию
Проверяет готовность суворовцев к занятию, побуждая к активной работе на уроке. Принимает рапорт
Сдают рапорт. Полная готовность суворовцев включение суворовцев в деловой ритм.
Обеспечение мотивации и принятия суворовцами цели урока
Проводит эксперимент с камертонами, подводит суворовцев к формулировке цели урока
Суворовцы совместно с преподавателем участвуют в демонстрации эксперимента, самостоятельно формулируют цель урока
Постановка проблемной задачи практического характера
Формирует поисковые группы, побуждает желания суворовцев самостоятельно добывать все недостающие факторы при исследовании особенностей акустического резонанса
Суворовцы, работая в группах, самостоятельно исследуют условия возникновения резонанса и факторы, влияющие на степень выраженности резонанса, делают самостоятельные выводы
Актуализация знаний учащихся
Актуализация опорных знаний и умений в объяснении явления акустического резонанса и условий необходимых для его существования
Суворовцы, работая в группах, формулируют условия возникновения резонанса и определяют факторы, влияющие на проявление акустического резонанса. Делают необходимые записи в тетради.
Усвоение новых знаний
Рассмотрение различных проявлений звукового резонанса в природе, медицине, технике и военном деле
Предлагает к рассмотрению вопросы, демонстрирует видеофрагмент№1, предлагает к применению устройства, работающие за счет звукового резонанса (стетоскоп, рупор), предлагает к самостоятельному рассмотрению дополнительный материал ( приложение2)
Отвечают на вопросы преподавателя, участвуют в практической деятельности, работают с дополнительной литературой, делают сообщения по анной теме
Обобщение и систематизация
Обобщение и систематизация условий и примеров проявления звукового резонанса
Предлагает по группам записать все примеры проявления и использования звукового резонанса в природе, медицине, технике и военном деле. Демонстрирует видеофрагмент №2
Суворовцы работают в группах, обобщая информацию, полученную на уроке, обсуждают информацию, дополняя друг друга
Рефлексия, подведение итогов урока
Мобилизация суворовцев на рефлексию своих действий на уроке
Помогает суворовцам осмыслить и правильно оценить свои действия на уроке, предлагая выполнить задание по группам ( приложение3) Демонстрирует видеофрагмент №3
Осмысление суворовцами результатов своих действий на уроке при письменном ответе на поставленные перед ними вопросы
Задание на самоподготовку, инструктаж по его выполнению
Обеспечение понимания цели, содержания и способов выполнения домашнего задания. Проверка соответствующих записей
Выдает суворовцам домашнее задание с подробными пояснениями по его выполнению
Задание на сам\по: итоги гл.6 упр.6
Получают задание с подробными пояснениями его выполнения
Преподаватель___________Гарагуля С.Л. «__15__»___декабря_______________2015_г.
1.Здравствуйте товарищи суворовцы. Предлагаю заполнить лист рефлексии (анонимно) Прежде чем начать наш урок проверим, готовы ли мы к работе. На столах перед ними развернутыми в мою сторону стоят камертоны ( нота ля). Я возбуждаю камертон и останавливаю. Суворовцы слушают свои камертоны. Как вы думаете, о чем сегодня пойдет речь на нашем уроке? Правильно сегодня мы будем говорить о звуковом резонансе. Записали тему урока и домашнее задание.
2) при каких условиях резонанс не возникает. Какие факторы влияют на степень выраженности резонанса, т.е.
3)при каких условиях резонанс более отчетливо выражен. (Суворовцы, работают в группах, обсуждают). Из гостей, присутствующих на уроке сделать еще одну группу (по возможности)
А как вы думаете, что общего между слоном и зайцем ( на экран вывести их фотографии)? ( их уши- это большие резонаторы, обратите внимание на то, что уши слона в складочку и внутри ушей есть волоски-резонаторы, что усиливает звуковой резонанс. Кроме того хобот слона это тоже резонатор. Знаете ли вы, что слоны слышат друг на расстоянии 10 км ( правда они еще слышат инфразвук через подошвы ног. Слоны в день пьют 140-160л воды и без нее они не могут. Поэтому слоны слышат ливневые дожди на расстоянии 240 км. Вы обращали внимание, как громко квакают лягушки. У них тоже есть свои резонаторы А есть ли у нас резонаторы? (ушная раковина, горло). Предложить суворовцам тихо сказать ура и громко.. А если не хватает сил, то можно… Сложить из картона рупор и продолжать говорить в рупор. Рупор увеличивает объем резонатора, что приводит к дополнительному усилению звука. Или вы знаете, что когда плохо слышно к ушной раковине прикладывают руку (показать). Где еще используется звуковой резонанс? ( Раздать суворовцам материал, который они читают и докладывают)
В аэродинамике известно вредное явление фляттер, представляющее собой вредное резонансное дрожание крыла самолета в полете, что может привести к поломке самолета. Долгое время не могли гасить эти колебания, пока не догадались у передней кромки крыла делать утяжеление, т.е менять собственную частоту колебаний, что гасила вредные резонансные колебания. Природа тоже в течение веков выработала борьбу с фляттером. Так, например, у стрекоз в передней части крыла тоже есть хитиновое утолщение. Удаление его не лишает стрекозу возможности летать, но она будет порхать как бабочка, что нарушает правильность полета.
Рассказывают, что при пении Федор Ивановича Шаляпина
дрожали (резонировали) хрустальные подвески люстр. От того ли, что голос был громким? Вовсе
нет. У Шаляпина был очень низкий голос и когда он пел частота его голоса совпадала с собственной частотой колебаний люстр, и они начинали угрожающе раскачиваться. Говорят, что от голоса Шаляпина разбивались даже фужеры с шампанским.
Задать? А встречались ли вы, с проявлениями звукового резонанса.( может быть вспомнят про Эолову арфу или про звучание проводов при ветре. (Если не вспомнят, то напомнить)
Мы с вами знаем, что основное свойство волн это… ( они говорят- перенос энергии без переноса вещества. А от чего зависит энергия волны? ( отвечают : от квадрата амплитуды колебаний). Таким образом, если при резонансе резко увеличивается амплитуда колебаний, значит, увеличивается и энергия волны. Давайте посмотрим… ( видеофрагмент№1 звуковой резонанс 2 минуты). А как вы думаете, зачем артиллеристы, танкисты одевают шлемы? Чтобы уменьшить последствия звукового резонанса. Энергия звуковой волны может приводить к разрушительному действию и тогда когда сверхзвуковой самолет преодолевает звуковой барьер. (на экран вывести фото сверхзвукового самолета)
Итак, мы сегодня познакомились с разнообразными примерами проявлениями звукового резонанса. Предлагаю вам записать, что вы сегодня узнали о резонансе. Работают по своим группам на полуватмане. Рисуют солнце-резонанс, а лучики примеры его использования. Вывешиваем на доске и после этого обсуждаем. Суворовцы знакомятся с работами других групп и, если возникает необходимость, дополняют друг друга.
Заполняем лист рефлексии и в конце урока видео №3 Влияние музыки на песок (в качестве благодарности присутствующим). Обговариваем влияние звука не только на песок и структуру вещества, но и на нашу психику. Особенно влияние тяжелого психоделического рока.
Преподаватель озвучивает оценки за урок, благодарит суворовцев за работу на уроке и всех присутствующих, за уделенное внимание.
Звуковой резонанс: определение, особенности возникновения и примеры
Звуковой резонанс — это совпадение частоты внешней вынуждающей силы (акустической волны) с собственной частотой, что приводит к резкому ее увеличению. Явление резонанса тесно связано со способностью звука отражаться, о чем подробнее поговорим в статье. Кроме того, расскажем о звучащей каменной глыбе, о поющем нечеловеческим голосом доме. Приведем и другие примеры проявления звукового резонанса, объясним их причины.
Опыт с камертонами
Акустическая волна подобна качелям: если толкать их как попало, сбиваясь с ритма, то высоко она не взлетит. Важность совпадения частоты (ритма) легко можно увидеть в эксперименте с двумя камертонами. Возьмем те, что имеют одинаковую частоту, и поставим довольно близко друг от друга. Ударим молоточком по ножкам первого — он зазвучит, и очень скоро заставит звучать другой. Почему это произойдет? Второй инструмент будет приведен в движение (раскачан) звуковой волной. Когда первый замолчит, второй будет издавать звук еще некоторое время. Вот как возникает звуковой резонанс. Если проделать опыт на камертонах разной частоты, мы увидим, что они не резонируют.
Музыкальные инструменты
Гитарная или скрипичная струна сама по себе звучит не очень громко и вряд ли будет слышна в концертном зале. Звук во много раз усиливается благодаря корпусу инструмента — резонатору. И раструб духовых инструментов, и корпус струнных, клавишных инструментов — например, дека рояля, являются резонаторами. Они собирают слабые звуки и увеличивают их амплитудой основной звук (по принципу качели). В результате инструмент звучит громко, а еще от резонатора зависят тембр, глубина, мягкость или резкость тона.
Отражение звука
Звуковой резонанс возможен благодаря отражению волны. Рассмотрим это свойство звука подробнее. Акустическая волна, добежав до препятствия, которым может быть любое тело, возвращается назад. Знакомое всем эхо — это и есть волна, отраженная от удаленного предмета. Почему удаленного? Дело в том, что препятствие должно располагаться достаточно далеко, чтобы человек мог отличить звук от источника и отраженный звук. Так, в помещении средних размеров, например, в комнате квартиры, эха не будет. Все потому, что время, через которое волна, отразившись от стен, возвращается, слишком мало. Несмотря на это, отчетливо слышно, что звук гулкий, громкий.
Если завесить все стены коврами или покрыть другими звукоизолирующими материалами, звук станет глухим, сухим, даже неприятным. В случаях, когда важна звонкость, нужно позаботиться о том, от чего будет отражаться акустическая волна. Звукового резонанса без этого не будет.
Помещение как резонатор
Качество звучания в помещении особенно важно для театров, филармоний. Есть даже особый раздел акустики — архитектурная акустика. Она решает проблемы проектирования залов с хорошей слышимостью. «Правильное» помещение и само является резонатором. Подобные залы имеют округлые потолок и стены, благодаря чему звук доходит до каждого зрителя, слушателя.
«Поющий» камень
Недалеко от Баку, столицы Азербайджана, есть пустыня со знаменитым «поющим» камнем. Он настолько известен, что получил имя — «Каменный бубен». Эта удивительная глыба имеет свойство: если ударить по ней камнем, то звук получается такой же громкий и чистый, как у колокола. Как же физика объясняет этот пример звукового резонанса?
Удар приводит к краткосрочной деформации — тут же от точки столкновения во все стороны бегут звуковые волны. На скорость их расхождения размеры камня не влияют. Однако волна может свободно распространяться только в неограниченном пространстве. А ведь мы знаем, что камень и воздух имеют границы (там, где они соприкасаются). Когда волна добегает до рубежа, она частично проходит в другую среду — из камня в воздух. Оставшаяся часть акустической энергии отражается в обратном направлении.
От чего зависит звучание
Чем больше разнятся скорости звука в воздухе и камне, тем лучше отражение. Так, в граните звук расходится со скоростью 4×10 3 м/с, в воздухе — 3,3×10 2 м/с. Следовательно, в воздух выйдет незначительное количество энергии, а основная часть будет «закрыта» внутри камня. «Поющая» глыба лежит на других камнях, у нее слабая акустическая связь с землей, ведь она касается грунта лишь в нескольких местах. Получается, что звук не может выйти в землю. Подобные предметы, способные заключить внутри себя колебательную энергию, называются резонаторами. Что же происходит в середине «поющего» камня при ударе? Волны множество раз отражаются от его стенок, уменьшаются или увеличиваются при звуковом резонансе. Усиление бывает тогда, когда волна, отразившись, возвращается в той же фазе, в которой она начинала свой пробег.
Таинственный дом
В «Рассказах о старой Москве» А. Вьюркова описывается звучащий страшным голосом дом. Главный герой произведения Иван Павлович решил разбогатеть обманным путем. Он нанял бригаду каменщиков, чтобы те построили ему доходный дом, и не заплатил им всей обещанной суммы. Вскоре арендаторы стали один за другим покидать гостиницу, потому что были напуганы нечистой силой, которая выла нечеловеческим голосом. Иван Павлович обратился в полицию, и городовые остались в засаде на ночь. Их постигла та же участь, что и квартиросъемщиков. В пустых комнатах раздавались жуткие вздохи и вой. Стражи порядка в ужасе покинули здание со страшным домовым.
Иван Павлович остался без денег и без жильцов. Ему нечем было выплачивать проценты по кредиту, поэтому имущество и его самого арестовали. По прошествии времени один из подрядчиков раскрыл Ивану Павловичу секрет мистического дома. Оказывается, что обманутые рабочие решили отомстить: они замуровали в стену пустые бутылки, которые звучали при каждом порыве ветра, пугая постояльцев.
Резонатор Гельмгольца
Удивительные свойства пустых сосудов человечество знает давно. Античные архитекторы при строительстве театра использовали знания о звуковом резонансе: закладывали в стены сосуды из бронзы, чтобы голос актеров звучал громче. В акустике широко применяются резонаторы Гельмгольца. Гельмгольц — это немецкий ученый, который обосновал теорию слуха с физической точки зрения. С помощью набора резонаторов, названных в его честь, можно анализировать сложные звуки по частоте колебаний волны.
Как же работает резонатор? Он представляет собой шарообразный или в форме бутылки сосуд с узким горлышком. Весь секрет состоит в звуковом резонансе колебаний воздуха, который находится внутри. Звуковая волна сложная. Она состоит из множества колебаний. Но каждый из резонаторов лучше всего отзывается на ту частоту, которая равна его собственной, т. е. частоту колебания воздуха, заключенного в полости. От чего она зависит?
Если резонатор меньше длины звуковой волны, то его принцип действия такой же, как у пружинного маятника. Воздух в узком горлышке движется намного быстрее, чем в самом резонаторе. Именно колебания в горлышке сосуда играют главную роль. Получается, что кинетическая энергия сосредоточена преимущественно в этом узком месте. Упругую энергию несет масса воздуха, находящаяся внутри резонатора.
Воздуха в горлышке гораздо меньше, чем внутри, поэтому изменением его объема во время колебаний принято пренебрегать. Условно считается, что вся эта масса передвигается как единое целое, как воздушная пробка, а объем воздуха внутри резонатора меняется сильно. Получается, что воздух внутри работает как пружина в колебательной системе. Его приток перекрывает путь в сосуд другому воздуху, а отток понижает давление и препятствует выпусканию воздуха изнутри. Когда воздушная пробка идет вниз, она сжимает близлежащий слой воздуха внутри резонатора, т. е. повышает его плотность. В результате растущее давление приводит в движение следующий слой воздуха, потом еще один и т. д. Таким образом, сжатие распространяется по слоям, передает свой импульс, и возникает звуковая волна.
Теперь понятно, что причиной жутких голосов в доходном доме был звуковой резонанс. Вой ветра и другие шумы с улицы — это неупорядоченные гармонические колебания разной частоты. Их называют чистыми тонами. При прохождении через стену все частоты, кроме резонансных, слабели. Резонансные частоты — это те, что совпадали с частотами воздуха в пустых сосудах. Более того, они могли даже усилиться. Городовые впадали в панику, потому что слышали несвойственные человеку и живым существам звуки. Дело в том, что наша речь звучит на частоте, гораздо большей 100 герц, а «домовой» издавал необычно низкие звуки.