работу по перемещению заряда в электрическом поле можно рассчитать

Работу по перемещению заряда в электрическом поле можно рассчитать

При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении работу по перемещению заряда в электрическом поле можно рассчитатьравна (рис. 1.4.1):

работу по перемещению заряда в электрическом поле можно рассчитать
работу по перемещению заряда в электрическом поле можно рассчитать

Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле

Электростатическое поле обладает важным свойством:

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение работу по перемещению заряда в электрическом поле можно рассчитатьРабота Δ A кулоновских сил на этом перемещении равна

работу по перемещению заряда в электрическом поле можно рассчитать
работу по перемещению заряда в электрическом поле можно рассчитать
работу по перемещению заряда в электрическом поле можно рассчитать

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов работу по перемещению заряда в электрическом поле можно рассчитатьто при перемещении пробного заряда q работа A результирующего поля в соответствии с принципом суперпозиции будет складываться из работ работу по перемещению заряда в электрическом поле можно рассчитатькулоновских полей точечных зарядов: работу по перемещению заряда в электрическом поле можно рассчитатьТак как каждый член суммы работу по перемещению заряда в электрическом поле можно рассчитатьне зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.

Работа, совершаемая электростатическое полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

A 12 = A 10 + A 02 = A 10 – A 20 = W p1 – W p2.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

работу по перемещению заряда в электрическом поле можно рассчитать

Потенциал φ является энергетической характеристикой электростатического поля.

Работа A 12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

A 12 = W p1 – W p2 = q φ1 – q φ2 = q (φ1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является вольт (В).

Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

работу по перемещению заряда в электрическом поле можно рассчитать

Потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

работу по перемещению заряда в электрическом поле можно рассчитать

Силовые линии электростатическое поля всегда перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы. На рисунке ниже представлены картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Если пробный заряд q совершил малое перемещение работу по перемещению заряда в электрическом поле можно рассчитатьвдоль силовой линии из точки (1) в точку (2), то можно записать:

Δ A 12 = qE Δ l = q (φ1 – φ2) = – q Δφ,

где Δφ = φ1 – φ2 – изменение потенциала. Отсюда следует

работу по перемещению заряда в электрическом поле можно рассчитать

Это соотношение в скалярной форме выражает связь между напряженностью поля и потенциалом. Здесь l – координата, отсчитываемая вдоль силовой линии.

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов:

Источник

Работа в электрическом поле. Потенциал

Работа сил электростатического поля. Понятие потенциала

работу по перемещению заряда в электрическом поле можно рассчитать

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.

У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.

Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:

работу по перемещению заряда в электрическом поле можно рассчитать

Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.

Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов. Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле. Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.

Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

Изображение электрических полей с помощью эквипотенциальных поверхностей

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

работу по перемещению заряда в электрическом поле можно рассчитать

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:

Источник

Учебники

Журнал «Квант»

Общие

Содержание

Работа электростатического поля

На электрические заряды в электростатическом поле действуют силы. Поэтому, если заряды перемещаются, то эти силы совершают работу. Рассчитаем работу сил однородного электростатического поля при перемещении положительного заряда q из точки A в точку B (рис. 1).

работу по перемещению заряда в электрическом поле можно рассчитать

На заряд q, помещенный в однородное электрическое поле с напряженностью E, действует сила \(

\vec F = q \cdot \vec E \). Работу поля можно рассчитать по формуле

A_ = F \cdot \Delta r \cdot \cos \alpha,\)

где Δr⋅cos α = AC = x2x1 = Δx — проекция перемещения на силовую линию (рис. 2).

работу по перемещению заряда в электрическом поле можно рассчитать

A_ = q \cdot E \cdot \Delta x. \ \ (1)\)

Рассмотрим теперь перемещение заряда по траектории ACB (см. рис. 1). В этом случае работа однородного поля может быть представлена как сумма работ на участках AC и CB:

A_ = A_ + A_ = q \cdot E \cdot \Delta x + 0 = q \cdot E \cdot \Delta x\)

(на участке CB работа равна нулю, т.к. перемещение перпендикулярна силе \(

\vec F \)). Как видно, работа поля такая же, как и при перемещении заряда по отрезку AB.

Не сложно доказать, что работа поля при перемещении заряда между точками AB по любой траектории будет находиться все по той же формуле 1.

Найдем работу на замкнутой траектории ABCA:

Поле, работа сил которого не зависит от формы траектории и на замкнутой траектории равна нулю, называется потенциальным или консервативным.

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система «заряд — электростатическое поле» обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

Сравнивая полученное выражение с уравнением 1, можно сделать вывод, что

где x — координата заряда на ось 0Х, направленную вдоль силовой линии (см. рис. 1). Так как координата заряда зависит от выбора системы отсчета, то и потенциальная энергия заряда так же зависит от выбора системы отсчета.

Если W2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q0 равна работе, которая была бы совершена при перемещении заряда q0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q. Будем помещать в некоторую точку этого поля различные пробные заряды q0. Потенциальная энергия их различна, но отношение \(

\dfrac = \operatorname\) для данной точки поля и служит характеристикой поля, называемой потенциалом поля φ в данной точке.

Единицей потенциала в СИ является вольт (В): 1 В = 1 Дж/Кл.

Свойства потенциала.

\varphi = k \cdot \dfrac\) при rR и \(

Зная потенциал φ поля в данной точке, можно рассчитать потенциальную энергию заряда q0 помещенного в эту точку: W1 = q0⋅φ. Если положить, что вторая точка находится в бесконечности, т.е. W2 = 0, то

Потенциальная энергия заряда q0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в бесконечность. Из последней формулы имеем

Потенциальная энергия заряда q0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,

Разность потенциалов. Напряжение

Работа сил электростатического поля по перемещению заряда q0 из точки 1 в точку 2 поля

Выразим потенциальную энергию через потенциалы поля в соответствующих точках:

Таким образом, работа определяется произведением заряда на разность потенциалов начальной и конечной точек.

Из этой формулы разность потенциалов

В СИ единицей разности потенциалов является вольт (В).

Работу сил электрического поля иногда выражают не в джоулях, а в электронвольтах.

Разность потенциалов и напряженность

Рассчитаем работу, совершаемую силами электростатического поля при перемещении электрического заряда q0 из точки с потенциалом φ1 в точку с потенциалом φ2 однородного электрического поля.

С одной стороны работа сил поля \(

С другой стороны работа по перемещению заряда q0 в однородном электростатическом поле \(

A = q_0 \cdot E \cdot \Delta x\).

Приравнивая два выражения для работы, получим:

где Δx — проекция перемещения на силовую линию.

Эта формула выражает связь между напряженностью и разностью потенциалов однородного электростатического поля. На основании этой формулы можно установить единицу напряженности в СИ: вольт на метр (В/м).

Источник

Работа электрического поля при перемещении заряда. Принцип действия

Чем на самом деле является напряжение? Это способ описания и измерения напряженности электрического поля. Само по себе напряжение не может существовать без электронного поля вокруг положительных и отрицательных зарядов. Так же, как магнитное поле окружает Северный и Южный полюса.

По современным понятиям, электроны не оказывают взаимного влияния. Электрическое поле – это нечто, что исходит от одного заряда и его присутствие может ощущаться другим.

О понятии напряженности можно сказать то же самое! Просто это помогает нам представить, как электрическое поле может выглядеть. Честно говоря, оно не обладает ни формой, ни размером, ничем подобным. Но поле функционирует с определённой силой на электроны.

Силы и их действие на заряженную частицу

На заряженный электрон, воздействует сила с некоторым ускорением, заставляя его перемещаться все быстрее и быстрее. Этой силой совершается работа по передвижению электрона.

работу по перемещению заряда в электрическом поле можно рассчитать

Силовые линии – это воображаемые очертания, которые возникают вокруг зарядов (определяется электрическим полем), и если мы поместим какой-либо заряд в эту область, он испытает силу.

Свойства силовых линий:

Почему у двух силовых линий не возникает пересечений? Потому что не бывает этого в реальной жизни. То, о чём говорится, является физической моделью и не более. Физики изобрели её для описания поведения и характеристик электрического поля. Модель очень хороша при этом. Но помня, что это всего лишь модель, мы должны знать о том, для чего такие линии нужны.

Силовые линии демонстрируют:

Если нарисованные силовые линии нашей модели пересекутся, расстояние меж ними станет бесконечно малыми. Из-за силы поля, как формы энергии, и из-за фундаментальных законов физики это невозможно.

Что такое потенциал?

Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.

Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.

работу по перемещению заряда в электрическом поле можно рассчитать

Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.

Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.

работу по перемещению заряда в электрическом поле можно рассчитать

А ниже показан заряд с большим потенциалом и плотностью потока.

работу по перемещению заряда в электрическом поле можно рассчитать

Электростатическое поле

Это разновидность электрического поля, неизменного повремени, образуемого зарядами, которые не двигаются. Работа передвижения электрона определяется соотношениями,

работу по перемещению заряда в электрическом поле можно рассчитать

где r1 и r2 – расстояния заряда q до начальной и конечной точки траектории движения. По полученной формуле видно, что работа при перемещении заряда из точки в точку не зависит от траектории, а зависит лишь от начала и конца перемещения.

работу по перемещению заряда в электрическом поле можно рассчитать

На всякий электрон действует сила, и поэтому при перемещении электрона в поле выполняется определенная работа.

В электростатическом поле работа зависит лишь от конечных пунктов следования, а не от траектории. Поэтому, когда движение происходит по замкнутому контуру, заряд приходит в исходное положение, и величина работы становится равной нулю. Это происходит потому, что падение потенциала нулевое (поскольку электрон возвращается в ту же самую точку). Так как разность потенциалов нулевая, чистая работа будет также нулевой, ведь потенциал падения равен работе, деленной на значение заряда, выраженное в кулонах.

Об однородном электрическом поле

Однородным называется электрическое поле меж двух противоположно заряженных плоских металлических пластин, где линии напряженности параллельны между собой.

работу по перемещению заряда в электрическом поле можно рассчитать

Почему сила действия на заряд в таком поле всегда одинаковая? Благодаря симметрии. Когда система симметрична и есть только одна вариация измерения, всякая зависимость исчезает. Есть много других фундаментальных причин для ответа, но фактор симметрии – самый простой.

Работа по передвижению положительного заряда

Электрическое поле – это поток электронов от «+» до «-», приводящий к высокой напряженности области.

работу по перемещению заряда в электрическом поле можно рассчитать

Поток – это количество линий электрического поля, проходящих через него. В каком направлении будут положительные электроны двигаться? Ответ: по направлению электрического поля от положительного (высокого потенциала) к отрицательному (низкому потенциалу). Поэтому положительно заряженная частица будет двигаться именно в этом направлении.

работу по перемещению заряда в электрическом поле можно рассчитать

Интенсивность поля во всякой точке определяется как сила, воздействующая на положительный заряд, помещенный в эту точку.

Работа заключается в переносе электронных частиц по проводнику. По закону Ома, можно определить работу разными вариациями формул, чтобы провести расчет.

Из закона сохранения энергии следует, что работа – это изменение энергии на отдельном отрезке цепи. Перемещение положительного заряда против электрического поля требует совершения работы и в результате получается выигрыш в потенциальной энергии.

Заключение

Из школьной программы мы помним, что электрическое поле образуется вокруг заряженных частиц. На любой заряд в электрическом поле воздействует сила, и вследствие этого при движении заряда выполняется некоторая работа. Большим зарядом создается больший потенциал, который производит более интенсивное или сильное электрическое поле. Это означает, что возникает больший поток и плотность на единицу площади.

Важный момент заключается в том, что должна быть выполнена определенной силой работа по перемещению заряда от высокого потенциала к низкому. Тем самым уменьшается разница заряда между полюсами. Перемещение электронов от токи до точки требует энергии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *