по параметрам рабочих процессов автомобиля можно определить

Методы диагностирования

Методы диагностирования автотранспортных средств подразделяются на субъективные и объективные. В основе субъективных методов лежат способы определения технического состояния автомобиля по выходным параметрам динамических процессов. Однако получение, анализ информации, а также принятие решения о техническом состоянии производятся с помощью органов чувств человека, что, естественно, имеет достаточно высокую погрешность.

Субъективные методы

Наибольшее распространение получили следующие субъективные методы:

Визуальный метод дает возможность обнаружить, например, следующие неисправности:

Прослушивание работы механизма позволяет обнаружить следующие неисправности:

Методом ощупывания механизма можно определить такие неисправности:

На основании логического мышления можно сделать заклю­чение о следующих неисправностях:

Объективные методы

Объективные методы основываются на измерении и анализе информации о действительном техническом состоянии элементов автомобиля с помощью контрольно-диагностических средств и путем принятия решения по специально разработанным алгоритмам диагностирования. Применение тех или иных методов существенно зависит от целей, которые решаются в процессе технической подготовки автомобилей. Однако в связи с усложнением конструкции автомобиля, повышенными требованиями к эксплуатационным качествам, интенсивностью использования объективные методы диагностирования находят все большее применение.

Методы диагностирования автомобилей, их агрегатов и узлов характеризуются способом измерения и физической сущностью диагностических параметров, наиболее приемлемых для исполь­зования в зависимости от задачи диагностирования и глубины постановки диагноза.

В настоящее время принято выделять три основные группы методов, классифицированных по виду диагностических параметров.

Методы I группы базируются в основном на имитации скоростных и нагрузочных режимов работы автомобиля и определении при заданных условиях выходных параметров. Для этих целей используются стенды с беговыми барабанами или параметры определяются непосредственно в процессе работы автомобиля на линии. Методы диагностирования по параметрам экс­плуатационных свойств дают общую информацию о техническом состоянии автомобиля. Они позволяют оценить основные экс­плуатационные качества автомобиля:

Методы II группы базируются на объективной оценке гео­метрических параметров в статике и основаны на измерении значения этих параметров или зазоров, определяющих взаим­ное расположение деталей и механизмов. Проводят такое диаг­ностирование в случае, когда измерить эти параметры можно без разборки сопряжений трущихся деталей. Структурными па­раметрами могут быть зазоры в подшипниковых узлах, клапан­ном механизме, кривошипно-шатунной и поршневой группах двигателя, шкворневом соединении колесного узла, рулевом управлении, углы установки передних колес и др. Диагностиро­вание по структурным параметрам производится с помощью из­мерительных инструментов: щупов, линеек, штангенциркулей, нутромеров, индикаторов часового типа, отвесов, а также спе­циальных устройств. Преимущество методов этой группы — возможность постановки точных диагнозов, простота средств измерения, а недостатки — большая трудоемкость, малая тех­нологичность.

К III группе относятся методы, оценивающие параметры сопутствующих процессов. Например, герметичность рабочих объемов оценивается при обнаружении и количественной оцен­ке утечек газов или жидкостей из рабочих объемов, узлов и аг­регатов автомобиля. К таким рабочим объемам можно отнести:

По интенсивности тепловыделения можно оценить работу трения сопряженных поверхностей деталей, качество процессов сгорания (например, по температуре отработавших газов), однако такие методы пока не нашли широкого применения.

При создании средств технического диагностирования транс­портных средств широко используются также методы, оценивающие состояние узлов и систем по параметрам колебательных процессов. Их можно разделить на три подвида:

Методы, с помощью которых оцениваются колебания напряжения в электрических цепях, используются для диагностирова­ния системы зажигания двигателя по характерным осциллограм­мам напряжений в первичной и вторичной цепях. Осциллографом отображаются процессы, протекающие в первичной и вторичной цепях системы зажигания за время между последовательными искровыми разрядами в цилиндрах, для визуального исследова­ния. Участки осциллограмм содержат информацию о состоянии системы зажигания. По осциллограмме первичного напряжения непосредственно измеряют угол замкнутого состояния контактов. По напряжению искрового разряда осциллограммы вторичного напряжения определяют состояние зазора свечи. Сравнивая полученные осциллограммы с эталонными, выявляют характерные неисправности проверяемой системы зажигания.

Виброакустические методы используются для измерения низко- и высокочастотных колебаний систем и элементов транс­портных средств.

Одним из таких методов является диагностирование по перио­дически повторяющимся рабочим процессам или циклам. Суть данного метода заключается в следующем. Рабочие процессы впуска, сжатия, сгорания и выпуска, изменение давления в топливных трубопроводах высокого давления, колебательные процессы в системе зажигания и другие часто повторяются. Так как закономерности изменения параметров рабочих процессов во всех периодах идентичны, то для диагностирования достаточно изучить параметры одного цикла. Для этого с помощью специальных преобразователей параметры одного цикла задерживают, разворачивают во времени и выводят на регистрирующий или пока­зывающий прибор.

Определенное место занимают методы, оценивающие по фи­зико-химическому составу отработавших эксплуатационных ма­териалов состояние узлов и агрегатов и отклонения от их нормального функционирования, например анализ отработанного масла, анализ отработавших газов и т.п. Диагностирование по составу масла производится путем анализа его проб, взятых из картера двигателя с целью определения количественного содержания продуктов износа деталей, а также наличия загрязнений и примесей. Концентрации железа, алюминия, кремния, хрома, меди, свинца, олова и других элементов в масле позволяют судить о скорости изнашивания деталей. По изменению концентрации железа в масле можно судить о скорости изнашивания гильзы цилиндров, шеек коленчатого вала, поршневых колец. По изменению концентрации алюминия судят о скорости изнашивания поршней и других деталей. Содержание почвенной пыли харак­теризует состояние воздушных фильтров и герметичность тракта подачи воздуха в цилиндр двигателя.

Источник

6 Техническая диагностика автомобиля

Основным источником достоверной информации о техническом состоянии каждого отдельно взятого автотранспортного средства является технический контроль, включающий осмотр и инструментальное диагностирование.

В соответствии с принятой терминологией под техническим контролем в сфере производства понимается проверка соответствия продукции установленным техническим требованиям (соответствие технического состояния автотранспортного средства нормативно-технической документации и законодательным нормам).

Техническая диагностика — отрасль знаний, изучающая и устанавливающая признаки неисправностей составных частей объектов, разрабатывающая методы и средства, с помощью которых дается заключение (ставится диагноз) о техническом состоянии объектов диагностирования, а также принципах построения и организации использования систем диагностирования.

Техническое состояние — совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемая в определенный момент признаками и параметрами состояния, установленными технической документацией на этот объект.

Объект диагностирования — изделие (транспортное средство) и его составляющие, подвергаемые диагностированию.

Техническое диагностирование — процесс определения технического состояния объекта диагностирования с требуемой точностью.

Результатом диагностирования является диагноз — заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

Средства и объекты диагностирования, подготовленные к проверке параметров состояния или осуществляющие ее по правилам, установленным соответствующей документацией, называются системой технического диагностирования.

Таким образом, различают понятие диагностики как отрасли знаний и как области практической деятельности. В первом случае используется термин «техническая диагностика», во втором — «техническое диагностирование».

Важнейшее требование к диагностированию — возможность оценки состояния объекта без его разборки.

Диагностика решает задачи трех типов по определению состояния объектов диагностирования:

Задачи первого типа относят к технической диагностике, второго — к технической прогностике (или, как чаще говорят, к техническому прогнозированию), третьего — к технической генетике.

Вопросы для самостоятельного контроля

Основными задачами диагностики применительно к автомобилям являются:

Диагностирование является более совершенной формой проведения контрольных работ. От традиционных контрольных осмотров, выполняемых на автотранспортных предприятиях (АТП) в основном субъективными методами с привлечением в качестве экспертов наиболее квалифицированных механиков и ремонтных рабочих, диагностирование отличается:

Возникновение потребности в объективной и достоверной информации, получаемой инструментальными методами контроля, объясняется действием на автомобильном транспорте двух важных факторов — усложнения автомобильной техники и стремления обеспечить поддержание работоспособности автомобилей в условиях низкой обеспеченности квалифицированными кадрами.

Приборные методы

Наряду с органолептическими методами при техническом диагностировании используются приборные методы, позволяющие получить количественную оценку измеряемого параметра. Диагностирование с применением приборов основано на получении информации в виде электрических, световых, звуковых сигналов, отображающих изменение состояния объекта. В зависимости от физической природы измеряемых параметров различают:

Классификация диагностических приборов может быть проведена по следующим признакам: цифровые и аналоговые, показывающие и сигнализирующие, универсальные и специализированные, стационарные и переносные и др.

Однако, все средства технического диагностирования, используемых для диагностики механического оборудования, по уровню решаемых задач и приборной реализации можно разделить на: портативные, анализаторы и встроенные системы.

Портативные средства технического диагностирования реализуют измерение одного или нескольких диагностических параметров, характеризуются малыми габаритами и отсутствием обмена данных с компьютерными системами (рисунок 40). К их преимуществам относятся: быстрота процесса измерения, простое обслуживание и управление, оперативное и наглядное получение информации в виде одиночного результата, низкая стоимость. Область применения – оперативный контроль технического состояния оборудования работниками ремонтных служб и технологическим персоналом.

по параметрам рабочих процессов автомобиля можно определить

(в)(г)

Рисунок 40 – Портативные приборы: а) электронный стетоскоп; б) виброметр; в) тахометр; г) пирометр

Анализаторы позволяют выполнить не только измерение, но и детальный анализ диагностических параметров. На основании полученной информации проводится обнаружение повреждений на ранней стадии развития. Среди данного класса средств технического диагностирования необходимо выделить спектроанализаторы вибрации, тепловизоры, анализаторы напряжения (рисунок 41). Переносной прибор выступает в роли мобильного устройства для сбора и предварительного анализа данных, а компьютер и программное обеспечение позволяет проводить более глубокие исследования на основе анализа трендов и экспертных систем. Применение анализаторов оправдано при специализации процессов контроля, высокой квалификации специалистов, необходимости обеспечения качества проводимых измерений. Область применения – специализированные подразделения промышленных предприятий по экспертизе технического состояния, наладке механического оборудования.

по параметрам рабочих процессов автомобиля можно определить

по параметрам рабочих процессов автомобиля можно определить

по параметрам рабочих процессов автомобиля можно определить

Рисунок 41 – Анализаторы: а) анализатор вибрации 795М; б) анализатор вибрации СД-21; в) тепловизор «SAT HY-6800»; г) тепловизор FLIF TG165

Встроенные системы используются при необходимости постоянного контроля технического состояния оборудования. Основные задачи: защита оборудования от ненормативных режимов работы, мониторинг технического состояния, диагностирование состояния оборудования, использование комплекса диагностических параметров (рисунок 42). Основные направления развития: контроль комплекса диагностических параметров; использование персональных компьютеров при обработке однотипной информации; блочный принцип построения; универсальность.

по параметрам рабочих процессов автомобиля можно определить

Рисунок 42 – Структурная схема стационарной системы контроля вибрационных параметров

В случае контроля одного параметра (обычно вибрации), устанавливается блок контроля, измеряющий и сравнивающий текущее и заданное значение параметра. При превышении заданного уровня включается звуковая или световая сигнализация; возможна остановка оборудования.

Если количество точек возрастает, их контроль однотипен и выполняется по определённой программе, наиболее целесообразным является соединение измерительной (датчики, линии связи, предусилители) и вычислительной (персональный компьютер) систем. При одновременном контроле нескольких взаимодополняющих параметров по одному агрегату используют блочный принцип, основанный на единой элементной базе и конструкторском решении. Наиболее характерно данное построение для механизмов роторного типа. Контролируемые диагностические параметры: параметры вибрации корпусов подшипников, биения вала, орбита движения вала, частота вращения, температура смазочного материала. Сигнализирующая система встроенного контроля предполагает участие оператора и дополнительный спектральный анализ для точной постановки диагноза.

Использование стационарной системы контроля для защиты оборудования от превышения нормативных параметров работы обосновано лишь в случае недоступности оборудования для осмотра.

Высокая стоимость – один из недостатков встроенных систем, определяется не только стоимостью аппаратной части, но и затратами на поддержание системы в работоспособном состоянии. Это ограничивает объём использования встроенных систем 10% эксплуатируемого оборудования.

Диагностика двигателя и электронных компонентов

Проверка работы двигателя и сопутствующих электронных систем управления на предмет нестабильной работы. При проблемах с запуском двигателя, на холостых оборотах, при завышенном расходе топлива или снижении динамики разгона необходима диагностика. Современные силовые установки — это сложный механизм, в котором неисправности могут выстраиваться в отдельные цепочки и влиять друг на друга. Только опытный диагност может точно определить и устранить неисправность, не затягивая ремонт автомобиля.

Источник

Диагностические параметры

При решении практических задач технической диагностики при эксплуатации непосредственно измерить некоторые структур­ные параметры часто бывает невозможно, так как для этого необ­ходимо произвести разборку машины. Поэтому в процессе диаг­ностирования используют диагностические параметры-показате­ли, измерение которых не требует разборки оборудования или сборочной единицы. Диагностические параметры, используемые для оценки технического состояния машин, подразделяются на несколько типов.

Интегральныедиагностические параметры характеризуют тех­ническое состояние группы элементов (например, давление в гид­росистеме).

Простыепараметры связаны с техническим состоянием одно­го элемента (например, геометрический размер).

Единичныминазывают диагностические параметры, которые не могут быть разделены на несколько составляющих с помощью простых алгебраических действий.

Комплексныепараметры представляют собой совокупность нескольких простых параметров. Объединение нескольких про­стых параметров в один комплексный производится для сокраще­ния количества контролируемых факторов при эксперименталь­ных исследованиях. Комплексные и единичные параметры могут быть как интегральными, так и простыми.

Прямыедиагностические параметры непосредственно харак­теризуют техническое состояние объекта. К этой группе парамет­ров относятся геометрические параметры технического состоя­ния, а также ряд параметров рабочих процессов (например, зазор, давление в гидросистеме и пр.).

Косвенные диагностические параметры связаны с соответству­ющими параметрами технического состояния функциональной за­висимостью и характеризуют изменение технического состояния объекта (системы) косвенным образом. Существенным недостат­ком косвенных диагностических параметров является то, что они вносят дополнительную погрешность в результаты диагностиро­вания, обусловленную искажением сигнала в процессе формиро­вания диагностического параметра.

Косвенные диагностические параметры, как правило, носят широкий информационный характер, так как формируются под действием изменения целого ряда (а не одного) параметров техни­ческого состояния.

К косвенным относят параметры сопутствующих процессов и ряд параметров рабочих процессов (например, состав выхлопных газов). При подборе диагностических параметров целесообразно отдавать предпочтение прямым параметрам, что обеспечивает большую точность диагностирования. Однако измерение прямых диагностических параметров в большинстве случаев требует час­тичной разборки машины. Чтобы избежать этого, приходится для оценки технического состояния использовать косвенные диагнос­тические параметры.

Геометрические диагностические параметры характеризуют геометрические размеры элементов диагностируемого объекта и связи между ними. Примерами геометрических диагностических параметров являются зазоры, несоосность, люфт.

Диагностическиепараметры рабочих процессов характери­зуют функционирование основных элементов объекта диагнос­тирования. Эти параметры являются широко информативными и характеризуют общее состояние объекта. Примерами диагно­стических параметров рабочих процессов являются величина тормозного пути, мощность двигателя, состав отработанных газов и пр.

Диагностические параметры сопутствующих процессов яв­ляются косвенными показателями технического состояния объекта и отличаются невысокой точностью. Эти параметры широко информативные. В группу этих параметров входят виб­роакустические параметры, показатели теплового состояния механизма и пр.

В зависимости от характера проявления изменения техничес­кого состояния, возможных последствий отказа и применяемой аппаратуры различают диагностические параметры, измеряемые дискретно и непрерывно. Оценку диагностических параметров, измеряемых дискретно, проводят с помощью переносных и стаци­онарных средств (микрометров, газоанализаторов), устанавлива­емых на передвижных диагностических станциях или стационар­ных постах.

Оценку диагностических параметров, измеряемых непрерыв­но, производят с помощью встроенных диагностических средств (датчиков, манометров).

Методы и средства технического диагностирования

Для оценки диагностических признаков и заключения о техни­ческом состоянии оборудования используют различные методы.

Методы диагностирования классифицируют в зависимости от характера и физической сущности распознаваемых признаков и измеряемых параметров технического состояния объектов.

Акустические методы технического диагностирования, осно­ваны на измерении амплитуды и частоты звуковых колебаний, излучаемых объектом в процессе работы. Изменение техническо­го состояния элементов машин в процессе работы — увеличение зазоров в сопряжениях, изменение нагрузочного, скоростного и теплового режимов работы деталей вследствие их изнашивания, старения, коррозии вызывает соответствующие изменения пара­метров звуковых колебаний. Сопоставляя эмпирические значения звуковых сигналов с эталонными, можно судить о техническом состоянии объекта в данный момент времени и прогнозировать его изменение на некоторый период.

Поскольку в формировании звукового потока участвуют практи­чески все подвижные объекта диагностирования, акустические мето­ды позволяют оценить техническое состояние большинства основ­ных элементов по величинам излучаемых ими звуковых сигналов. Основная сложность при этом состоит в выделении определенного сигнала из общего спектра и распознавании его принадлежности тому или иному элементу машины. Для оценки звукового сигнала (выделения его из общего спектра и измерения) используют специ­альную аппаратуру — спектрометры, шумомеры, осцилографы.

Акустические методы диагностирования применяют в основ­ном для оценки технического состояния элементов, силовых уста-новок, механических и гидромеханических передач.

Виброметрическиеметоды основаны на измерении парамет­ров вибрации объекта диагностирования. Уровень вибрации объекта в процессе работы определяют техническим состоянием его основных элементов: размерами зазоров в сопряжениях, изно­сом деталей. Поэтому, измеряя параметры вибрации (частоту, амплитуду, ускорение) и сравнивая их с эталонными значениями, можно оценивать техническое состояние объекта диагностирова­ния в данный момент времени и прогнозировать его изменение на некоторый период.

по параметрам рабочих процессов автомобиля можно определить

по параметрам рабочих процессов автомобиля можно определить

Рис.21. Блок-схема виброметрической аппаратуры.

Приведенная на рис.21 блок-схема иллюстрирует устройство и принцип действия виброметрической аппаратуры. Установленный непосредственно на поверхности объекта датчик 1 регистри­рует механические вибрационные колебания и передает соответ­ствующие электрические сигналы на усилитель-анализатор 2. Кас­кад электронных интеграторов обеспечивает измерение амплиту­ды, скорости и ускорения механических колебаний. Набор частот­ных фильтров 3 позволяет настраивать прибор на соответствую­щий рабочий частотный диапазон. Кроме того, фильтры служат для подавления помех, обусловленных низко- и высокочастотны­ми шумами. Запись сигнала производят с помощью самописца 4 или какого-либо другого регистрирующего прибора (например, измерительного магнитофона), подключаемого на его место.

Поскольку параметры вибрации, используемые в качестве ди­агностических, являются широко информативными и формируют­ся под воздействием большого количества элементов объекта, ос­новной сложностью при диагностировании виброметрическими методами является, как и в предыдущем случае, распознавание принадлежности сигнала определенному элементу.

Виброметрические методы используют для диагностирования элементов силовых установок, механических и гидромеханичес­ких передач.

Методы технического диагностирования по составу масел наи­более универсальны и широко применяются для экспресс-оценки состояния двигателей, элементов трансмиссии, гидравлических систем управления, а также смазочных материалов и рабочих жидкостей.

Основными диагностическими параметрами в этих случаях яв­ляются концентрация, дисперсионный и элементарный составы механических примесей, кинематическая вязкость масла, кислот­ное и щелочное числа, а также содержание в масле воды.

Для анализа содержания механических примесей в масле ис­пользуют химический, спектральный, радиометрический, активационный и оптико-физические методы.

Функциональные методы диагностирования основаны на из­мерении косвенных параметров объекта, характеризующих техни­ческое состояние его элементов через уровень функционирования. В зависимости от характера распознаваемых признаков измене­ния технического состояния объекта диагностирование функцио­нальными методами может производиться по мощностным и тех­нико-экономическим показателям, тепловому состоянию, герме­тичности рабочих объемов, тормозному пути.

Метод оценки технического состояния машин по мощностным и технико-экономическим показателям используют как для обще­го, так и для углубленного поэлементного диагностирования. В основе метода лежат зависимости эффективности использования машины от технического состояния ее основных элементов. В ка­честве диагностических параметров в этом случае используют эф­фективную мощность двигателя, силу тяги, рабочую скорость, грузоподъемность. В зависимости от характера измеряемых диаг­ностических параметров подбирают соответствующее диагности­ческое оборудование.

Методы диагностирования машин по тепловому состоянию и герметичности рабочих объемов имеют более узкую область при­менения. Их в основном используют для оценки технического со­стояния элементов двигателей и гидросистем.

Поскольку ни один из перечисленных методов не позволяет произвести полную оценку технического состояния машины, при углубленном техническом диагностировании часто используют комбинированные виброакустические методы и совокупность функциональных методов.

Средства технической диагностики оборудования для различ­ных методов диагностики приведены в табл.5.

Служба технической диагностики

В основу организации технической диагностики оборудования должен быть положен принцип специализации и разделения тру­да, когда диагностирование проводится не мастерами и слесаря­ми, занимающимися ремонтом, а специальной службой техничес­кой диагностики, в которой должны быть заняты специально под­готовленные кадры с современными контрольно-измерительными приборами и оборудованием для проверки технического состоя­ния оборудования, что обеспечивает более высокую производи­тельность и качество диагностических работ.

Таблица 6.Методы и средства технической диагностики оборудования.

по параметрам рабочих процессов автомобиля можно определить

по параметрам рабочих процессов автомобиля можно определить

Для выполнения работ по диагностированию служба техничес­кой диагностики имеет в своем распоряжении стационарные сред­ства диагностирования, сосредоточенные на специализированном участке диагностики или непосредственно на участке техническо­го обслуживания.

Службой технической диагностики руководит инженер-диаг­ност, который в своей работе подчиняется главному механику. Инженер-диагност обязан:

— составлять план-график диагностирования оборудования и обеспечивать своевременное его выполнение;

— проводить анализ результатов диагностирования;

— составлять график технического обслуживания диагности­ческого оборудования и следить за его выполнением;

— следить за своевременным составлением и обеспечением ма­стеров бланками диагностических карт;

— вести отчетно-учетную документацию.

Основным документом при диагностировании является диаг­ностическая карта, в которой фиксируются результаты диагноза, дается заключение о необходимом объеме и содержании работ по техническому обслуживанию и ремонту.

В диагностической карте отмечают номинальные и допусти­мые величины основных параметров технического состояния сбо­рочных единиц оборудования, а также результаты замеров при диагностировании и после регулировки.

При проведении ТО и ремонта диагностическая карта служит документом для проведения соответствующего объема работ по ТО и ремонту оборудования.

Записанные в карте величины показателей используют для прогнозирования технического состояния сборочных единиц и определения их остаточного ресурса.

Раздел VI.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *