около какой пирамиды можно описать шар
Нахождение радиуса сферы (шара), описанной около правильной пирамиды
В данной публикации представлены формулы, с помощью которых можно найти радиус сферы (шара), описанной около правильной пирамиды: треугольной, четырехугольной, шестиугольной и тетраэдра.
Формулы расчета радиуса сферы (шара)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
На этом рисунке и чертежах далее:
Если эти величины даны, вычислить радиус (R) описанной вокруг пирамиды сферы/шара можно по формуле ниже:
Правильный тетраэдр является разновидностью правильной треугольной пирамиды. Формула для него:
Правильная четырехугольная пирамида
Радиус (R) описанной сферы/шара вычисляется следующим образом:
Правильная шестиугольная пирамида
Формула для нахождения радиус (R) сферы/шара выглядит так:
Сфера, вписанная в пирамиду
Биссекторная плоскость. Основное свойство биссекторной плоскости
Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).
Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.
Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.
Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).
Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.
Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.
Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.
Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.
Рассмотрим несколько типов пирамид, в которые можно вписать сферу.
Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле
Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле
Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.
Доказательство утверждения 2 завершено.
Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо
Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле
(1) |
Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем
(2) |
В силу следствия 2 из формул (1) и (2) получаем
из формулы (3) получаем соотношение
Ответ.
Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен
Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен
Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен
Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен
Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы
Утверждение 3. В любую треугольную пирамиду можно вписать сферу.
Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.
Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами
а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами
то справедливы следующие равенства:
где символом Sполн обозначена площадь полной поверхности пирамиды SABC.
Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы
где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.
Узнать ещё
Знание — сила. Познавательная информация
Шар, вписанный в пирамиду
Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.
Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).
Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.
Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.
Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.
В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.
Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.
Прямоугольные треугольники OO1F и KO1F равны (по катетам и гипотенузе). Отсюда KF=OF=r.
Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что
В треугольнике SOF применим свойство биссектрисы треугольника:
Из прямоугольного треугольника OO1F
При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.
Теперь найдем отношение объема пирамиды к площади ее поверхности:
Таким образом, радиус вписанного шара выражается через объем пирамиды и ее полную поверхность:
Все эти рассуждения верны не только для правильной пирамиды, но и для пирамиды, основание высоты которой совпадает с центром вписанной в основание окружности (то есть для пирамиды, у которой все двугранные углы при основании равны ).
Комбинация шара с другими телами
Разделы: Математика
Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.
Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.
1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.
2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.
3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).
(Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).
4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.
(Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).
Общие замечания о положении центра шара.
1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.
2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.
Комбинация шара с призмой.
1. Шар, вписанный в прямую призму.
Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.
Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.
Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.
2. Шар, описанный около призмы.
Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.
Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.
Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).
Комбинация шара с пирамидой.
1. Шар, описанный около пирамиды.
Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.
Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.
Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.
2. Шар, вписанный в пирамиду.
Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.
Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.
Следствие 2. В правильную пирамиду можно вписать шар.
Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.
Комбинация шара с усеченной пирамидой.
1. Шар, описанный около правильной усеченной пирамиды.
Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)
2. Шар, вписанный в правильную усеченную пирамиду.
Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.
На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).
Комбинация шара с круглыми телами.
Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.
Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.
Теорема 9. В любой конус (прямой круговой) можно вписать шар.
Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.
Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.
Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:
1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = a3).
2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)
3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)
4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)
5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)
6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)
7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)
8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)
9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)
10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)
11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)
13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)
14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)
15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)
16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)
17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)
18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)
19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)
20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)
21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)
22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)
23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)
24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)
25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)
26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)
27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)
Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.
Автор надеется, что материал этой статьи поможет молодым коллегам при подготовке к урокам по данной теме.