куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Система вентиляции картера двигателя, принцип работы, PCV.

куда удаляются картерные газы при закрытой вентиляции картера

Между деталями ЦПГ существуют определенные тепловые зазоры, соответствующие установленным разработчиками допускам. Какими бы минимальными ни были эти зазоры (с учетом того что поршневые кольца не обеспечивают 100% герметичности в виду особенности конструкции), через них из камеры сгорания в картер всегда проникают не сгоревшие частицы и газы, которые смешиваются с масляными парами, образуя так называемые картерные газы. Они оказывают негативное влияние на качество находящегося в картере моторного масла, которое с ростом пробега автомобиля неуклонно ухудшается, теряются смазывающие свойства и срабатывается присадочный пакет. Стоит отметить, что подобный эффект проявляется у абсолютно любых моторных масел. Попадающие в картер двигателя пары топлива, продукты горения, частицы сажи и воды неизбежно меняют состав масла, превращая его в масляную эмульсию с различными примесями, конечно после прогрева двигателя до рабочей температуры легкокипящие фракции этих паров испарятся (воды и топлива), но тяжелые — останутся, неизбежно окисляя и засоряя масло. Не стоит забывать и о том, что в процессе работы в цилиндрах мотора создается очень высокое давление — десятки атмосфер. В связи с этим газы, вырывающиеся с огромной силой, неизбежно попадают в картер, грозя выдавливанием сальников, прокладок, нарушению герметичности соединений с последующей потерей масла.

Благодаря системе вентиляции картера выводятся прорвавшиеся отработавшие газы, а также обеспечивается и поддерживается нормальное рабочее давление, что благотворно влияет не только на состояние моторного масла, но и на надежность, продолжительность работы двигателя.

Виды систем вентиляции картера

На сегодняшний день принято выделять два типа систем вентиляции картера автомобильного двигателя: открытая, или эжекционная (отработанные газы выводятся наружу напрямую из картера при помощи специальной калиброванной эжекционной трубки) и закрытая, или принудительная система вентиляции (PCV – positive crancase ventilation).

Система вентиляции картера открытого типа характерна для силовых агрегатов автомобилей, выпускавшихся в прошлом веке и снятых в настоящее время с производства, хотя многие из них все еще бороздят просторы вселенной отечественное бездорожье. Особенностью такой системы является то, что прорвавшиеся из цилиндров газы вместе с масляным туманом выводятся за пределы двигателя, непосредственно в окружающую среду. Указанный способ вентилирования картера мотора отличает простота и дешевизна конструкции, что, впрочем, «компенсируется» существенным загрязнением атмосферы.

Принцип работы принудительной системы вентиляции картера (PCV).

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Помимо указанного недостатка, открытая вентиляция картера имеет еще ряд отрицательных моментов. Подобная система малоэффективна при движении на малых скоростях и абсолютно бездейственна на неподвижном автомобиле с работающим на холостых оборотах двигателем, т.к. давление картерных газов минимально. Кроме того, через открытую систему вентиляции картера при охлаждении сильно разогретого двигателя возможно подсасывание не отфильтрованного атмосферного воздуха внутрь двигателя, вместе с пылью и водяными парами. Нередки случаи, когда на автомобилях с большими пробегами система открытого типа становилась основной причиной износа ЦПГ и как следствие потери компрессии и расхода масла.

Более современной и эффективной альтернативой открытой вентиляции картера является закрытая (принудительная) вентиляционная система. Одной из ключевых деталей такой системы является клапан PCV, выводящий попавшие в картер двигателя газы во впускной коллектор с последующим сжиганием в камерах сгорания. Разные автопроизводители по-разному реализуют идею закрытого вентилирования, но в большинстве случаев каждая из схем предусматривает наличие одних и тех же элементов: клапана вентиляции (клапан PCV), маслоотделителя (может быть несколько, либо внутренние — в клапанной крышке с лабиринтом и отверстиями для стока масла, либо внешними в виде отдельной конструкции со стоком масла непосредственно в картер) и соединительных патрубков. Стоит отметить, что системы вентиляции картерных газов для бензиновых и дизельных моторов, имеют свои особенности, но в целом имеют схожие конструкции.

Работа системы PCV

Принцип работы системы принудительной вентиляции довольно прост. При возникновении разрежения во впускном коллекторе под его воздействием открывается клапан PCV и картерные газы подаются на впуск, а затем, смешиваясь с очищенным воздухом, в цилиндры двигателя. Для препятствования проникновения паров масла в камеру сгорания система предусматривает установку маслоотделителя. Современные моторы оборудуются сложной системой маслоотделителей. Так, маслоотделитель лабиринтного типа способствует замедлению движения газов из картера. Это обеспечивает оседание маслянистых капелек на стенки и последующее их стекание в картер либо под клапанную крышку.

В некоторых современных двигателях дальнейшая очистка масла от картерных газов происходит при помощи центробежного маслоотделителя, который придает отработавшим газам вращение. Под влиянием центробежной силы частицы масла задерживаются на стенках и затем стекают в картер. Окончательная очистка масла от выхлопных газов производится в выходном лабиринтном успокоителей.

Клапан PCV – особенности конструкции.

куда удаляются картерные газы при закрытой вентиляции картера

Ключевая роль клапана PCV в системе закрытой вентиляции картера заключается в функции регулировки давления газов в картере путем их перепуска во впускной коллектор и поддержание разрежение во впускном коллекторе. В режиме ХХ и при торможении двигателем разрежение в коллекторе максимально (дроссель лишь чуть приоткрыт либо закрыт полностью), однако количество картерных газов не так велико, поэтому для полноценной вентиляции достаточно канала с небольшим проходным сечением. В таком режиме под действием большого разрежения золотник клапана полностью втягивается, но при этом канал перепуска картерных газов в значительной степени перекрывается, пропуская лишь небольшое их количество.
При нажатии на педаль акселератора и при высоких нагрузках количество отработавших газов в картере существенно возрастает. Золотник клапана занимает такое положение, чтобы обеспечить максимальную пропускную способность канала. Существует еще и так называемый режим обратной вспышки, при котором горящие газы из цилиндра прорываются во впускной коллектор. В этом случае клапан PCV находится под действием давления, а не разрежения, поэтому полностью закрывается, исключая возможность поджога находящихся в картере паров топлива и масла.

Признаки неисправности системы вентиляции картерных газов

В случае неисправности системы лабиринтов (существенное засосрение закоксовавшимся маслом) возникает небольшой, но заметный расход масла (в районе 0,1-0,5л на 1000км), на свечах появляются следы сгоревшего масла в виде крупы или «ржавчины», а в камере сгорания — нагар, все это ошибочно принимают за умершие маслосъемные колпачки или даже кольца, хотя дело совсем не в них. В некоторых случаях, особенно в холодное время года и медленному движению по пробкам, возможно постепенное оседание масляного тумана в виде жидкого масла прямо во впускном коллекторе, что приводит к проблемам холодного пуска, при запуске масло из раннеров попадает во впуск и заливает все вокруг, в т.ч. свечи, клапана и камеру сгорания, мешая нормального смесеобразованию и воспламенению горючей смеси. И когда запуск удается — попавшее масло начинает гореть в виде синего дыма, что опять же списывают на умершие маслосъемные колпачки…а на самом деле копать надо в систему вентиляции картера. Неправильная работа системы PCV может являться одной из причин загрязнения дросселя, клапана холостого хода, загрязнения воздушного фильтра, воздушной магистрали (патрубки и впускной коллектор), течи масла и выдавливания сальников и прокладок, чаще наружу, чем внутрь. Забившиеся патрубки системы вентиляции создают избыточное давление в картере двигателя, в результате чего отработавшие газы вместе с маслом будут искать альтернативные пути выхода. На начальных стадиях, когда система связанная с клапаном PCV забита (чаще всего забивает сам клапан, реже забивает маслоотделитель, лабиринты и патрубки), вентиляция начинает работать неправильно и масляные пары вместе с газами начинают поступать через вентиляционную трубку, первый признак этого — быстрое загрязнение дросселя со стороны входного патрубка. В некоторых автомобилях свежий воздух берется прямо из короба воздушного фильтра — при неисправности системы PCV фильтр начинает забрасывать маслом, а в некоторых случаях, т.к. картерные газы очень горячие, то возможно даже оплавление фильтра из синтетического материала и как следствие — лишение автомобиля системы фильтрации воздуха. В случаях когда забиты уже обе трубки, последствия плачевнее, начинает выкидывать щуп, также возможно образование масляных подтеков в местах уплотнений и соединений (прокладки, сальники). Совсем неприятный вариант – выдавливание сальников коленвала или уплотнителей масляного фильтра с значительными потерями объема масла. Некорректная работа самого клапана PCV может привести к неправильному учету поступающего воздуха, и приготовлению переобогащенной или переобедненной смеси, в зависимости от режима работы. В случае если клапан начинает пропускать газы во все стороны (разрушились поршеньки либо пружины), начинается сильный подсос воздуха во впускной коллектор, разрежение в нем падает, со всеми неприятностями в виде повышенного расхода топлива, неустойчивого либо повышенного холостого хода, обеднения горючей смеси, ухудшения работы вакуумного усилителя тормозов. Причем Check Engine может и не загораться, т.к. пропусков воспламенения обычно нет.

Просто, но не гениально: что может не работать в системе вентиляции картера?

куда удаляются картерные газы при закрытой вентиляции картера

Иногда с автомобилем случаются вещи, которые сильно расстраивают его владельца. Что-то стал жрать масло, дроссельная заслонка постоянно грязная, масло из всех щелей течёт… Даже воздушный фильтр в этом масле. Наверное, пора думать о «капиталке». Деньги, деньги, деньги. Боль, тоска, безысходность. А может, рано точить бритву и наполнять ванну тёплой водой? Может, не всё так плохо, и решение проблемы кроется в маленькой и не такой уж дорогой детальке со странным названием «клапан PCV»?

Теория газов​

Все мы прекрасно помним, что мотор работает вследствие сгорания топливо-воздушной смеси. В момент, когда в камере сгорания начинается этот очень красивый, но невидимый глазу процесс, там резко возрастает давление. Это давление толкает поршень вниз, поршень давит на свою шейку коленвала, а тот выполняет свою непосредственную работы: преобразует поступательное движение шатуна поршня во вращательное, которое передаёт на маховик двигателя. Картинка идеальная, но в жизни, как вы понимаете, что-то всегда идёт не так. В нашем случае не все газы, образующиеся во время горения, выходят потом через выпускной клапан в систему выпуска. Часть их обязательно прорывается в картер. Грубо говоря – под поршень. Происходит это по простой причине: как бы плотно ни прилегали компрессионные кольца, у них всегда есть хотя бы минимальный зазор – иначе поршень просто не смог бы ходить внутри цилиндра. А на холодном моторе этот зазор ещё больше, так что газ, который находится под очень большим давлением, лазейку в картер мотора всегда найдёт. Чем это грозит?

В этих газах есть всё то, чего не любит моторное масло. Не полностью сгоревший бензин, пары воды (они всегда есть в воздухе), частички нагара – всё это оседает в моторном масле. Ничего хорошего, конечно, после этого не происходит: масло усиленно стареет и перестаёт нормально работать. Но это не самое страшное.

Гораздо хуже, что в картере просто не должно быть высокого давления, а картерные газы его сильно увеличивают. Последствия этого процесса очень неприятные. Газы буквально распирают мотор, и он начинает выдавливать из себя всё лишнее. А когда мотор «пучит», лишним ему кажется всё: и картерные газы, и масло. Газы стараются выйти через масляный щуп, выталкивая его наружу, через маслозаливную горловину и все прочие места. В том числе – и через все уплотнения и сальники. Если ему удаются вытолкнуть сальник коленвала, то через него потечёт и масло.

куда удаляются картерные газы при закрытой вентиляции картера

Одним словом, как-то эти газы надо выводить. И для этого придумали систему вентиляции картерных газов.

Открыто и закрыто

Изначально система вентиляции была примитивной – открытого типа (или эжекционная). Помните такое потрясающее слово – сапун? Вот это и было той самой открытой системой вентиляции. Через гордо торчащий сапун в атмосферу выбрасывались картерные газы со всеми их прелестями в виде сажи, масла и прочей гадости. А иногда оттуда ничего не выбрасывалось, потому что особой эффективностью такая система не отличалась.

Не отличалась хотя бы просто потому, что на холостых оборотах давления картерных газов не хватало, чтобы они выводились из мотора. Всё прорвавшееся в картер в нём и откладывалось в масло. Кроме того, всегда была вероятность через сапун хватануть грязного воздуха, который потом оказался бы в картере. Там все примеси из этого воздуха осели бы в масло, а это существенно снизило бы ресурс цилиндро-поршневой группы. В общем, ничего хорошего в сапуне не было, и система прямо-таки требовала серьёзного пересмотра. И в результате такого пересмотра появилась современная система PCV (positive crankcase ventilation) – принудительная система вентиляции.

Системы PCV отличаются по реализации. Они могут быть проще или сложнее, с двумя контурами, с эжекторным насосом, с редукционным клапаном. Но мы рассмотрим самую простую и распространённую систему с одним клапаном PCV. Итак, как это работает?

Разработчики этой системы использовали особенность впускного коллектора: в нём создаётся разрежение. Особенно сильным оно бывает на холостых или минимальных оборотах. Если соединить тот самый воображаемый сапун открытой системы с впускным коллектором, разрежение будет вытягивать картерные газы. Кроме того, они будут поступать опять во впуск, а не в атмосферу, что люто обрадует экологов. Остаётся только решить две проблемы: как дозировать это самое «всасывание» со стороны коллектора и как не дать вместе с картерными газами попасть во впуск маслу и прочим ненужным там фракциям.

куда удаляются картерные газы при закрытой вентиляции картера

Решением первой задачи занимается как раз тот самый клапан PCV. Во время работы на минимальных оборотах он практически закрыт. А значит, в коллекторе остаётся разрежение, а так как в таком режиме выброс картерных газов минимален, даже небольшого их отвода вполне достаточно. По мере роста оборотов коленвала клапан начинает открываться. Это необходимо по двум причинам: во-первых, разрежение падает, а значит, нужно более интенсивно откачивать газы, а во-вторых, количество этих газов растёт. Открытие клапана позволяет удалять большое количество газов даже при небольшом разрежении во впускном коллекторе.

Второй вопрос – это очистка картерных газов. Тут есть несколько способов, но наиболее простой и очевидный – это установка маслоотделителя. В нём есть сложный лабиринт, по которому движутся газы. Во время прохождения лабиринта скорость движения падает, а капельки масла оседают на его стенках, откуда стекают обратно в картер. Более-менее чистый воздух после этого поступает опять во впуск. Конечно, маслоотделители бывают разных конструкций – лабиринтные или центробежные, но задачу они решают одну и ту же.

У системы PCV есть ещё одно небольшое, но важное преимущество: после пуска холодного мотора в мороз в дроссельную заслонку попадает и тёплый воздух из системы вентиляции. Прогрев проходит быстрее и теоретически – менее травматично для холодного пуска. Правда, при условии, что система исправна. А она иногда всё-таки выходит из строя.

Работает или нет?

Существуют десятки способов проверить, работает ли клапан PCV (для краткости – КВКГ, клапан вентиляции картерных газов). Почти все они порождены сумрачным народным гением и сводятся к тому, чтобы проверить, прут ли газы из мотора или нет. Наиболее простой способ – открутить крышку маслозаливной горловины и посмотреть, что произойдёт дальше. Если приложить руку и почувствовать давление валящих оттуда газов – КВКГ не работает. Отчасти правда в этом есть, но не во всём. Потому что если, например, поршневая очень устала жить, то повышенное давление тоже будет. Даже если клапан работает. А на некоторых моторах (например, BMW с Valvetronic, N42, N46 и иже с ними) даже с исправной системой вентиляции некоторое давление может быть, так что этот способ помогает мало. То же самое и насчёт всасывания воздуха. Мол, в исправном моторе крышка будет присасываться к горловине. Обычно – да, но не обязательно. Если всасывается очень сильно, то, возможно, клапан заклинил в открытом положении или у него порвалась мембрана.

куда удаляются картерные газы при закрытой вентиляции картера

Всё то же самое относится и к проверке воздушного фильтра. Масло на этом фильтре – это не обязательно признак почившей системы вентиляции. Оно там может быть из-за той же убитой поршневой группы. Однако если вы уверены, что ЦПГ исправна, а масляный щуп вылетает со своего места, это действительно может быть признаком неисправности системы ВКГ. Особенно если есть сопутствующие проблемы (например, то же масло на воздушном фильтре).

Есть ещё один способ проверки, о котором часто говорят в Интернете, – снять клапан и потрясти им. Если внутри ничего не бренчит, он заклинил. И это тоже не лучший способ диагностики.

Гораздо лучше снять патрубки вентиляции (обычно это сделать не сложно) и посмотреть, что у них там внутри. Если они забиты отложениями, то клапан, скорее всего, тоже забит и, вероятно, не работает. В этом случае патрубки стоит промыть, а клапан просто поставить новый. Заодно есть повод как минимум проверить компрессию: может оказаться, что этот шлак в системе неспроста, и пора подумать о ремонте мотора.

куда удаляются картерные газы при закрытой вентиляции картера

Не стоит забывать о том, что лабиринт маслоотделителя тоже со временем покрывается отложениями. Это приводит к похожим симптомам: в картере растёт давление, возможны течи масла через уплотнения и сальники. В этом случае всё приходится промывать. Самое печальное, что грязные картерные газы могут загадить не только дроссельную заслонку и весь впуск, но и сократить этой дрянью жизнь другой системе – системе рециркуляции отработавших газов EGR. Так что затягивать с ремонтом вентиляции не стоит.

Ну и последнее. Когда маслоотделитель забит, масло может попадать прямо во впуск. Это приводит к дымности, а если система вообще на ладан дышит, то к росту расхода масла. Всё это по симптомам похоже на износ маслоотражательных колпачков или поршневых колец. Не стоит сразу лезть в кубышку (если она вообще есть) и торопиться всё это менять. Иногда достаточно привести в порядок систему вентиляции картерных газов, и проблема решится малой кровью.

Как работает система вентиляции картера, каких подлостей от нее ждать

Для чего предназначена система вентиляции картера двигателя, понятно из ее названия. Но почему картер необходимо вентилировать? Как показывает практика, точность ответа на этот вопрос сильно зависит от того, приходилось ли раньше тому или иному владельцу сталкиваться с проблемами, которые система вентиляции способна создавать. Если не приходилось, случается, что о том, из-за чего картер нуждается в вентиляции, равно как и том, как она реализуется, автовладелец может и не догадываться.

куда удаляются картерные газы при закрытой вентиляции картера

Все упирается в прорыв газов в картер. Как бы ни были хороши поршневые кольца, полную герметизацию пространства над поршнем, где происходит рабочий процесс, они обеспечить не могут. В результате под действием высокого давления из надпоршневого пространства в картер проникают не только продукты сгорания горючей смеси, но на такте сжатия и некоторая часть самой горючей смеси.

куда удаляются картерные газы при закрытой вентиляции картера

Если прорвавшиеся газы не отводить, давление в картере повышается, в результате чего картерные газы способны выдавить щуп масломера с последующим выбрасыванием масла из двигателя в моторное отделение и вызвать появление течей масла по прокладкам и сальникам. Вентиляция обеспечивает выравнивание давления в картере с атмосферным давлением, что позволяет избежать этих негативных последствий прорыва газов. Это и есть основная причина оснащения любого двигателя вентиляцией картера.

куда удаляются картерные газы при закрытой вентиляции картера

Однако в целую систему PCV (Positive Crankcase Ventilation) вентиляция превратилась благодаря экологии. Картерные газы токсичны. Поэтому широко применявшаяся некогда вентиляция с помощью сапуна с вытяжной трубкой, отводившей газы из картера прямо в атмосферу, примерно с середины 1960-х годов была запрещена сначала в США, а затем и в Западной Европе.

куда удаляются картерные газы при закрытой вентиляции картера

Сейчас сапуны открытого типа можно увидеть лишь на коробках передач, раздаточных коробках и других агрегатах, где их наличие обусловлено способностью воздуха от нагрева во время работы агрегата расширяться, из-за чего увеличивается давление внутри узла, что также чревато выдавливанием уплотнений и появлением течей.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

В картерных газах присутствует масляная взвесь, которую во избежание высокого расхода моторного масла на угар и загрязнения узлов системы питания, находящихся во впускном тракте, необходимо отделять. Поэтому должен быть предусмотрен маслоотделитель, иногда также называемый маслоуловителем, или маслоотстойником, и каналы, по которым собранное масло возвращается в поддон.

куда удаляются картерные газы при закрытой вентиляции картера

Помимо этого, сообщение картерного пространства с впускным коллектором оказывает влияние на работу двигателя по причине снижения разряжения в коллекторе и добавления к воздуху, поступающему в цилиндры двигателя, того или иного количества картерных газов, которое существенно изменяется в зависимости от режима работы силового агрегата.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Например, маслоотделители могут быть встроенными в двигатель и при этом располагаться внутри клапанной крышки либо в блоке цилиндров, а могут быть выполнены как отдельный узел, расположенный на моторе.

куда удаляются картерные газы при закрытой вентиляции картера

В маслоотделителях используются лабиринтные и инерционные принципы улавливания масла. В первом случае поток картерных газов движется по каналам, резко изменяющим направление. При этом капельки масла оседают на стенках лабиринта, затем объединяются в крупные капли и стекают вниз, где попадают в сливные каналы и возвращаются в поддон двигателя.

куда удаляются картерные газы при закрытой вентиляции картера

В маслоотделителях центробежного типа капельки масла под действием сил инерции отбрасываются и прилипают к стенкам, а далее опять-таки стекают вниз.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Клапаны PCV в свою очередь бывают золотниковые и мембранные. С точки зрения более точного дозирования количества картерных газов мембранные считаются лучшими, но, впрочем, это не так уж и важно. Важно, что неисправность клапана ведет к нарушению состава горючей смеси. Отсюда начинаются проблемы, которые в эксплуатации способна создавать вентиляция картера.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Коварство системы вентиляции заключается в том, что неполадки в ней могут не оказывать сильно заметного влияния, а если и начинают сказываться уменьшением мощности, увеличением расхода топлива, слишком быстрым загрязнением дроссельной заслонки, регулятора холостого хода, замасливанием воздушного фильтра и прочими проблемами, то их списывают на неисправности других систем, прежде всего систем питания и зажигания.

По словам специалистов, некоторые модели двигателей, отвечающих экологическим требованиям от Евро-4 и выше, при неполадках с вентиляцией способны «свалиться» на работу в аварийном режиме, однако и при этом компьютерная диагностика не указывает на истинного виновника. Поэтому чаще всего лишь когда система засорилась настолько, что картерным газам не остается ничего другого, как выдавить щуп масломера и выгнать масло из двигателя, на вентиляцию наконец-то обращают внимание.

куда удаляются картерные газы при закрытой вентиляции картера

Но в зимний период эксплуатации вентиляция способна на настоящие подлости. Ко всему прочему в картерных газах содержатся водяные пары. Откуда им взяться? Из атмосферного воздуха, поступающего в двигатель, разумеется.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

И опять-таки, к сожалению, не во всех инструкциях по эксплуатации есть указания по уходу за системой вентиляции картера. Он должен заключаться в периодической очистке полостей вентиляционных шлангов, маслоотделителя, калиброванных отверстий и других узких мест в системе.

куда удаляются картерные газы при закрытой вентиляции картера

При этом обслуживание системы в существующих указаниях по уходу рекомендуется проводить одновременно с очередной заменой масла в двигателе либо через одну замену. Однако как часто подобные рекомендации используются на СТО, в гаражах, владельцами, самостоятельно обслуживающими свои машины? Как в такой ситуации говорят философы, вероятность есть всегда, в данном случае она равна нулю.

Сергей БОЯРСКИХ
Фото автора
ABW.BY

Благодарим за помощь в организации фотосъемки Ресурсный центр на базе автомеханического колледжа имени академика М.С.Высоцкого

avtoexperts.ru

Среди различных систем авто система вентиляции картера играет значительную роль в формировании топливовоздушной смеси, стабильной и экономичной работы, полной отдаче мощности, защите моторного масла и продления ресурса цилиндропоршневой группы.

В конструкции автомобиля система вентиляция картера – это «легкие» двигателя, необходимые для его нормальной жизнедеятельности. Система носит название PCV (Positive Crankcase Ventilation). Однако именно ей незаслуженно уделяется минимум внимания и обслуживания, а многие автовладельцы даже не знают о ее существовании. В этой статье постараемся разобраться для чего нужна данная система, как она работает, присущие ей неисправности и методы проверки ее работоспособности.

куда удаляются картерные газы при закрытой вентиляции картера

Что такое «картерные газы»?

Топливовоздушная смесь, при сгорании, резко увеличивается в объеме, создавая огромное давление внутри камеры сгорания. Расширяющиеся газы от сгорания заставляют поршень двигаться к нижней мертвой точке, приводя во вращательное движение коленчатый вал двигателя. Часть газов через неплотности между кольцами и зеркалом цилиндров проникают в поддон картера, где, смешиваясь с парами масла, создают давление, агрессивно воздействующее на уплотнения коленчатого вала и прокладку поддона, и канал масляного щупа.

Такт расширения повторяется в каждом цилиндре, постоянно нагнетая в поддон следующую порцию газов и если вентиляция картера не будет работать, то газы либо выдавят сальники коленчатого вала, либо «выбьют» масляный щуп и выгонят масло из картера, со всеми вытекающими.

Помимо этого, вместе с газом в поддон переносятся частицы несгоревшего топлива, мелкие фрагменты нагара, пары влаги, которые смешивается с моторным маслом, находящимся в поддоне двигателя. Это, в свою очередь, ведет окислению масла, засоряет его продуктами износа, снижая его рабочие свойства и уменьшая его эксплуатационный ресурс.

Конструкция системы

Для того, чтобы снизить до минимума воздействие давления газов в конструкции двигателя предусмотрена систем вентиляции картера. В современных автомобилях применяется система вентиляция закрытого типа, что необходимо для соблюдения экологических норм.

Несмотря на различие систем на разных марках авто, все они имею три общих компонента, таких как:

• Воздушные патрубки для отвода газов из картера;

• Клапан вентиляции, отвечающий за урегулирование величины давления газов;

• Маслоотделитель, отсекающий масляные пары при выходе газов из поддона двигателя.

Клапан открывается при появлении избыточного давления и при разряжении закрывается, то есть принцип его работы основан на разности давлений за и перед ним.

Отделение частиц масла осуществляется при прохождении газов через систему лабиринтов, завихрений и сеток в маслоотделителях. Затем отделившееся масло стекает обратно в поддон двигателя. Это позволяет не только экономить масло, но и защищать детали двигателя от нагара. При этом маслоотделители могут размещаться внутри крышки клапанов, быть встроенными в мотор или выполненные как отдельный узел.

Принцип работы

Система работает следующим образом. Патрубок вентиляции связан с впускным коллектором, где сразу после запуска двигателя создается разряжение, благодаря которому картерные газы «вытягиваются» из поддона и проходя через маслоотделитель попадают во впуск, где, смешиваясь с поступающим воздухом попадают в камеру сгорания и догорают.

Достоинства системы вентиляции

Применение вентиляции картера позволяет сократить процент вредных выбросов в атмосферу, снизить угар моторного масла, поддерживать стабильные обороты двигателя при прогреве, так как заборный воздух смешиваясь с картерными газами нагревается, что в целом благоприятно воздействует на работу силовой установки.

Недостатки

Несмотря на наличие маслоотделителя воздуховоды и элементы впуска загрязняются от прохождения картерных газов, вызывая частые отказы приборов при работе. Так на бензиновых моделях авто покрываются налетом узел дроссельной заслонки и регулятор холостого хода, так как они имеют специальные каналы, выполняющие вытяжную функцию. Подобное может наблюдаться и на карбюраторных моделях, например, с карбюратором «Солекс», оснащенным штуцером для вентиляции картера.

Узел дроссельной заслонки и вытяжной клапан газов на карбюраторах являются так называемой малой ветвью и задействуются тогда, когда разрежение в воздушном фильтре недостаточное.

Признаки неисправности PCV

• Появление следов масла в воздушном фильтре;

• Запотевание сальников и стыка крышки клапанов двигателя;

• Дым из выхлопа по причине попадания частиц масла с газами в камеру сгорания;

• Следы масла вокруг крышки заливной горловины и на крышке клапанов.

Помимо этого, данные симптомы указывают и на сильный износ или неисправность (сгорел клапан, залегли кольца, лопнули перегородки поршня) поршневой группы и необходимости их проверки путем замера компрессии.

Причины неисправности:

• Забит или неисправен клапан вентиляции картерных газов;

• Загрязнились вытяжные отверстия в узле дросселя или штуцере карбюратора;

• Сильный износ поршневой группы;

Проверка исправности

Для проверки работы системы вентиляции нужно снять на заведенном моторе крышку с заливной горловины. Если все исправно, то могут наблюдаться лишь отдельные «выстреливающие» капельки масла, либо вообще не будет следов его появления. В противном случае из горловины будет выбрасываться моторное масло.

куда удаляются картерные газы при закрытой вентиляции картера

Если прикрыть отверстие рукой, то при исправной системе не должно чувствоваться какого-либо давления на нее, а когда система находится под избыточным давлением, то газ будет пытаться оттолкнуть ладонь и это усилие будет постепенно увеличиваться.

Для проверки исправности клапана вентиляции, а он обычно расположен во впускном коллекторе, нужно отсоединить шланг от картера к клапану, завести мотор и закрыть пальцем освободившийся штуцер на клапане. Если клапан рабочий, то палец почувствует создание вакуума, а при снятии пальца со штуцера, последует характерный щелчок. В противном случае клапан требует замены.

Нарушение работы клапана отражается на нарушении состава топливной смеси и сопутствующими проблемами.

В заключении

При обнаружении признаков неисправности вентиляции картера, рекомендуется, не откладывая на спасительное завтра, приступить к прочистке и профилактике системы, чтобы сократить до минимума угар масла и износ двигателя.

Система вентиляции картера двигателя: устройство, принцип работы, основные неисправности

куда удаляются картерные газы при закрытой вентиляции картера

Двигатель внутреннего сгорания работает по принципу сжигания топливно-воздушной смеси в цилиндрах. После сжигания топливного заряда отработавшие газы и другие продукты сгорания смеси воздуха и топлива в большей части выводятся через выпускную систему наружу, то есть выбрасываются в атмосферу.

Однако с учетом того, что в камере сгорания создается высокое давление, часть газов, остатки несгоревшего топлива и другие продукты прорываются через поршневые кольца и попадают в картер ДВС. Картер представляет из себя закрытую полость, в которой находится коленвал и другие детали силового агрегата.

Чтобы уменьшить количество газов и снизить давление, в конструкции современных ДВС используется система вентиляции картерных газов PCV (Positive Crankcase Ventilation). В этой статье мы поговорим об эволюции и устройстве данной системы, а также затронем вопрос распространенных неисправностей.

Устройство и конструктивные особенности системы вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Итак, система вентиляции картера позволяет удалить избыток картерных газов, повышает срок службы моторного масла, снижает выброс токсичных веществ в атмосферу, уменьшает давление в картере силового агрегата. Системы могут быть:

Сразу отметим, на разных типах ДВС конструкция данной системы может отличаться, при этом основные функциональные элементы на современных моторах представляют собой:

Другими словами, сегодня активно используется закрытый тип. Общий принцип работы такой системы вентиляции картера основан на разрежении, которое создается во впускном коллекторе. Благодаря разрежению газы выводятся из картера. Далее указанные газы проходят через маслоотделитель, который отделяет газы от масла. После очистки газы идут по воздушным патрубкам, после чего попадают во впуск. Из впускного коллектора картерные газы, перемешанные с воздухом, подаются в камеру сгорания и дожигаются.

Добавим, что в устаревшей открытой системе (эжекционного типа) избыток картерных газов попросту выбрасывается в атмосферу. Способ очень простой и дешевый, однако отмечается усиленное загрязнение окружающей среды. Также эффективность работы такого решения не самая высокая, так как при низких оборотах и в режиме ХХ подобная вентиляция не работает.

Еще такая система не выполняет своих функций на высоких оборотах. Параллельно существует риск того, что в картер будет засасываться недостаточно очищенный наружный воздух после остывания ДВС. Дополнительно следует выделить, что при наличии открытой системы на моторе возможно увеличение расхода масла, также смазка может выбрасываться вместе с газами наружу, в результате поверхности двигателя загрязняются масляными пятнами.

Двигатель с такой системой работает стабильно, лучше держит обороты зимой, так как холодный наружный воздух во впуске подогревается картерными газами, снижается риск детонации. Однако при всех плюсах и эта схема устройства не лишена ряда недостатков.

В результате попадания картерных газов во впуск происходит усиленное загрязнение воздуховодов и элементов во впускной системе двигателя. Также специалисты отмечают, что принудительная система отсоса отработанных газов может являться причиной быстрого окисления моторного масла из-за сильного разрежения на высоких оборотах.

Также принудительная вентиляция может дополнительно реализовываться разными путями. При этом основным принципом остается то, что газы должны «вытягиваться» из картера, а также происходит их смешивание в результате подачи в картер наружного воздуха. После этого через специальный клапан смесь подается в цилиндры мотора.

На карбюраторных моторах, агрегатах с моновпрыском и инжекторных двигателях можно встретить различные типы реализации подвода картерных газов. Ранее достаточно часто встречалась конструкция, когда система имела два канала. Один был выведен перед дроссельной заслонкой, а второй канал с жиклером выводился за дросселем.

В режиме холостого хода газы подавались по каналу с жиклером за заслонкой. Однако после начала открытия заслонки и роста оборотов коленвала разряжение в области за заслонкой становилось меньше. При этом объем газов, которые прорывались в картер, становился больше. Канал с жиклером переставал выполнять свою функцию, но подключался вывод газов по каналу перед дросселем. Дальнейшее развитие системы вентиляции привело к появлению клапанных решений для регулирования подачи газов.

Если просто, клапан стоит в трубопроводе, через который подводятся газы из картера. Клапаны также делятся на золотниковые и мембранные. Добавим, что мембранные клапаны лучше дозируют количество газов, однако сама мембрана чаще выходит из строя.

Для чего нужен маслоотделитель в двигателе

куда удаляются картерные газы при закрытой вентиляции картера

Как уже было сказано выше, маслоотделитель (маслоуловитель) является элементом системы вентиляции картера. Главной задачей маслоотделителя становится не допустить попадания частичек масла в камеру сгорания.

По способу отделения масла от картерных газов можно выделить лабиринтный и циклический маслоуловитель. Отметим, что на современных моторах используется маслоотделитель комбинированного типа.

Центробежный маслоотделитель более тщательно отделяет смазку от газов. При прохождении через устройство газы фактически «раскручиваются», то есть на них воздействует центробежная сила. Под ее воздействием масло оседает на стенках и стекает в картер ДВС.

Чтобы избежать турбулентности газов, в комбинированном типе устройств за центробежным маслоотделителем на выходе устанавливается лабиринтный успокоитель. В успокоителе завершается процесс отделения частиц смазки от газов из картера.

Клапан системы вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Указанный клапан служит для того, чтобы отрегулировать давление газов, которые подаются во впуск. Если разрежение не сильно большое, тогда клапан находится в открытом положении.

В случае, когда разрежение во впускном канале значительное, происходит закрытие данного клапана. Еще отметим, что в турбомотрах вентиляция картера реализована посредством дроссельного регулирования.

Частые неисправности системы вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

С учетом приведенной выше информации становится понятно, что система вентиляции картера на современных двигателях является достаточно сложной. Выход из строя и нарушения в работе данной системы могут привести к ухудшению общей работоспособности ДВС, возникновению неполадок и уменьшению ресурса агрегата.

Сразу отметим, что проблемы с вентиляцией картера могут быть не так очевидны, однако проявляются в виде снижения мощности, увеличения расхода топлива, активного и быстрого загрязнения дроссельной заслонки и РХХ. Также в воздушном фильтре может появиться масло и т.д.

Что касается причин, клапан клинит как из-за засорения, так и в результате собственных повреждений. Как правило, первый вариант более распространен. Дело в том, что в картерных газах присутствует сажа, нагар и т.п.

Чем изношеннее мотор, (ЦПГ, другие узлы и системы), тем больше таких продуктов попадает в картер. Также различные загрязнения могут переноситься с микрочастицами масла. В результате грязь и отложения скапливаются в клапане, различных отверстиях, патрубках, каналах. Также рвутся и трескаются сами патрубки.

Как утверждают опытные автомеханики, c появлением стандарта Euro-4 стали встречаться двигатели, которые «падают» в аварийный режим работы при возникновении проблем с вентиляцией картера. При этом проведение компьютерной диагностики ничего не показывает, что усложняет поиск проблемы.

Также указанная система может доставить много неприятностей в зимний период. Дело в том, что в картерных газах содержатся частицы воды. Вода появляется из атмосферного воздуха, который засасывается мотором во время работы. После попадания в систему вентиляции, вода, которая находится в виде пара, может конденсироваться и скапливаться в отдельных местах системы вентиляции. После остывания ДВС влага попросту замерзает и становится льдом, закупоривая систему.

В результате вентиляция перестает работать, давление в картере растет и выдавливает масляный щуп, а двигатель и подкапотное пространство забрызгивает моторным маслом. Причем данная неисправность может возникнуть как на старом двигателе, так и на новом ДВС с небольшим пробегом. Дело в том, что далеко не на всех автомобилях система вентиляции имеет дополнительный обогрев.

Подведем итоги

Отметим, что в мануалах не всегда содержится какое-либо указание или предписание для отдельного обслуживания системы вентиляции картера двигателя. Однако на практике обслуживание должно проводиться, причем регулярно.

Такой подход позволит избежать критического засорения, в результате которого картерные газы попросту выдавят щуп и погонят масло из двигателя. Также чистота системы будет способствовать нормальному процессу смесеобразования, что отразится на приемистости агрегата, расходе горючего и смазки.

Напоследок отметим, что система вентиляции давно уже перестала являться решением только для снижения давления в картере. Сегодня данная схема является одним из эффективных инструментов для повышения общей экологичности двигателя наравне с системой EGR и установкой катализатора в выпуске. По этой причине современные производители автомобилей продолжают активно использовать и совершенствовать данное решение.

куда удаляются картерные газы при закрытой вентиляции картера

Назначение и устройство системы рециркуляции отработавших газов. Клапан EGR, система ЕГР высокого и низкого давления. Неисправности системы рециркуляции.

куда удаляются картерные газы при закрытой вентиляции картера

Почему рекомендуется отключить систему EGR на дизельном двигателе и как правильно отключать ЕГР. Механическое глушение клапана егр и программное отключение.

куда удаляются картерные газы при закрытой вентиляции картера

Принцип действия системы изменения фаз газораспределения VVT. Гидроуправляемая муфта, ступенчатое регулирование VVTL-i, VTEC. Электромагнитный привод ГРМ.

куда удаляются картерные газы при закрытой вентиляции картера

Для чего используется мочевина в системе очистки выхлопа дизельного двигателя. Применение реагента AdBlue в системе жидкостной очистки отработавших газов.

куда удаляются картерные газы при закрытой вентиляции картера

Почему забивается сажевый фильтр. Эксплуатация, профилактика. Основные способы очистки фильтра со снятием и без, жидкости для промывки. Как лучше прочищать.

Система вентиляции картера.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Система вентиляции картера предназначена для уменьшения выброса вредных веществ из картера двигателя в атмосферу. При работе двигателя из камер сгорания в картер могут просачиваться отработавшие газы. В картере также находятся пары масла, бензина и воды. Все вместе они называются картерными газами. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя.

На современных двигателях применяется принудительная система вентиляции картера закрытого типа. Система вентиляции картера у разных производителей и на разных двигателях может иметь различную конструкцию. Вместе с тем можно выделить следующие общие конструктивные элементы данной системы:

1)маслоотделитель;
2)клапан вентиляции картера;
3)воздушные патрубки.

Маслоотделитель предотвращает попадание паров масла в камеру сгорания двигателя, тем самым уменьшает образование сажи. Различают лабиринтный и циклический способы отделения масла от газов. Современные двигатели оборудованы маслоотделителем комбинированного действия.

В лабиринтном маслоотделителе (другое наименование успокоитель) замедляется движение картерных газов, за счет чего крупные капли масла оседают на стенках и стекают в картер двигателя.

Центробежный маслоотделитель производит дальнейшее отделение масла от картерных газов. Картерные газы, проходя через маслоотделитель, приходят во вращательное движение. Частицы масла под действием центробежной силы оседают на стенках маслоотделителя и стекают в картер двигателя.

Для предотвращения турбулентности картерных газов после центробежного маслоотделителя применяется выходной успокоитель лабиринтного типа. В нем происходит окончательное отделение масла от газов.

Система вентиляции картера
Клапан вентиляции картера служит для регулирования давления поступающих во впускной коллектор картерных газов. При незначительном разряжении клапан открыт. При значительном разряжении во впускном канале клапан закрывается.

Работа системы вентиляции картера основана на использовании разряжения, возникающего во впускном коллекторе двигателя. Посредством разряжения газы выводятся из картера. В маслоотделителе картерные газы очищаются от масла. После чего, газы по патрубкам направляются во впускной коллектор, где смешиваются с воздухом и сжигаются в камерах сгорания.

В двигателях с турбонаддувом осуществляется дроссельное регулирование вентиляции картера.

Картерные газы: Работа системы вентиляции, маслоуловитель и клапан PCV

Это вторая версия статьи, созданная вместе с участниками группы проекта, в ней исправлены грубые ошибки по работе вентиляции картера двигателя для вывода картерных газов. Итак система вентиляции картера необходима для уменьшения вредных веществ, выходящих из картера двигателя в воздух. В картере безусловно находятся пары бензина, воды и пары масла — все это картерные газы.

Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя, в Honda Civic при сбоях в системе или же агрессивной эксплуатации двигателя, количество паров возрастает и двигателя покрывается нагаром изнутри. Очевидным фактом сбоя ялвяется понижение мощности, увеличение расхода топлива. Визуально это видно как нагар на дроссельной заслонке, нагар на впускном коллекторе. Нагар в любом его проявлении является негативном факторе влияющем на характеристики двигателя. Уменьшается диаметр дроссельной заслонки, это значит меньше воздуха будет поступать во впускной коллектор. Нагар на впускном коллекторе уменьшит его объем а значит и отдачу. Закупорка каналов соотвественно введет к неправильном составу смеси и воздушному голоданию.

Схемы работы системы вентиляции картера

Система вентиляции картера Honda Civic, практически ни чем не отличается от большинства легковых автомобилей с ДВС. В качестве источника потока воздуха используется впускной тракт. Свежий поток воздуха попадает в ГБЦ, далее в двигатель, поток проходит до низа двигателя в картер, и выводит с собой через камеру сапуна отработанные газы на вторичную переработку во впускной коллектор. Такая система нужна для переработки материала, негативно влияющего на экологию.

Именно поэтому эта система закольцована в двигателе а не выходит после камеры сапуна наружу. Как вы понимаете данная система кроме контура вентиляции и впускного тракта имеет еще два компонента, камера сапуна выполняющего функцию приемника тяжелый частиц и клапан PCV (Positive Crankcase Ventilation) — клапан принудительной вентиляции картера. PCV необходим для направления движения потока. Немного иллюстраций для понимания терминов.

Проблема нагара в системе

Откуда идет нагар? Допустим двигатель новый, и функцию примитивного фильтра выполняет камера сапуна. В котором масло оседает, а газы уходят ка полагается через клапан PCV во впуск снова в двигатель. Все идеально, тяжелые части масла отделяются, а насыщенный бензином поток идет на переработку. Но это в идеальном случае. Во первых со временем камера сапуна загрязняется просто до жутчайшего состояния, вентиляция ухудшается. Так как идеального ничего не бывает, то картерные газы все равно несут в себе масло, даже после сапуна. И клапан PCV начинает загрязняться, и в итоге он забивается маслом, грязью, и тд. В итоге циркуляция газов нарушается, в зависимости от того в каком положение клапан “заклинило” будут те или иные последствия.

Решение проблемы нагара

Решение простое, необходимо чистить клапан PCV и камеру сапуна. Но это подходит для городского движения. Если вы постоянно давите педаль акселератора, то тут неизбежно все равно будет загрязнение впускного коллектора. Решение пришло из автоспорта, где главное это производительность, в мотоциклах маслоуловитель устанавливался чаще чем в автомобилях. Уловитель масла, маслоуловитель, маслопомойка, маслоотделитель, Oil Catch Can\Tank это различные названия одного и того же изделия, способного отделить масло из картерных газов. В идеале их нужно две штуки, один на впуск, другой около PCV.

Устройство маслоуловителя и принцип работы

Банка-ёмкость с двумя штуцерами и фильтр отбора для масла внутри банки, все это в любой цветовой гамме. Это примитивное описание устройства, которое стоит по 40-300 долларов. Кроме стоимости прежде всего нужно описать принцип работы. Устанавливается в разрезе шланга от ГБЦ к впускному тракту.

На входной штуцер подается картерные газы со смесью паров масла, далее попав в банку этот поток газов попадает в хитрую структуру препятствия. В одном случае это просто металлическая стенка, по типу как сделаны зажигалки для сигарет. Это самый плохой способ, хотя и работающий.

Второй случай это фильтр поролон, сетка, или же металлическая губка. Это хороший способ для фильтрации, масло будет оседать на проволоке стекать вниз. Использовав поролон, но будет проблема прохода самих газов во впускной коллектор. Чистка такого маслоуловителя тоже будет проблематична.

Самая нормальная система маслоуловителя, спиральная с металлическим фильтром. Поток ударяется в стенку, газы быстро находят выход во впускной коллектор, а тяжелые масляные капли стекают вниз и остаются внутри, во закрытой части маслоуловителя. Остается только слить накопившейся масло во время, есть варианты когда масло обратно попадает в двигатель, тем самым масло из двигателя не уходит почти совсем.

Топливный фильтр как дешевая замена

Как полумера, топливный фильтр (например ВАЗ), может быть использован. Небольшая стоимость в 1-2 доллара и доступность. Но, такие фильтра рассчитаны на бензин а не на тяжелые масла. Фильтр засорится очень быстро. Итог — закупоривание канала, вентиляции картерных газов, и их циркуляция и накопление внутри двигателя во всех его частях. Особенно это заметно при низких температурах. Далее падение мощности, с очень большим шансом не стабильной работы двигателя, на пример двигатель начинает троить.

Устройство и принцип работы системы вентиляции картера двигателя

Система вентиляции картера играет одну из основных ролей в процессе газообмена внутри двигателя. Ее неисправности могут привести к поломке турбины, потерям масла через сальники. Для своевременной диагностики и обнаружения признаков неисправности крайне важно понимать принцип работы системы вентилирования картерных газов. Особое внимание уделим устройству клапана PCV (Positive Crankcase Ventilation) и методам его проверки.

куда удаляются картерные газы при закрытой вентиляции картера

Что такое картерные газы?

Картерные газы — это соединение несгоревшей топливовоздушной смеси (далее ТПВС), выхлопных газов и масляной взвеси. Даже в исправном двигателе на такте сжатия через поршневые кольца просачивается часть смеси топлива и воздуха. Уже на такте рабочего хода в картерное пространство поступают выхлопные газы, смешивающиеся с парами моторного масла.

Предназначение системы вентиляции картерных газов (ВКГ)

Вентиляция картера двигателя необходима для постоянного отвода токсичной смеси из несгоревших углеводородов, выхлопных газов и масляного тумана. До ужесточения экологических норм с этой задачей прекрасно справлялся сапун – отрезок шланга, соединяющий блок двигателя и атмосферу.

В современных реалиях вентиляция картера двигателя представляет собой систему закрытого типа. Выхлопные газы подаются во впускной коллектор, где они смешиваются со свежим зарядом и благополучно сгорают в двигателе.

Принцип работы и устройство вентиляции картера двигателя

куда удаляются картерные газы при закрытой вентиляции картера

Именно так выглядит схема вентиляции картера двигателя атмосферного бензинового двигателя. Газы из ГБЦ поступают во впускной тракт по двум патрубкам, один из которых врезается в систему перед дросселем, а второй после заслонки. Такое разделение потоков необходимо по двум причинам:

куда удаляются картерные газы при закрытой вентиляции картера

На схеме изображены элементы системы вентиляции картера турбированного двигателя, а также способ попадания газов через поршневые кольца в поддон (№5). Составляющие компоненты:

Клапан PCV

Высокое разряжение в картерном пространстве не менее опасно для сальников, чем повышенное давление. Чтобы при малом угле открытия ДЗ, а также при резком закрытии дросселя на высоких оборотах в поддоне не создавалось избыточное разряжение, в систему включен клапан ВКГ. Состоит клапан вентиляции картера из подпружиненного плунжера, перемещающегося в гильзе определенного сечения.

куда удаляются картерные газы при закрытой вентиляции картера

В нормальном состоянии, когда двигатель заглушен, возвратные пружины отжимают плунжер, сообщая отрезки канала от коллектора к клапанной крышке. В режиме холостого хода высокое разряжение во впускном коллекторе притягивает плунжер, преодолевая сопротивление пружин. Канал для доступа картерных газов перекрывается. По мере открытия дроссельной заслонки снижается воздействие вакуума на плунжер. Усилием возвратных пружин клапан открывается, сообщая впускной тракт и картерное пространство.

куда удаляются картерные газы при закрытой вентиляции картера

Роль маслоотделителя

Маслоотделитель, нередко именуемый маслопомойкой, предназначен для улавливания крупных и мелкодисперсных частиц масла. Роль его чрезвычайно важна для правильной работы датчика массового расхода воздуха (ДМРВ). Оседая на стенках впускного тракта, масляный туман очень быстро покрывается пылью. Из-за этого нарушается работа чувствительного элемента расходомера. Блок управления двигателем получает неверные показания о количестве воздуха, поступившего во впускной тракт. Поэтому принудительная вентиляция картера современного двигателя может включать в себя маслоотделители сразу нескольких типов.

Лабиринтный маслоуловитель

При движении газов через лабиринт крупные частицы масла под действием инерционных сил выталкиваются к стенкам маслоотделителя. По сепараторным пластинам масло стекает самотеком в поддон. Схожий по принципу работы маслоуловитель, состоящий из набора пластин, устанавливается в клапанной крышке инжекторных двигателей ВАЗ.
куда удаляются картерные газы при закрытой вентиляции картера

Циклический маслоуловитель

Предназначен для улавливания мелкодисперсных частиц масляной взвеси. При прохождении картерных газов по окружности корпуса маслоотделителя капли масла смещаются наружу, оседая на стенках корпуса маслоуловителя.
куда удаляются картерные газы при закрытой вентиляции картера

Маслоотделитель с фильтрующим элементом

Внутри корпуса устанавливается фильтрующая бумага или стекловолоконный наполнитель. Проходя через фильтр, масло задерживается на стенках фильтрующего элемента, после чего стекает в поддон.

Турбулентность потоков выхлопных газов, движущихся через шланг вентиляции картера двигателя, ухудшает равномерность наполнения цилиндров. Поэтому на многих автомобилях дополнительно установлена успокоительная камера. Помимо замедлителя потока газов, камера выступает еще и в роли дополнительного маслоотделителя.

Признаки неправильной работы

Последствия неисправной вентиляции картера

Последствия высокого давления в картерном пространстве:

Видео:Система вентиляции картера

Методы диагностики

Своими руками проще всего проверить клапан PCV. Для этого достаточно подуть в клапан со стороны клапанной крышки. Если напор воздуха с обратной стороны слабый либо он и вовсе не выходит, клапан работает неправильно. Очистка системы вентиляции картера двигателя очистителем карбюратора должна исправить ситуацию. Если же клапан продувается в обе стороны, скорее всего, он заклинил в полуоткрытом состоянии, либо порвалась резиновая мембрана.

Степень загрязнения и общая эффективность работы вентиляции картера измеряется двумя основными путями:

Чтобы не столкнуться с последствиями неисправностей системы ВКГ, стоит периодически менять клапан PCV, фильтрующий элемент, чистить центробежный/лабиринтный маслоуловитель.

Вентиляция картера

куда удаляются картерные газы при закрытой вентиляции картера куда удаляются картерные газы при закрытой вентиляции картера куда удаляются картерные газы при закрытой вентиляции картера куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

На двигателях колесных и гусеничных машин применяются системы вентиляции двух типов:

открытая — с отводом картерных газов в атмосферу;

закрытая — с отсасыванием газов во впускную систему двигателя.

Открытая вентиляция (рис. 6. а) осуществляется под действием

разрежения, возникающего в вытяжной трубе, вследствие относительного перемещения воздуха при движении автомобиля. В месте забора картерных газов во внутренней полости двигателя выполняют маслоулавливающие устройства. Свежий воздух поступает в1 картер через специальный патрубок 2 (сапун), который обычно используется и для заправки системы маслом. Во избежание попадания пыли внутрь картера сапуны имеют воздушные фильтры. Не достатком открытой вентиляции является ее низкая интенсивность и возможность попадания газов в кабину или кузов в случае работы двигателя на стоянке.

При закрытой системе вентиляции (рис. 6.б) интенсивность отсоса картерных газов значительно повышается, а в поддоне создается разрежение, надёжно предотвращающее утечку масла через уплотнения.

В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод.

Отвод газов в воздухоочиститель не создает интенсивности отсоса на режимах минимальных чисел оборотов и полной нагрузки. Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей, нарушающее нормальную работу системы смесеобразования. Поэтому в ряде моделей карбюраторных двигателей применяется система вентиляции с отсосом газа непосредственно во впускной трубопровод, в котором всегда имеется повышенное разрешение.

Для предотвращения попадания воды в поддон при преодолении брода полость поддона разобщается с впускным трубопроводом с помощью специального крана.

куда удаляются картерные газы при закрытой вентиляции картера

Рис. 6. Схемы вентиляции картера:

9. Моторные масла и требования к ним

В ДВС для смазки и охлаждения подвижных деталей, удаления загрязняю­щих частиц, нейтрализации химически активных продуктов сгорания, а также пе­редачи усилий и демпфирования колебаний применяется моторное масло.

В поршневых дви­гателях для смазки деталей используют масла главным образом неф­тяного происхождения. Физико-химические свойства масел обусловле­ны в специальных ГОСТах.

Один из основных показателей моторных масел — вязкость, так как от нее зависят гидродинамиче­ский режим смазки трущихся деталей и механические потери в двига­теле. Вязкостью масла называется его внутреннее сопротивление течению, обусловливаемое внутренним трением. Кинематическая вяз­кость оценивается при температуре 100°С в сантистоксах и является основой классификации и маркировки моторных масел. Вязкость мас­ла влияет на прокачиваемость его через зазоры в узлах трения, а сле­довательно, на отвод теплоты от трущихся поверхностей и охлаждае­мых деталей. Масла с малой вязкостью при прочих равных условиях лучше отводят теплоту и быстрей выносят продукты износа трущихся деталей. Кинематическая вязкость не должна резко изменяться в диа­пазоне температур от 90 до 120°С.

С вязкостью масла связан его расход вследствие выгорания. Из-за насосного действия поршневых колец масло попадает в камеру сго­рания и сгорает там. В камеру сгорания масло может проникнуть также и через зазоры между стержнями клапанов и их направляю­щими. Масла с большей вязкостью выгорают в меньшем количестве.

При граничном трении коэффициент трения зависит не только от вязкости масла, но и от содержания в масле поверхностно-активных веществ, способных адсорбироваться на трущихся поверхностях. Адсорбированная пленка препятствует непосредственному контакту трущихся поверхностей, что уменьшает силу трения и износ. Способ­ность масла обеспечивать смазывающее действие в условиях гранич­ного трения называют маслянистостью. Для форсированных дви­гателей и двигателей, работающих длительное время на неустановив­шихся режимах, желательно применять масла с высокой маслянис­тостью.

Способность масла вызывать коррозию омываемых им деталей двигателя зависит от количества содержащихся в нем кислот и определяется кислотным числом. Кислотное число представляет собой количество миллиграммов щелочи КОН, необходимой для нейтра­лизации органических кислот в 1 г масла, которое должно быть мини­мальным. Для снижения коррозии деталей техническими условиями на моторные масла предусматривается отсутствие водорастворимых кислот, строго ограничивается кислотное число масла без присадки и регламентируется норма на коррозию свинцовых пластинок.

Моторное масло, попадая в камеру сгорания или соприкасаясь с раскаленными деталями двигателя, окисляется с образованием раз­личных твердых или смолистых веществ, количество которых опре­деляется зольностью и коксуемостью его. Зольность хорошо очищен­ных минеральных масел без присадок составляет тысячные доли про­цента. В моторных маслах в зависимости от количества введенных зольных присадок зольность повышается до 1,65%. Коксуемость яв­ляется суммарным показателем, характеризующим степень окисле­ния масла и количество продуктов неполного сгорания топлива (са­жи). В технических условиях на моторные масла установлены нормы на коксуемость и зольность масел, характеризующие степень их очист­ки. Свойство масла выносить из зазоров между трущимися поверхнос­тями продукты износа и другие твердые частицы называют моющей спо­собностью. Моющие свойства моторных масел оценивают в баллах по ГОСТу, на специальной установке ПЗВ, и должно составлять не более 1,0 балла.

В процессе длительной работы в двигателе масло подвергается воз­действию высоких температур, кислорода воздуха и других агрессив­ных газов, содержащихся в продуктах сгорания, которые прорывают­ся в картер через уплотнения. Способность масла сохранять основные эксплуатационные свойства в течение длительного времени называют стабильностью. Для оценки термоокислительной стабильности масел применяются лабораторные методы, оговоренные соответствующими ГОСТами.

Чистые минеральные масла не обладают всеми предъявляемыми к ним требованиями, поэтому к моторным маслам добавляют вещества, называемые присадками, которые существенно улучшают эксплуата­ционные свойства масел.

Моторные масла должны удовлетворять требованиям фирм-изготовителей, по качеству, наличию необходимых присадок и вязкостно-температурным показа­телям. Маркировка любого масла состоит из обозначения применимости, класса вязкости по SAE и уровня эксплуатационных свойств по API или АСЕА.

По эксплуатационным свойствам присадки подразделяются на масла для ис­кровых, дизельных двигателей и универсальные.

депрессорные (до 1%). Снижают температуру застывания на 20˚ C и более. Они предотвращают образование парафиновых кристаллов при низких темпера­турах;

противоокислительные (до 3%). Делятся на присадки-ингибиторы, рабо­тающие в общем объеме масла, и на термоокислительные присадки, выполняю­щие свои функции на нагретых поверхностях. Используются соединения серы и фосфора, фенолы и амины;

противоизносные и противозадирные (до 2%), содержащие хлор, фосфор и серу, призваны сохранять устойчивость масляной пленки между трущимися дета­лями двигателя;

Моторное масло состоит из основы (базового масла) и присадок, которые призваны разнообразить его качество и свойства. По роду исходного сырья осно­вы могут быть либо нефтяными (минеральными), либо синтетическими.

— лучшая стойкость к окислению;

— имеют высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления);

— меньшая испаряемость и расход на угар;

— способствуют снижению общих механических потерь в двигателе и уменьше­нию износа деталей.

— неблагоприятное воздействие на резиновые материалы;

— повышенная коррозионная активность;

— ограниченная растворимость присадок;

— чувствительны к попаданию воды.

Вязкостно-температурные свойства масла (изменение вязкости в зависимости от температуры) должны обеспечивать:

— при низкой температуре прокручивание двигателя стартером и прокачивае- мость по смазочным каналам;

— при высокой температуре надежное создание масляной пленки между трущи­мися поверхностями и поддержание необходимого давления в смазочной системе.

В процессе эксплуатации масло теряет свои свойства.

В любом масле при его старении протекают два параллельных процесса: окисление масляной основы, приводящее к увеличению вязкости, и одновремен­ное разрушение загущающих присадок, ведущее к снижению вязкости. В базовом масле два этих процесса уравновешивают друг друга и его вязкость почти не из­меняется.

Если историю расхода масла исправным двигателем изобразить в виде графи­ка, то он будет выглядеть как классический график из теории надежности, со­стоящий из трех частей. В принципе, любая техника проходит три стадии функ­ционирования.

Отвод картерных газов в атмосферу

В зависимости от конструкции двигателя утечка газов из одного цилиндра двигателя в пространство картера составляет от 10 до 30 л/мин. В зоне работы маслосъемных колец, вследствие высоких скоростей перемещения поршня, картерные газы обогащаются частицами масла размером от 0,1 до 2 мкм. Кроме того, образованию масляного аэрозоля способствует и постоянное перемешивание масла в масляной ванне вращающимся коленчатым валом.

Картерные газы в своем составе содержат моторное масло, которое находится во взвешенном состоянии в виде масляного тумана. Фильтрующие модули в составе системы смазки современных двигателей имеют специальную систему отделения моторного масла от картерных газов (масляные сепараторы).

Существующие системы вентилирования картера двигателя позволяют осуществить два варианта удаления картерных газов:

Первый метод вентилирования картера двигателя практикуется немногими производителями автомобильных двигателей, а на сегодняшний день он не соответствует требованиям по охране окружающей среды.

Второй метод снижает выброс в окружающую среду картерных газов, но, с другой стороны, из-за содержащихся в картерных газах частиц масла, возникают другие проблемы:

Поэтому системы вентилирования картера современного двигателя внутреннего сгорания должны обеспечивать отделение частиц масла. Это вызвано ужесточением требований по охране окружающей среды, а именно снижения содержания твердых частиц в выхлопных газах.

Для отделения частиц масла от картерных газов используют масляные сепараторы различной конструкции. Изначально в качестве отделителя масла использовалось синтетическое волокно, которое в виде фильтрующей ткани устанавливалась в корпусе масляного сепаратора и задерживала частицы масла, увлекаемые потоком картерных газов в системе вентиляции картера двигателя.

куда удаляются картерные газы при закрытой вентиляции картера

Рис. Масляный сепаратор с синтетическим отделителем:
1 – синтетический фильтроэлемент; 2 – картерные газы, очищенные от масла; 3 – картерные газы, содержащие частицы масла; 4 – отделенное масло

Задержанное таким образом моторное масло собиралось на дне корпуса масляного сепаратора и, через отверстие, возвращалось обратно в масляную ванну двигателя. Конструктивно масляный сепаратор интегрируется вместе с масляным фильтром в так называемый фильтрующий блок (модуль).

куда удаляются картерные газы при закрытой вентиляции картера

Рис. Внешний вид фильтрующего блока:
1 – масляный фильтр; 2 – масляный сепаратор

Однако, в процессе эксплуатации свойства фильтрующей ткани из синтетического волокна постепенно ухудшались, так как она загрязнялась смолистыми веществами, образующимися в результате неизбежного старения масла и его окисления, а также твердыми частицами, преимущественно углеродом в форме сажи, особенно у дизельных двигателей. Загрязнение фильтрующей ткани вело к возрастанию сопротивления прохождения через нее картерных газов, что, в свою очередь, вело к ухудшению работы системы вентиляции картера двигателя и диктовало необходимость замены фильтроэлемента масляного сепаратора.

Циклонные маслоотделители (маслоуловители)

Чтобы избавиться от недостатков фильтрующей ткани из синтетического волокна в последних моделях современных автомобилей стали применять циклонные маслоотделители.

куда удаляются картерные газы при закрытой вентиляции картера

Рис. Принцип работы системы вентиляции картера двигателя с циклонным маслоотделителем:
1 – циклонный маслоотделитель; 2 – клапан регулировки давления; 3 – охладитель нагнетаемого воздуха; 4 – турбокомпрессор; 5 – газы, прорывающиеся через поршневые кольца

Картерные газы подводятся по каналу внутри двигателя в циклонный маслоотделитель. Циклонный маслоотделитель приводит воздух во вращательное движение. Благодаря возникающей центробежной силе масляный туман ударяется о стенку маслоотделителя. Там образуются капли масла, которые по каналу в картере стекают в масляный поддон. Очищенный от масляного тумана воздуха через клапан регулировки давления подводится к каналу забора воздуха.

Циклонный маслоотделитель снабжен специальным клапаном, ограничивающем разряжение в картере двигателе, так как при сильном разряжении могут быть повреждены сальники двигателя и другие резиновые уплотнения.

куда удаляются картерные газы при закрытой вентиляции картера

Рис. Схема работы клапана регулировки давления циклонного маслоотделителя:
1 – трубопровод подачи картерных газов; 2 – трубопровод забора воздуха; 3 – мембрана; 4 – пружина сжатия; а – открытое положение клапана; б – закрытое положение клапана

Клапан регулировки давления находится в крышке циклонного маслоотделителя. Он состоит из мембраны и пружины сжатия и регулирует давление при удалении воздуха из картера. Клапан регулировки давления закрывается при сильном разрежении в заборном канале. При незначительном разряжении в заборном канале он открывается силой пружины сжатия.

куда удаляются картерные газы при закрытой вентиляции картера

В первой части я написал, что пережал тонкую шлангочку вакуммного управления клапаном ВКГ, вот результат спустя несколько сотен км

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

С таким вариантом установки помойки я проездил первую 1000 км.
Явный плюс от установки помойки я заметил сразу же после выезда из гаража — машина однозначно стала лучше разгоняться на низких оборотах. Если до установки помойки приход мощи чувствовался после 3000 об., то с помойкой моща стала чувствоваться уже после 2500 об. Т.е. то, о чем писал Легионер и не только он, я тоже заметил.
Однако я не увидел уменьшение аддитива, он как был примерно 10-12%, так и остался. Спустя 1000 км решил, что нужно убрать все-таки картерные газы из впуска полностью, как подсос воздуха и в итоге аддитив упал до 5%.
Т.е. получается при рабочем клапане ВКГ на х.х. он должен прикрываться и сдерживать картерные газы (аддитив и будет падать), но при этом понятно что будет расти давление и поэтому будет давить немного масло. У меня после того как убрал картерные газы на улицу, давить масло вообще полностью везде перестало, даже вокруг маслозаливной баклушии на клапане избыточного давления (поросенке) наверно впервые за последние лет 5-6 образовалась сухая пыль. Обычно там у всех он в масле т.к. впускной коллектор внутри весь в масле из-за картерных газов.

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

В итоге сейчас на впуск идет только чистый воздух и машина разгоняется даже с кондером намного лучше, чем ранее даже при температуре воздуха в тени +36 градусов. А аддитив и мультипликатив стали в норме.
За 3000 км шланг входа в помойку, сама помойка и нижний выход для стоков в маслянистом налете, кторый думаю скоро начнет уже стекать, в выходном шланге все сухо и там только сухой картерный газ. Впуск же абсолютно сухой.

Price tag: 800 UAH Mileage: 192000 km

куда удаляются картерные газы при закрытой вентиляции картера

FakeHeader

Comments 67

куда удаляются картерные газы при закрытой вентиляции картера

Скинь номер «уловителя»

куда удаляются картерные газы при закрытой вентиляции картера

куда удаляются картерные газы при закрытой вентиляции картера

Не замерял. все старался подбирать по размеру отводов помойки. Шланги подбирал по нужной форме на разборке немцев, они намного мягче и долговечные к температуре и эластичнее.

куда удаляются картерные газы при закрытой вентиляции картера

Номерок масло помойки скинь, для заказа

куда удаляются картерные газы при закрытой вентиляции картера

Приветствую, есть мысль убрать вообще патрубок вкг от низа до горловины как на акл и бсе и установить маслопомойку

куда удаляются картерные газы при закрытой вентиляции картера

Скорее всего мембрана порвана, разбери и посмотри. Мотор какой?

куда удаляются картерные газы при закрытой вентиляции картера

У этого маслоотделителя на крышке есть маленькое отверстие диаметром 2-3 мм. Расположено примерно над входной трубкой. Когда заводишь мотор, то из этого отверстия идет воздух. Вопрос : так должно быть, или нет? И откуда он берется?

куда удаляются картерные газы при закрытой вентиляции картера

Да нет. По сей день все так и работает — там где синий хомут это вход в помойку

куда удаляются картерные газы при закрытой вентиляции картера

На первых фото впуск выпуск маслоотделителя перепутаны вход выход?

куда удаляются картерные газы при закрытой вентиляции картера

А можно схематически, что и к чему подключено, и от чего сам маслоуловитель?!

куда удаляются картерные газы при закрытой вентиляции картера

Что куда видно на фото, а про маслоуловитель в первой части все написал

куда удаляются картерные газы при закрытой вентиляции картера

Информация моя, от моих личных наблюдений, причем очень простых — в 74-й группе значения вообще никогда не меняются на моей машине, ни при каких режимах езды! а измерений в 75- вообще нет.
А вот у знакомого, на туре, таком же БФК, сев за руль и покатавшись с ноутом увидел в измерения как значение процента открытия клапана и других значений меняются постоянно, а также есть измерения 75-й группы. Дальнейшие недолгие сравнения и все становится видно о чем я и написал. У меня нет индикации ЧЕК, а у него есть и т.д.
При этом все машины имеют и клапан ЕГР и две лямбды и систему вторичного воздуха

куда удаляются картерные газы при закрытой вентиляции картера

Добрый вечер! У меня машина Гольф 4 с мотором AVU 2002 г. Обратил внимание, что в группах 75 и 74 тишина, хотя егр система присутствует. Откуда информация про разные модификации? Лямбды две, каиализатор, система вторичного воздуха присутствуют.

куда удаляются картерные газы при закрытой вентиляции картера

Да самотеком, тут все дело в физике работы маслоотделителя циклонного типа. Причем если двигатель масло не кушает с большим аппетитом, то будет скорее только конденсат, а если масложор уже имеется, то конечно для масла в конденсате будет расти. Поэтому лучше ставить маслоотделить в тот момент, пока еще мотор относительно новый или после капиталки, чтобы в дальшейшей его работе меньше было масла в картерных газах.
Под слив вместо шланга можно ставить конечно любую емкость закрытого типа, например бачек, но вся проблема как раз в нехватке места под него, причем как раз основной критерий размещения емкости в таком месте, чтобы конденсат не перемерзал зимой.
У меня ничего не перемерзло зимой я считаю по двум причинам — первое, я сделал установку помойки так что конденсат или стекает назад в мотор с верхней точки после баклуши, или зимой наполняясь в трубке слива самотеком вытекал с выхода маслопомойки, если трубка наполнялась быстрее чем я успеваю (скорее вспоминаю) открыть электрокран для слива.

С маслопомойкой я проехал уже 32000 км и расставаться с ней точно не собираюсь. Впуск абсолютно чистый покрытый сухой пылью, без привычных всем маслянистых пятен на дросселе и воздуховоде (внутри при этом вообще караул!), т.к. никаких картерных газов там нет, Динамика разгона с первого дня как установил помойку стала лучше, т.к. на впуск идет только свежий воздух. Были разговоры, что без картерных газов смесь будет более богатой, т.к. картерные газы идут мимо расходомера и на них идет поправка в мозгах. Так вот скажу что все это не так — мозги BFQ настолько умны что управляя электронной заслонкой, смесь становится просто идеальной и без картерных газов. У меня последние полгода аддитив и мультипликатив постоянно почти на нулях. Максимальное отклонение, зависящее от качества топлива (пропана) не превышает плюс-минус 2,7%

Среди различных систем авто система вентиляции картера играет значительную роль в формировании топливовоздушной смеси, стабильной и экономичное его работе, полной отдаче мощности, защите моторного масла и продления ресурса цилиндропоршневой группы.

В конструкции автомобиля система вентиляция картера – это «легкие» двигателя, необходимые для его нормальной жизнедеятельности. Система носит название PCV (Positive Crankcase Ventilation).

Однако именно ей незаслуженно уделяется минимум внимания и обслуживания, а многие автовладельцы даже не знают о ее существовании.

В этой статье постараемся разобраться для чего нужна данная система, как она работает, присущие ей неисправности и методы проверки ее работоспособности.

куда удаляются картерные газы при закрытой вентиляции картера

Что такое «картерные газы»?

Топливовоздушная смесь, при сгорании, резко увеличивается в объеме, создавая огромное давление внутри камеры сгорания. Расширяющиеся газы от сгорания заставляют поршень двигаться к нижней мертвой точке, приводя во вращательное движение коленчатый вал двигателя.

Часть газов через неплотности между кольцами и зеркалом цилиндров проникают в поддон картера, где, смешиваясь с парами масла, создают давление, агрессивно воздействующее на уплотнения коленчатого вала и прокладку поддона, и канал масляного щупа.

Такт расширения повторяется в каждом цилиндре, постоянно нагнетая в поддон следующую порцию газов и если вентиляция картера не будет работать, то газы либо выдавят сальники коленчатого вала, либо «выбьют» масляный щуп и выгонят масло из картера, со всеми вытекающими…

Помимо этого, вместе с газом в поддон переносятся частицы несгоревшего топлива, мелкие фрагменты нагара, пары влаги, которые смешивается с моторным маслом, находящимся в поддоне двигателя. Это, в свою очередь, ведет окислению масла, засоряет его продуктами износа, снижая его рабочие свойства и уменьшая его эксплуатационный ресурс.

Конструкция системы

Для того, чтобы снизить до минимума воздействие давления газов в конструкции двигателя предусмотрена систем вентиляции картера. В современных автомобилях применяется система вентиляция закрытого типа, что необходимо для соблюдения экологических норм.

Несмотря на различие систем на разных марках авто, все они имею три общих компонента, таких как:

• Воздушные патрубки для отвода газов из картера;

• Клапан вентиляции, отвечающий за урегулирование величины давления газов;

• Маслоотделитель, отсекающий масляные пары при выходе газов из поддона двигателя.

Клапан открывается при появлении избыточного давления и при разряжении закрывается, то есть принцип его работы основан на разности давлений за и перед ним.

Отделение частиц масла осуществляется при прохождении газов через систему лабиринтов, завихрений и сеток в маслоотделителях. Затем отделившееся масло стекает обратно в поддон двигателя. Это позволяет не только экономить масло, но и защищать детали двигателя от нагара.

При этом маслоотделители могут размещаться внутри крышки клапанов, быть встроенными в мотор или выполненные как отдельный узел.

Принцип работы

Система работает следующим образом. Патрубок вентиляции связан с впускным коллектором, где сразу после запуска двигателя создается разряжение, благодаря которому картерные газы «вытягиваются» из поддона и проходя через маслоотделитель попадают во впуск, где, смешиваясь с поступающим воздухом попадают в камеру сгорания и догорают.

Достоинства системы вентиляции

Применение вентиляции картера позволяет сократить процент вредных выбросов в атмосферу, снизить угар моторного масла, поддерживать стабильные обороты двигателя при прогреве, так как заборный воздух смешиваясь с картерными газами нагревается, что в целом благоприятно воздействует на работу силовой установки.

Недостатки

Несмотря на наличие маслоотделителя воздуховоды и элементы впуска загрязняются от прохождения картерных газов, вызывая частые отказы приборов при работе.

Так на бензиновых моделях авто покрываются налетом узел дроссельной заслонки и регулятор холостого хода, так как они имеют специальные каналы, выполняющие вытяжную функцию. Подобное может наблюдаться и на карбюраторных моделях, например, с карбюратором «Солекс», оснащенным штуцером для вентиляции картера.

Узел дроссельной заслонки и вытяжной клапан газов на карбюраторах являются так называемой малой ветвью и задействуются тогда, когда разрежение в воздушном фильтре недостаточное.

Признаки неисправности PCV

• Появление следов масла в воздушном фильтре;

• Запотевание сальников и стыка крышки клапанов двигателя;

• Дым из выхлопа по причине попадания частиц масла с газами в камеру сгорания;

• Следы масла вокруг крышки заливной горловины и на крышке клапанов.

Помимо этого, данные симптомы указывают и на сильный износ или неисправность (сгорел клапан, залегли кольца, лопнули перегородки поршня) поршневой группы и необходимости их проверки путем замера компрессии.

Причины неисправности:

• Забит или неисправен клапан вентиляции картерных газов;

• Загрязнились вытяжные отверстия в узле дросселя или штуцере карбюратора;

• Сильный износ поршневой группы;

Проверка исправности

Для проверки работы системы вентиляции нужно снять на заведенном моторе крышку с заливной горловины. Если все исправно, то могут наблюдаться лишь отдельные «выстреливающие» капельки масла, либо вообще не будет следов его появления. В противном случае из горловины будет выбрасываться моторное масло.

куда удаляются картерные газы при закрытой вентиляции картера

Если прикрыть отверстие рукой, то при исправной системе не должно чувствоваться какого-либо давления на нее, а когда система находится под избыточным давлением, то газ будет пытаться оттолкнуть ладонь и это усилие будет постепенно увеличиваться.

Для проверки исправности клапана вентиляции, а он обычно расположен во впускном коллекторе, нужно отсоединить шланг от картера к клапану, завести мотор и закрыть пальцем освободившийся штуцер на клапане. Если клапан рабочий, то палец почувствует создание вакуума, а при снятии пальца со штуцера, последует характерный щелчок. В противном случае клапан требует замены.

Нарушение работы клапана отражается на нарушении состава топливной смеси и сопутствующими проблемами.

В заключении.

При обнаружении признаков неисправности вентиляции картера, рекомендуется, не откладывая на спасительное завтра, приступить к прочистке и профилактике системы, чтобы сократить до минимума угар масла и износ двигателя.

Источники информации:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *