какое значение разрядности имеют типовые реальные ацп

Разнообразие аналогово-цифровых преобразователей вырождается?

какое значение разрядности имеют типовые реальные ацп

Первый АЦП

Самым первым упоминанием АЦП в истории является патент США 1 608 527 под названием «Facsimile Telegraph System», который был подан 20 июля 1921 года Полом М. Рейни, работником компании Western Electric. Патент был получен спустя 6 лет, 30 ноября 1926 года.

какое значение разрядности имеют типовые реальные ацп

Рисунок 1 – Патент «Facsimile Telegraph System»

Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования (flash ADC, direct-conversion ADC). Принцип действия полностью параллельного АЦП прямого преобразования заключается в том, что все параллельные компараторы с напряжением сравнения меньшим, чем уровень входного сигнала переключаются в «1», а все параллельные компараторы с напряжением сравнения бо́льшим, чем уровень входного сигнала остаются в состоянии «0». Шифратор перекодирует полученный двоично кодированный унарный код (Binary Coded Unary, BCU) в код для передачи дальнейшим устройствам.

Типы существующих АЦП

АЦП имеет множество характеристик, которые условно можно разделить на статические:

Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.
На рисунке 2 показан график зависимости разрядности различных типов АЦП от частоты преобразования.

какое значение разрядности имеют типовые реальные ацп

Рисунок 2 – График зависимости разрядности различных типов АЦП от частоты преобразования

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40 MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100 kSPS — 1 MSPS. Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до десятков kSPS. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в измерительных приборах.

Сигма-дельта АЦП

На хабре была статья 2011 года, где упоминались разные типы АЦП, но в данной статье смысл совсем другой.

Структура любого сигма-дельта АЦП содержит сигма-дельта модулятор, который преобразует входной аналоговый сигнал в последовательность нулей и единиц, и цифровой фильтр-дециматор. Эта последовательность нулей и единиц в иностранной литературе называется PDM (pulse density modulation), что принципиально отличает ее от ШИМ (широтно импульсной модуляции).

какое значение разрядности имеют типовые реальные ацп

Рисунок 3 структура сигма-дельта АЦП

Входной сигнал поступает на блок вычитания полученного битового кода, далее на интегратор, компаратор и триггер (элемент задержки по времени), выход триггера — последовательность битового кода PDM. Данная последовательность поступает на усредняющий ФНЧ, дециматор, и на выходе получается оцифрованный сигнал высокой разрядности (разрядность повышается внутри фильтра). Надо заметить, что частота следования нулей и единиц в потоке PDM должна быть существенно выше, чем частота построения выходного кода высокой разрядности. В простейшем случае для получения 8-битного АЦП необходимо повышение частоты PDM в 256 раз. Это неудобно и нерационально.

Поэтому сигма-дельта модуляторы собирают последовательно в количестве 2..3..7 штук, возникает эффект модуляции шума, перенос энергии шума на высокие частоты, и как следствие в рабочей низкочастотной области шумов оказывается меньше. Это позволяет получить «эффективную» разрядность существенно выше, что у PDM первого порядка, как показано на рисунке 4.

какое значение разрядности имеют типовые реальные ацп

Рисунок 4 Формирование спектра шума сигма-дельта модуляторов разного порядка

Таким образом, при повышении частоты дискретизации в 64 раза и использовании сигма-дельта модулятора 4 порядка можно получить разрядность 12 бит вместо 6. При повышении порядка до 7 и той же частоте дискретизации разрядность можно поднять уже до 16. Таким образом, оказывается возможным создавать сигма-дельта АЦП не только до единиц-десятков kSPS, но и существенно больше. Например, если производить цифровую фильтрацию PDM в ПЛИС Xilinx на частоте 400 МГц (что вполне реализуемо с использованием аппаратных умножителей и дифференциальных входов), коэффициенте передискретизации 64 можно получить 16-битный АЦП на частоте 6.250 MSPS. При меньшей разрядности можно увеличить частоту дискретизации. Данный тип АЦП можно использовать для синхронной обработки большого числа АЦП, особенно если всю цифровую обработку всех потоков PDM поместить внутри одной ПЛИС.
Классический рисунок областей применения различных АЦП можно изменить так:

какое значение разрядности имеют типовые реальные ацп

Рисунок 5 Современное состояние различных типов АЦП

Сигма-дельта АЦП могут заменить собой практически все другие типы АЦП кроме наиболее быстродействующих параллельных. И по большинству параметров окажутся лучше старых аналогов других типов.

Источник

Аналого-цифровое преобразование для начинающих

В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

какое значение разрядности имеют типовые реальные ацп«

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

Архитектура АЦП прямого преобразования изображена на рис. 1

какое значение разрядности имеют типовые реальные ацп

Рис. 1. Структурная схема АЦП прямого преобразования

Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

АЦП последовательного приближения реализует алгоритм «взвешивания», восходящий еще к Фибоначчи. В своей книге «Liber Abaci» (1202 г.) Фибоначчи рассмотрел «задачу о выборе наилучшей системы гирь», то есть о нахождении такого ряда весов гирь, который бы требовал для нахождения веса предмета минимального количества взвешиваний на рычажных весах. Решением этой задачи является «двоичный» набор гирь. Подробнее о задаче Фибоначчи можно прочитать, например, здесь: http://www.goldenmuseum.com/2015AMT_rus.html.

Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

какое значение разрядности имеют типовые реальные ацп

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

какое значение разрядности имеют типовые реальные ацп

Рис.3. Структурная схема сигма-дельта АЦП.

Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

какое значение разрядности имеют типовые реальные ацп

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

какое значение разрядности имеют типовые реальные ацп

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Более наглядно работу сигма-дельта АЦП демонстрирует небольшая программа, находящаяся тут: http://designtools.analog.com/dt/sdtutorial/sdtutorial.html.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

какое значение разрядности имеют типовые реальные ацп

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

какое значение разрядности имеют типовые реальные ацп

Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

какое значение разрядности имеют типовые реальные ацп

Рис. 8. Первый патент на АЦП

какое значение разрядности имеют типовые реальные ацп

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

какое значение разрядности имеют типовые реальные ацп

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Источник

Скоростной АЦП с нуля. 16 бит за 10 лет

Чего стоит разработать быстродействующий аналого-цифровой преобразователь, почти не имея опыта? Насколько сильно наше отставание в этой области? Есть ли в этой нише шанс найти коммерческое применение своей продукции и отщипнуть хоть кусочек рынка у гигантов мира сего? Выпуская в свет новый 16-битный 80 МГц АЦП, хотим порассуждать на эти темы и рассказать о самой микросхеме и опыте её создания.

какое значение разрядности имеют типовые реальные ацп

Введение

…2010 год. Тогда многие этим увлекались. Тема быстрых АЦП вдруг стала популярной. Кто-то раньше, кто-то позже, но сразу несколько российских компаний принялись вести разработки в этой области. Не стали исключением и мы. Словно нужно было дождаться, когда рассеется дым горящих вокруг Москвы торфяников, чтобы увидеть, что ниша отечественных скоростных аналого-цифровых преобразователей совершенно пуста. Отставание было гигантским, в несколько поколений. Из «наших» тогда можно было достать только старые добрые микросхемы серии 1108ПВ — 10-14 разрядные АЦП с быстродействием 0,3-1,3 МГц, разработанные еще в советской Риге. Самым «крутым» считался вильнюсский биполярный 1107ПВ3, тоже родом из 80-х, который имел разрядность 6 бит и мог работать со скоростями до 100 МГц. В это же время западные микросхемы на таких скоростях достигали уже 16 бит! А при меньшей разрядности могли работать на нескольких сотнях мегагерц.

Столь привлекательным казалось попытаться наверстать отставание и заполнить этот вакуум отечественного сегмента АЦП. Было очевидно: кто первый создаст что-то более-менее современное, у того будет шанс монополизировать в дальнейшем весь сегмент. Ввязавшись в гонку тогда, мы смутно догадывались, что путь предстоит неблизкий, но никто не предполагал, что первый верстовой столб на нём будет стоять на отметке в 10 лет…

какое значение разрядности имеют типовые реальные ацп
Смог в Зеленограде 2010 г. Фото с сайта Graker.ru

Что за зверь?

Здесь мы на секунду прервёмся, чтобы сказать несколько общих слов об аналого-цифровых преобразователях вообще и о быстродействующих в частности.

Наверное, каждый человек, сам того не подозревая, ежедневно имеет дело с АЦП. Электроника окружает нас повсюду, и, если речь идёт о современном устройстве хоть чуточку сложнее штепсельной вилки, в нём наверняка трудится этот девайс. А уж такая привычная нам техника, как смартфоны, видеокамеры, аудиопроигрыватели, игровые станции, и пр. буквально напичканы ими. Аналого-цифровые преобразователи в их составе выполняют разную работу и имеют присущую этой работе архитектуру: это может быть SAR, Delta-sigma, Pipeline, Folded-interpolated, Flash, Dual-slope и т.д. Такое разнообразие видов обусловлено тем, что не существует оптимальной архитектуры для всех типов приложений. С точки зрения исполнения АЦП могут быть встроены в системы-на-кристалле или реализованы в виде отдельных микросхем.

какое значение разрядности имеют типовые реальные ацп

В системах радиосвязи, радиолокации, телекоммуникации зачастую используются быстродействующие АЦП. Быстродействующими считаются преобразователи с частотой выборки более 10 Мвыб/c. Как правило, они имеют архитектуру Flash, Folded-Interpolated или pipeline, хотя в последнее время стали появляться и быстрые SAR.

У любого АЦП довольно много различных параметров. Для высокоскоростных преобразователей ввиду специфики их применения особенно важны динамические – SFDR, SNR, IMD. Подробнее об этих и других параметрах можно прочитать здесь.

Первые шаги

Вернемся обратно в 2010 год. Какими наивными мы были! Сейчас уже невозможно сдержать улыбку, просматривая отчёты и презентации, что мы делали тогда. Только с аспирантской скамьи, мы строили честолюбивые планы, как через пару-тройку лет сделаем преобразователь, не менее быстрый и не менее точный, чем у них… Ведь опыт разработки быстродействующих АЦП уже был. В нашем портфолио лежал аж 14-битный 100 МГц преобразователь! (Не миландровский.) Правда работал он так:

какое значение разрядности имеют типовые реальные ацп

Вид кристалла и спектр после первой попытки

На выходе этого «преобразователя» вместо синусоиды был изрезанный резкими провалами меандр. Представляете, два года работы – и такое фиаско! SNR 17 дБ вместо расчётных 68. Тем не менее никто не унывал, потому что такие провалы не редки в микроэлектронике. Такова уж специфика, что за каждой схемой, как бы хорошо она не работала на модели, скрывается вопрос — а в «железе» будет работать? Ответить на этот вопрос, и то не наверняка, можно только с опытом.

Итак, мы перевернули страницу и принялись заново разрабатывать 14-разрядный 100 МГц АЦП. Вскоре параллельно с нами начала работать другая, более опытная команда, перешедшая к нам со своими разработками из другой компании. Мы недоумевали тогда, зачем двум командам решать, пусть и разными способами, но одну и ту же задачу? Зачем эта внутренняя конкуренция? Оказывается этим, сами того не подозревая, мы копировали в миниатюре великих мира сего…

А как там у них?

Нам было любопытно, как развивалось направление быстрых АЦП у лидеров сегмента. Для примера мы взяли компанию Analog Devices, которая еще в 2010 году удерживала 48% рынка преобразователей, что больше, чем доля 8 последующих конкурентов вместе взятая. Проанализировав и сопоставив официальные даташиты и научные публикации, мы составили следующий таймлайн:

какое значение разрядности имеют типовые реальные ацп

В таблице приведены примерный год выхода и технология выдающихся для своего времени АЦП, а также подразделение компании, занимавшееся разработкой. (У нас нет инсайда, поэтому эти данные отражают лишь наше виденье.)

Не разбирая всех причин такого успеха компании, отметим лишь две наиболее важные для нас, инженеров. Во-первых, это полувековое эволюционное развитие, позволившее накопить внушительный «коллективный» опыт. Во-вторых, большие финансовые и ресурсные вложения, свидетельствующие о приоритетности этого направления в компании. Над быстродействующими АЦП одновременно работают два подразделения, в Вилмингтоне и Гринсборо (США), причем в разработке каждой микросхемы может быть задействовано до нескольких десятков инженеров. Основной костяк каждой группы — это инженеры, которые много лет занимаются исключительно этой тематикой. Иногда у обеих команд получались близкие по характеристикам преобразователи, хоть и шли они каждый своим путём. Зачастую и в этом случае обе микросхемы выводились на рынок. Супербыстрые преобразователи последнего поколения оказались «неподъёмными» для какого-то одного подразделения, поэтому обе команды вынуждены были объединить усилия.

Долгая дорога в дебрях

Отметка «мы здесь» на таймлайне вверху демонстрирует, что в области быстродействующих АЦП наше отставание от передовых разработок на сегодня составляет около 10 лет. И это после десятилетней работы! Наверняка кому-нибудь понадобилось бы меньше времени, но именно столько мы потратили, чтобы пробраться сквозь дебри разработки и получить результат, за который не стыдно.

В первое время недостаток опыта и схемотехнических навыков приводил к неоптимальным или даже ошибочным решениям. Учесть все нюансы и найти лучшее решение было затруднительно не только ввиду сложности системы, но и потому, что симуляторы того времени просто не позволяли промоделировать весь АЦП целиком.

Очень скоро выяснилось, что при таких скоростях на параметры влияет не только качество схемотехники самой микросхемы, но и того, что её окружает – корпуса и печатной платы. Нужно было учиться разрабатывать платы для таких приложений: ведь сначала не получалось даже повторить демо-плату ADI так, чтобы параметры их же АЦП соответствовали даташиту. Индуктивности использовавшегося корпуса тоже пагубно отражались на характеристиках, поэтому пришлось разработать новый корпус с так называемым «донным» контактом (exposed pad), чтобы увеличить количество выводов «земли».

Качество измерений при производстве – ещё один фактор, ограничивающий достигаемые характеристики. При функциональном контроле используется своя оснастка из печатной платы и контактирующего устройства (коробочка, куда вставляется микросхема и прижимается к плате). Предназначенная для больших промышленных тестеров, эта оснастка громоздкая, а значит привносит дополнительные «паразиты» и губит параметры. К примеру, даже у последнего АЦП мы вынуждены ограничивать скорость и диапазон напряжения питания из-за того, что просто не можем подтвердить в условиях цеха параметры, достигаемые этой же микросхемой, но распаянной на компактной плате. Нечего и говорить о том, что достичь высоких характеристик невозможно без современного измерительного оборудования – в первую очередь дорогих генераторов с низким уровнем шума и джиттера, а также высококачественных полосовых фильтров высокого порядка, чтобы отфильтровывать гармоники этих генераторов.

какое значение разрядности имеют типовые реальные ацп
Таймлайн тестовых образцов в ходе разработки микросхемы

За время, что мы работали над этой микросхемой, было сделано 5 запусков. Будучи fabless компанией, каждый запуск обходился нам «в копеечку», которую, к тому же, приходилось доставать из своего кармана (из кармана компании, а не из брюк инженеров), так как этот проект не связан с ОКР-ами и финансируется из собственных средств. Помимо цены есть ещё один минус для мелких fabless компаний. Ожидание кристаллов после запуска иногда затягивается до полугода, чем напрочь выбивает из рабочего ритма.

В 2014 году мы готовы были выводить имеющуюся разработку в свет, руководствуясь принципом «на безрыбье и рак — рыба». Микросхема была откровенно «сырая», плохо калибровалась, поэтому хорошо, что к этому моменту вторая наша команда АЦП-шников сделала более хорошую микросхему – её и стали производить под именем 5101HB015. Чтобы попробовать превзойти этот АЦП, нам пришлось перейти на новую архитектуру и даже другую фабрику.

И вот, наконец, новая микросхема увидит свет!

Коммерческий рынок. Почему высокоскоростные АЦП?

Прежде, чем говорить о получившейся микросхеме, поделимся своими соображениями относительно её возможных перспектив. Коммерческий рынок быстродействующих АЦП довольно специфичен и на нём, как бы это дерзко не звучало, можно попытаться сыграть.

A. Выход на мировой рынок

Наверняка, многие знают: чтобы сделать коммерчески выгодный продукт в микроэлектронике, необходим крупный рынок сбыта. Это связано с окупаемостью R&D, измерительного оборудования, запуска тестовых кристаллов и т.д. Влияет на цену микросхемы и тот факт, что фабрика даёт скидку на пластины при больших объёмах производства. В суровых реалиях российского приборостроения сложно сделать схему, которая бы обеспечила высокий спрос. Тем более, когда существуют такие гиганты как ST, TI, ADI, ну и китайские аналоги любых микросхем, которые можно купить за «3 копейки».

Один из способов решения проблемы – искать высокомаржинальные направления, которые не требуют серьезных вложений в создание программной инфраструктуры. Скажем, FPGA, процессоры и другие цифровые решения помимо собственно выпуска микросхемы требуют создания среды разработки. На то, чтобы сделать её качественной и удобной для пользователя, может уйти гораздо больше времени и денег, чем на сам чип.

С высокоскоростными преобразователями всё иначе. На рынке существуют 3 основные компании, которые развивают направление высокоскоростных АЦП: TI, ADI и Maxim Integrated (последние две объявили о слиянии). Поэтому данный рынок сильно монополизирован. Цены на преобразователи с частотой дискретизации 80 Мвыб/c находятся в районе 80 долларов, что подразумевает серьезную наценку. На habr есть статья, в которой хорошо освещена проблема монополии в микроэлектронике.

Б. Ограничение поставки в Россию и Китай

С каждым годом вступают все более жесткие ограничения на поставки ЭКБ в Россию и Китай. Высокоскоростные точные преобразователи попадают в категорию ограничений. Даже потребители из европейских стран при заказе таких микросхем должны заполнять документацию, связанную с экспортным контролем продукции двойного назначения. Этот аспект тормозит развитие коммерческих устройств, которые могли бы достичь лучших параметров.

какое значение разрядности имеют типовые реальные ацп

Фото с сайтов Mouser, Arrow
В. Улучшение качества собственных продуктов РЭА
На данный момент у нас разрабатывается система ADAS для помощи водителю. Для обработки данных с радара может использоваться новый АЦП, что позволит существенно поднять точностные параметры системы, а также уменьшить стоимость аппаратуры.

какое значение разрядности имеют типовые реальные ацп

Обобщив все эти пункты, мы решили создать коммерческий вариант микросхемы (называться будет MDRA1A16FI), цена которой будет ниже, чем у зарубежных аналогов. Образцы в металлокерамическом корпусе можем предоставить всем заинтересованным уже сейчас, а в пластиковом корпусе QFN-48 — в начале 2021 года. Кому интересно, здесь можно оставить заявку на получение образцов. Пластиковый корпус существенно меньше металлокерамического – всего 7x7x0.85 мм против 11x11x2 мм, и, следовательно, легче и дешевле.

Что в итоге получилось

какое значение разрядности имеют типовые реальные ацп

Теперь, наконец, о самой микросхеме – что в итоге получилось. Микросхема, получившая название 5101HB045, представляет собой 16-разрядный АЦП с частотой дискретизации 80 Мвыб/c. Её характеристики следующие:

Разрядность, биткакое значение разрядности имеют типовые реальные ацп16
Напряжение питания, Вкакое значение разрядности имеют типовые реальные ацп1.8
Полная шкала, В (п-п)какое значение разрядности имеют типовые реальные ацп2
Частота преобразования, МГцкакое значение разрядности имеют типовые реальные ацп80
Соотношение сигнал/шум, dBFS (при какое значение разрядности имеют типовые реальные ацп=10/75МГц)какое значение разрядности имеют типовые реальные ацп75.0 / 73.1
Динамический диапазон, свободный от гармоник, dBc
(при какое значение разрядности имеют типовые реальные ацп=10/75МГц)
какое значение разрядности имеют типовые реальные ацп94 / 83
Интермодуляционные искажения 3-го порядка, dBc (при какое значение разрядности имеют типовые реальные ацп

какое значение разрядности имеют типовые реальные ацп

Спектр, интегральная и дифференциальная нелинейность

Структурная схема преобразователя:

какое значение разрядности имеют типовые реальные ацп

Микросхема представляет собой одноканальный АЦП конвейерного типа с разрядностью 16 бит. Процесс преобразования происходит в несколько этапов:

какое значение разрядности имеют типовые реальные ацп

Микросхема обладает множеством режимов работы, которые можно конфигурировать с помощью SPI интерфейса. Все подробности – в спеке. Кстати, мы наконец-то сделали спецификацию по западному стандарту (правда англоязычную) – без всяких запутанных «ТУ-шных» таблиц.

Стало лучше?

Во многом, да, если сравнивать с тем же 5101НВ015:

Отладочный комплект и софт

Для того, чтобы попробовать этот АЦП в действии, и при этом не заниматься проектированием печатной платы, мы разработали специальный отладочный комплект. В него входят две платы – аналоговая (собственно АЦП и обвязка) и цифровая (сбор выходных данных). Обе платы соединяются разъемами и питаются от одного стандартного 5 В блока питания.

какое значение разрядности имеют типовые реальные ацп

Используя этот отладочный комплект, можно легко и быстро проверять свои решения при разработке аппаратуры. Достаточно подключить к разъёму входной сигнал, всё остальное сделает комплект. На плате присутствует источник тактового сигнала и даже источник внешнего опорного напряжения, чтобы проверить, как работает система при «опоре» 1,25 В. При желании можно подать свой собственный тактовый сигнал через соответствующий разъем.

Самостоятельно собирать и обрабатывать выходные отсчёты с АЦП тоже не нужно. Мы написали новый софт – быстрый и автономный. Предыдущая версия требовала, к примеру, предустанавливать matlab-библиотеки, что достаточно неудобно. Программа умеет конфигурировать АЦП, снимать и выгружать с него данные, строить спектр и вычислять по нему характеристики. Данное ПО поставляется в составе отладочного комплекта. Так же, его можно скачать здесь. Кому интересны комплекты, вот ссылка.

какое значение разрядности имеют типовые реальные ацп

Скриншоты отладочного ПО

Работа над ошибками

Да, мы сделали большой рывок, но часть характеристик всё еще не дотягивает до параметров импортных микросхем. Сравним основные характеристики существующих 16 разрядных АЦП с частотой дискретизации 80 Мвыб/c.

5101НВ045AD9265ADS5481ADS5562MAX19586AD9266LTC2163
ПроизводительМИЛАНДРADITITIMaximADILinear T. (ADI)
Разрядность, бит16161616161616
Скорость, Мвыб/c80808080808080
Интерливингнетнетнетнетнетнетнет
Входной буфернетнетданетданетнет
Один источник питанияда (1.8В)да (1.8В)нет (5; 3В)да (3.3В)нет (1.8; 3.3В)да (1.8В)да (1.8В)
Дизерингнетдаданетнетнетнет
Делитель тактовой частотыдаданетнетнетданет
Входной размах2 В(п-п)2 В(п-п)3 В(п-п)3.56 В(п-п)2.56 В(п-п)2 В(п-п)2 В(п-п)
SFDR @ 10 MHzтип 94 (>88)тип 88тип 98тип 85 (>75)тип 96тип 94тип 90
SFDR @ 70 MHzтип 83 (>72)(>92)тип 93н/дтип 84 (>80)тип 93тип 89 (>82)
SNR @ 10 MHzтип 75 (>74)тип 80тип 81тип 83.8 (>79)тип 80тип 77.6тип 77.1
SNR @ 70 MHzтип 73.1 (>71)(> 78.7)тип 80.1н/дтип 79.2 (>77.5)тип 76.6тип 76.9 (>75.3)
Потребляемая мощность, Вт0.5630.3082.150.8651.110.1240.188
Совместимость одновременно с 1,8/2,5/3,3 В ПЛИСданетнетнетнетданет

Недостатком нашей микросхемы является деградация линейности и ухудшение шума при работе в т.н. “undersampling” режиме (информацию об этом добавили в предыдущую публикацию), т.е. когда полоса входного сигнала находится во второй и выше зоне Найквиста. Это требуется, например, в приложениях с непосредственной дискретизацией ПЧ. Эта деградация происходит из-за относительно высокого собственного джиттера и нелинейности входного УВХ, которая начинает проявляться примерно с 60 МГц.

какое значение разрядности имеют типовые реальные ацп

Зависимость динамических характеристик от частоты входного сигнала

Если, однако, вы обрабатываете сигналы с частотой до 60-70 МГц, то по динамическим параметрам 5101HB045 смотрится в этой таблице, на наш взгляд, вполне достойно.

Что будет дальше?

Поделимся планами по развитию наших высокоскоростных АЦП. Мы полны решимости сделать еще один цикл (надеемся, он пройдёт быстрее, чем за 10 лет) и «дотянуть» характеристики нашей микросхемы до уровня аналогов. Если конкретно, то:

Вторая наша группа разработчиков приоритетом для себя видит высокую скорость преобразования. В её планах:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *