какое выражение соответствует определению импульса тела

Закон cохранения импульса

какое выражение соответствует определению импульса тела

9 класс, 10 класс, ЕГЭ/ОГЭ

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

→ →
p = mv

p — импульс тела [кг*м/с]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

→ → →
p1 + p2 + … + pn = const

p — импульс тела [кг*м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

p0 — это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

p1 — это импульс мальчика после прыжка,

p2 — это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

какое выражение соответствует определению импульса тела

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид
0 = p1 — p2
p1 = p2

Подставим формулу импульса.
mV1 = MV2

Выразим скорость лодки V2:
V2 = mV1/M

Подставим значения:
V2 = 45*3/270 = 3/6 = ½ = 0,5 м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Решение: Для данной системы выполняется закон сохранения импульса:

какое выражение соответствует определению импульса тела

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы m1 + m2, которое движется с искомой скоростью:

m1v1 — mv2 = (m1 + m2) v

Отсюда находим скорость тела, образовавшегося после удара:

v = (m1v1 — mv2)/(m1 + m2)

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на значение получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится Δv =v —v0 — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор Δv⋅m – это вектор Δp.

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила F2 называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

mг vг = mр vр,
где mг — это масса горючего,

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vр = mг vг / mр
mг — это масса горючего [кг]

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

v р — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Источник

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

какое выражение соответствует определению импульса тела

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

какое выражение соответствует определению импульса тела

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

какое выражение соответствует определению импульса тела

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

какое выражение соответствует определению импульса тела

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

какое выражение соответствует определению импульса тела

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

какое выражение соответствует определению импульса тела

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем: какое выражение соответствует определению импульса тела

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

какое выражение соответствует определению импульса тела

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

какое выражение соответствует определению импульса тела

Подставим это выражение во второй закон Ньютона и получим:

какое выражение соответствует определению импульса тела

какое выражение соответствует определению импульса тела

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

какое выражение соответствует определению импульса тела

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

какое выражение соответствует определению импульса тела

какое выражение соответствует определению импульса тела

Второй закон Ньютона для ракеты:

какое выражение соответствует определению импульса тела

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

какое выражение соответствует определению импульса тела

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет

какое выражение соответствует определению импульса тела

Отсюда ускорение равно:

какое выражение соответствует определению импульса тела

Выразим формулу для скорости и сделаем вычисления:

какое выражение соответствует определению импульса тела

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

какое выражение соответствует определению импульса телакакое выражение соответствует определению импульса тела

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

какое выражение соответствует определению импульса тела

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным теломm1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью(m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

какое выражение соответствует определению импульса тела

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

какое выражение соответствует определению импульса тела

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

какое выражение соответствует определению импульса телаНа рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Источник

Физика. 10 класс

Импульс тела и импульс силы

Импульс. Закон сохранения импульса

Необходимо запомнить

Импульс тела равен сумме импульсов отдельных элементов.

Импульс системы тел равен векторной сумме импульсов каждого из тел системы:

Силы, с которыми взаимодействуют между собой тела системы, называют внутренними, а силы, создаваемые телами, не принадлежащими к данной системе, – внешними.

Систему, на которую не действуют внешние силы, или векторная сумма внешних сил равна нулю, называют замкнутой.

Абсолютно неупругий удар – столкновение тел, в результате которого они соединяются вместе и движутся дальше как одно целое.

Абсолютно упругий удар – столкновение тел, в результате которого не происходит соединения тел в одно целое и их внутренние энергии остаются неизменными.

Закон сохранения импульса:

Решение задачи на применение закона сохранения импульса

Количество движения

Французский учёный Рене Декарт попытался импульс использовать как величину, заменяющую силу. Потому что силу измерять достаточно сложно, а измерить массу и скорость несложно. Поэтому часто говорят, что импульс – это количество движения (именно Ньютон впервые назвал количеством движения произведение массы тела на скорость).

Декарт, судя по его высказываниям, понимал фундаментальное значение введенного им в XVII веке понятия количества движения – или импульса тела – как произведения массы тела на величину его скорости. И хотя он совершил ошибку, не рассматривая количество движения как векторную величину, сформулированный им закон сохранения количества движения выдержал с честью проверку временем. Ошибка была исправлена в начале XVIII века, и триумфальное шествие этого закона в науке и технике продолжается по сию пору.

. Декарт обосновывал принцип сохранения количества движения совершенством бога, «действующего с величайшим постоянством и неизменностью».

. закон сохранения импульса позволяет «разыскать» и невидимые объекты, например, электромагнитные волны, излучаемые открытым колебательным контуром, или антинейтрино – субатомные частицы, не оставляющие следов в детекторах.

Источник

Импульс тела. Импульс силы. Закон сохранения импульса

Все верно. Но оказывается, что с помощью импульса тела иногда удобнее описывать движение тела. Сейчас мы рассмотрим пример, из которого вам станет ясно, что такое импульс тела и чем он хорош.

какое выражение соответствует определению импульса телаОтличаются ли друг от друга два этих случая: движение велосипедиста и движение грузовика? Ведь они едут с одинаковой скоростью. Будут ли отличаться последствия, если велосипедист врежется в забор или грузовик врежется в забор? Да, конечно. В случае грузовика последствия будут более разрушительными для забора.

Что это значит? Что только скоростью характеризовать движение тела не очень удобно. Очень логично в свете приведенного примера с грузовиком и велосипедистом выглядит величина импульс тела :

Импульс тела — это векторная величина, равная произведению массы тела на скорость тела.

Ну ооочень логичное определение. Чем больше скорость и чем больше масса тела, тем более «разрушительные» последствия могут быть от действий этого тела. Это объяснение «на пальцах».

какое выражение соответствует определению импульса телаХочется отметить, что импульс тела — это векторная величина. И импульс тела p ⃗ \vec

p ⃗ ​ сонаправлен со скоростью тела V ⃗ \vec V ⃗ :

Для импульса нет специальной единицы измерения (вакантное место — можете предложить свою фамилию в качестве кандидата на роль единицы измерения импульса). Импульс по-простому измеряется в к г ⋅ м с кг\cdot\frac<м> <с>к г ⋅ с м ​ :

Источник

Импульс тела

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила какое выражение соответствует определению импульса телаПод действием этой силы скорость тела изменилась на какое выражение соответствует определению импульса телаСледовательно, в течение времени Δt тело двигалось с ускорением

какое выражение соответствует определению импульса тела

Из основного закона динамики (второго закона Ньютона) следует:

какое выражение соответствует определению импульса тела

какое выражение соответствует определению импульса тела

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы. Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

Изменение импульса тела (количества движения) равно импульсу силы.

Обозначив импульс тела буквой какое выражение соответствует определению импульса телавторой закон Ньютона можно записать в виде

какое выражение соответствует определению импульса тела

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила какое выражение соответствует определению импульса телав этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

какое выражение соответствует определению импульса тела

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY). Пусть тело свободно падает с начальной скоростью υ0 под действием силы тяжести; время падения равно t. Направим ось OY вертикально вниз. Импульс силы тяжести Fт = mg за время t равен mgt. Этот импульс равен изменению импульса тела

какое выражение соответствует определению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения. В этом примере сила оставалась неизменной по модулю на всем интервале времени t. Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы Fср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

какое выражение соответствует определению импульса тела

Вычисление импульса силы по графику зависимости F(t)

Выберем на оси времени малый интервал Δt, в течение которого сила F (t) остается практически неизменной. Импульс силы F (t) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δti, а затем просуммировать импульсы силы на всех интервалах Δti, то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δti → 0) эта площадь равна площади, ограниченной графиком F (t) и осью t. Этот метод определения импульса силы по графику F (t) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t) на интервале [0; t].

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t1 = 0 с до t2 = 10 с равен:

какое выражение соответствует определению импульса тела

В этом простом примере

какое выражение соответствует определению импульса тела

Импульс p, приобретенный мячом в результате удара есть:

какое выражение соответствует определению импульса тела

Следовательно, средняя сила Fср, с которой нога футболиста действовала на мяч во время удара, есть:

какое выражение соответствует определению импульса тела

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный какое выражение соответствует определению импульса телаи конечный какое выражение соответствует определению импульса телаимпульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса какое выражение соответствует определению импульса телаудобно использовать диаграмму импульсов, на которой изображаются вектора какое выражение соответствует определению импульса телаи какое выражение соответствует определению импульса тела, а также вектор какое выражение соответствует определению импульса телапостроенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью какое выражение соответствует определению импульса телапод углом α к нормали (ось OX) и отскочил от нее со скоростью какое выражение соответствует определению импульса телапод углом β. Во время контакта со стеной на мяч действовала некоторая сила какое выражение соответствует определению импульса теланаправление которой совпадает с направлением вектора какое выражение соответствует определению импульса тела

какое выражение соответствует определению импульса тела

Отскок мяча от шероховатой стенки и диаграмма импульсов

При нормальном падении мяча массой m на упругую стенку со скоростью какое выражение соответствует определению импульса тела,после отскока мяч будет иметь скорость какое выражение соответствует определению импульса тела. Следовательно, изменение импульса мяча за время отскока равно какое выражение соответствует определению импульса тела

В проекциях на ось OX этот результат можно записать в скалярной форме Δpx = –2mυx. Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2mυ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

какое выражение соответствует определению импульса тела