какое свойство сходящихся последовательностей неверное
Свойства сходящихся последовательностей
Определение.
Последовательностью называется множество чисел, перенумерованных с помощью натуральных чисел и расставленных в порядке возрастания их номеров x1,x2. xn
Числа x1,x2. xn — называются элементами последовательности, символ xn — общим элементом, а число n — его номером. Сокращенно последовательность обозначается символом
Свойства ограниченных последовательностей
Определение. Арифметические действия.
Указанные действия над последовательностями символически записываются так:
Т. Лемма
Если и , то .
Определение.
Последовательность, имеющая предел, называется сходящейся. Если последовательность <xn> сходится и имеет своим пределом число a, то символически это записывается так:
или xn→ a при n → ∞
Последовательность, не являющаяся сходящейся, называется расходящейся.
Сходящаяся последовательность — это последовательность элементов множества X, имеющая предел в этом множестве.
Последовательностью имеющий конечный пределназывают сходящимися. В противном случае последовательность называют расходящимися. Среди них есть последовательности, которые расходятся в бесконечность. О них мы говорим, что они имеют бесконечный предел.
Свойства сходящихся последовательностей
Определение.
Наименьшее среди всех чисел, ограничивающих сверху числовое множество Е R, называется его верхней гранью и обозначается β = sup E, то есть
Наибольшее среди всех чисел, ограничивающих числовое множество Е R, называется его нижней гранью и обозначается α = inf E, то есть
02.1.2. Основные свойства сходящихся последовательностей
Приведем основные свойства сходящихся последовательностей, которые в курсе высшей математики сформулированы в виде теорем.
1. Если все элементы бесконечно малой последовательности <Хп> равны одному и тому же числу с, то с = 0.
2. Сходящаяся последовательность имеет только один предел.
3. Сходящаяся последовательность ограничена.
4. Сумма (разность) сходящихся последовательностей <Хп> и <Уп> есть сходящаяся последовательность, предел которой равен сумме (разности) пределов последовательностей <Xп> и <YП>.
5. Произведение сходящихся последовательностей <Хп> и <Уп> есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей <Хп> и <Уп>.
6. Частное двух сходящихся последовательностей <Хп> и <Уп> при условии, что предел последовательности <Уп> отличен от нуля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей <Хп> и <YП>.
7. Если элементы сходящейся последовательности <Хn> удовлетворяют неравенству xп ≥ b (хп ≤ b) начиная с некоторого номера, то и предел а этой последовательности удовлетворяет неравенству а ≥ B (а ≤ b).
8. Произведение бесконечно малой последовательности на ограниченную последовательность или на число есть бесконечно малая последовательность.
9. Произведение конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.
Рассмотрим применение этих свойств на примерах.
Пример 3. Найти предел .
Решение. При N числитель и знаменатель дроби стремятся к бесконечности, т. е. применить сразу теорему о пределе частного нельзя, так как она предполагает существование конечных пределов последовательностей. Преобразуем данную последовательность, разделив числитель и знаменатель на N2. Применяя затем теоремы о пределе частного, пределе суммы и снова пределе частного, последовательно находим
Пример 4. Найти предел последовательности <Xп> = при П .
Решение. Здесь, как и в предыдущем примере, числитель и знаменатель не имеют конечных пределов, и потому сначала необходимо выполнить соответствующие преобразования. Поделив числитель и знаменатель на N, получаем
Поскольку в числителе стоит произведение бесконечно малой последовательности на ограниченную последовательность, то в силу свойства 8 окончательно получаем
Пример 5. Найти предел последовательности <Хп> = при П .
Решение. Здесь применить непосредственно теорему о пределе суммы (разности) последовательностей нельзя, так как не существует конечных пределов слагаемых в формуле для <Хп>. Умножим и разделим формулу для <ХN> на сопряженное выражение :
Рассмотрим последовательность <Хп>, общий член которой выражается формулой
В курсе математического анализа доказывается, что эта последовательность Монотонно возрастает и имеет предел. Этот предел называют числом Е. Следовательно, по определению
Определение предела последовательности. Свойства сходящихся последовательностей.
Числовые последовательности.
Если каждому натуральному числу n сопоставлено в соответствие некое число xn, то говорят, что задана числовая последовательность
Как мы видим, xn — это функция, множеством определения которой является множество N всех натуральных чисел, а множество значенией этой функции, то есть значение всех xn, n∈N, называют множеством значений последовательности.
Множество значений последовательности может быть как конечным, так и бесконечным, но множество ее элементов всегда бесконечно, так как любые два разных элемента последовательности отличаются своими номерами.
Последовательность может быть задана формулой, которая позволяет вычислить каждый член последовательности по ее номеру. Например, если \(x_n=\frac<\left(-1\right)^n+1>2\), то каждый нечетный член последовательности будет равен 0, а каждый четный член равен 1.
Зачастую используют реккурентный способ записи формулы последовательности, когда каждый следующий член последовательности можно найти по известным предыдущим.
Определение предела последовательности.
Записать с помощью логических символов отрицания следующих утверждений:
Пользуясь определением: найти предел последовательности \(\
Пусть \(\displaystyle \lim_
$$
x_<1>,\ y_<1>,\ x_<2>,\ y_<2>\ldots,\ x_
$$
сходится и ее предел также равен a.
\(\triangle\) По определению предела для любого \(\varepsilon > 0\) существуют \(N_1=N_1(\varepsilon)\) и \(N_<2>=N_<2>(\varepsilon)\) такие, что для всех \(n\geq N_<1>\) выполняется неравенство \(|x_
Таким образом, а—предел последовательности \(\left\
С помощью логических символов данное определение можно записать следующим образом
Доказать, что последовательность \(\left\
Единственность предела последовательности.
Числовая последовательность может иметь только один предел.
Предположим, что \(\left\
Выберем ε > 0 таким, чтобы ε—окрестности точек a и b не пересекались, то есть не имели общих точек. Возьмем, например, ε = (b − a)/3. Так как число a—предел последовательности <xn>, то по заданному ε > 0 можно найти номер N такой, что \(x_n\in U_\varepsilon(a)\) для всех n > N. поэтому вне интервала \(U_\varepsilon(a)\) может оказаться лишь конечное число членов последовательности. В частности, интервал \(U_\varepsilon(b)\) может содержать лишь конечное число членов последовательности. Но это противоречит тому, что b—предел последовательности, так как согласно определению предела, любая окрестность точки b должна содержать бесконечное число членов последовательности. Данное противоречие показывает, что последовательность не может иметь два различных предела. Итак, сходящаяся последовательность имеет только один предел.
Ограниченность сходящейся последовательности.
Последовательность \(\left\
Последовательность \(\left\
Последовательность, ограниченная как сверху, так и снизу, называется ограниченной, то есть последовательность \(\left\
$$ \exists \ C_1 \ \exists \ C_2: \ \forall n \ \in\mathbb
Заметим, что условие \eqref
$$ \exists \ C > 0: \ \forall n\in\mathbb
Геометрически ограниченность последовательности означает, что все члены последовательности содержатся в С-окрестности точки нуль.
Если последовательность имеет предел, то она ограничена.
В силу теоремы 2 всякая сходящаяся последовательность является ограниченной. Обратное неверно: не всякая ограниченная последовательность является сходящейся. Например, последовательность \(\left\<\left(-1\right)^n\right\>\) ограничена, но не является сходящейся.
Доказать, что последовательность \(\left\<<\textstyle\frac1
Теорема о трех последовательностях или теорема о пределе «зажатой» последовательности.
Если последовательности \(\
$$x_n\leq y_n\leq z_n \ для \ всех \ n\geq N_0,\label
то последовательность \(\
По определению предела для любого \(\varepsilon > 0\) найдутся номера \(N_1=N_1(\varepsilon) \ и \ N_2=N_2(\varepsilon)\) такие, что \(x_n\in U_\varepsilon(a)\) при всех \(n\geq N_1\) и \(z_n\in U_\varepsilon(a)\) при всех \(n\geq N_2\).
Рис. 4.3
Отсюда и из условия \eqref
\(\triangle\,\)Заметим, что \(\sqrt[n]n-1=\alpha_n > 0\), при \(n > 1\), откуда \(n=(1+\alpha_n)^n > C_n^2\alpha_n^2,\) где\(\displaystyle C_n^2=\frac
Если \(a > 1\), то \(a=1+\alpha\), где \(\alpha > 0\), откуда \(a^n=\displaystyle \left(1+\alpha\right)^n > C_n^
\alpha^
\), при \(n > p\).
Пусть \(n > 2p\), тогда \(\displaystyle C_n^
=\frac
Если \(\displaystyle \lim_
\(\circ\) Предположим, что неравенство \eqref
В частности, если для сходящейся последовательности \(\
В следствии 2 утверждается, что если соответствующие члены двух сходящихся последовательностей связаны знаком нестрогого неравенства, то такое же неравенство справедливо и для пределов этих последовательностей. Короче: предельный переход сохраняет знак нестрогого неравенства. Однако знак строгого неравенства, вообще говоря, не сохраняется, то есть если \(x_n > у_n\) при \(n\geq N_0\) и последовательности \(\
Сходящиеся последовательности
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность
Некоторые свойства сходящихся последовательностей:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть
ТЕОРЕМА: Сумма сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Разность сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Произведение сходящихся последовательностей <х n >и
ЛЕММА: Если последовательность
ТЕОРЕМА: Частное двух сходящихся последовательностей
.
Так как последовательность ограничена, а последовательность бесконечно мала, то последовательность бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА: Если элементы сходящейся последовательности
Элементы сходящейся последовательности
.
.
Следствие 2: Если все элементы сходящейся последовательности
Это выполняется, так как а£ x n£ b, то a£ c£ b.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.
, и того, что .
(m, n = 1, 2, 3, … ),
,…
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
,
тогда существует конечный предел
,
(n = 1, 2, 3, … ).
(*)
сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом:
запишем целое число n по двоичной системе:
.
Применяя теорему (1) для данных:
s 0 =0, s 1 =, s m-1 =, s m =, …, p n0 =0, p n1 =, …, p n, m-1 =,
, p n, m+1 =0, …,
заключаем, что . Наконец, в силу (*) имеем:
.
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
Разобьем числовую прямую на l интервалов точками
.
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
, …
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
Числовая последовательность, стремящаяся к , имеет наименьший член.
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
Пусть числовые последовательности
обладают тем свойством, что
, .
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
l n s n >l n-1 s n-1, l n s n >l n-2 s n-2, … l n s n >l 1 s 1,
Будем называть l m “выступающим” членом последовательности, если l m больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут:
,…
,
(*)
отсюда заключаем, что
Если числовая последовательность ,… стремится к и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n³ 1, что n отношений
все не больше А, а бесконечное множество отношений
,…
Имеем . Пусть минимум последовательности
u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А.
.
.
,
Пусть, далее, l 1 >A>0. Тогда существует такой номер n, n ³ 1, что одновременно выполняются все неравенства
.
Если А® 0, то также n® 0.
Тогда . Последовательность
все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, L n ) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.