какое равновесие называют неустойчивым
Равновесие
Понятие равновесия — одно из самых универсальных в естественных науках. Оно применимо к любой системе, будь то система планет, движущихся по стационарным орбитам вокруг звезды, или популяция тропических рыбок в лагуне атолла. Но проще всего понять концепцию равновесного состояния системы на примере механических систем. В механике считается, что система находится в равновесии, если все действующие на нее силы полностью уравновешены между собой, то есть гасят друг друга. Если вы читаете эту книгу, например, сидя в кресле, то вы как раз и находитесь в состоянии равновесия, поскольку сила земного притяжения, тянущая вас вниз, полностью компенсирована силой давления кресла на ваше тело, действующей снизу вверх. Вы не проваливаетесь и не взлетаете именно потому, что пребываете в состоянии равновесия.
Различают три типа равновесия, соответствующие трем физическим ситуациям.
Устойчивое равновесие
Именно его большинство людей обычно и понимают под «равновесием». Представьте себе шар на дне сферической чаши. В состоянии покоя он находится строго в центре чаши, где действие силы гравитационного притяжения Земли уравновешено силой реакции опоры, направленной строго вверх, и шар покоится там подобно тому, как вы покоитесь в своем кресле. Если сместить шар в сторону от центра, откатив его вбок и вверх в направлении края чаши, то, стоит его отпустить, как он тут же устремится обратно к самой глубокой точке в центре чаши — в направлении положения устойчивого равновесия.
Вы, сидя в кресле, находитесь в состоянии покоя благодаря тому, что система, состоящая из вашего тела и кресла, находится в состоянии устойчивого равновесия. Поэтому при изменении каких-то параметров этой системы — например, при увеличении вашего веса, если, предположим, вам на колени сел ребенок, — кресло, будучи материальным объектом, изменит свою конфигурацию таким образом, что сила реакции опоры возрастет, — и вы останетесь в положении устойчивого равновесия (самое большее, что может произойти, — подушка под вами промнется чуть глубже).
В природе имеется множество примеров устойчивого равновесия в различных системах (и не только механических). Рассмотрим, например, отношения хищник—жертва в экосистеме. Соотношение численностей замкнутых популяций хищников и их жертв достаточно быстро приходит в равновесное состояние — столько-то зайцев в лесу из года в год стабильно приходится на столько-то лис, условно говоря. Если по каким-либо причинам численность популяции жертв резко изменяется (из-за всплеска рождаемости зайцев, например), экологическое равновесие будет очень скоро восстановлено за счет быстрого прироста поголовья хищников, которые начнут истреблять зайцев ускоренными темпами, пока не приведут поголовье зайцев в норму и не начнут сами вымирать от голода, приводя в норму и собственное поголовье, в результате чего численности популяций и зайцев, и лис придут к норме, которая наблюдалась до всплеска рождаемости у зайцев. То есть в устойчивой экосистеме также действуют внутренние силы (хотя и не в физическом понимании этого слова), стремящиеся вернуть систему в состояние устойчивого равновесия в случае отклонения системы от него.
Аналогичные эффекты можно наблюдать и в экономических системах. Резкое падение цены товара приводит к всплеску спроса со стороны охотников за дешевизной, последующему сокращению товарных запасов и, как следствие, росту цены и падению спроса на товар — и так до тех пор, пока система не вернется в состояние устойчивого ценового равновесия спроса и предложения. (Естественно, в реальных системах, и в экологических, и в экономических, могут действовать внешние факторы, отклоняющие систему от равновесного состояния — например, сезонный отстрел лис и/или зайцев или государственное ценовое регулирование и/или квотирование потребления. Такое вмешательство приводит к смещению равновесия, аналогом которого в механике будет, например, деформация или наклон чаши.)
Неустойчивое равновесие
Не всякое равновесие, однако, является устойчивым. Представьте себе шар, балансирующий на лезвии ножа. Направленная строго вниз сила земного притяжения в этом случае, очевидно, также полностью уравновешена направленной вверх силой реакции опоры. Но стоит отклонить центр шара в сторону от точки покоя, приходящейся на линию лезвия хоть на долю миллиметра (а для этого достаточно мизерного силового воздействия), как равновесие будет мгновенно нарушено и сила земного притяжения начнет увлекать шар всё дальше от него.
Примером неустойчивого природного равновесия служит тепловой баланс Земли при смене периодов глобального потепления новыми ледниковыми периодами и наоборот (см. Циклы Миланковича). Среднегодовая температура поверхности нашей планеты определяется энергетическим балансом между суммарным солнечным излучением, достигающим поверхности, и суммарным тепловым излучением Земли в космическое пространство. Неустойчивым этот тепловой баланс становится следующим образом. В какую-то зиму выпадает больше снега, чем обычно. На следующее лето тепла не хватает, чтобы растопить излишки снега, и лето оказывается также холоднее обычного вследствие того, что из-за переизбытка снега поверхность Земли отражает обратно в космос большую долю солнечных лучей, чем прежде. Из-за этого следующая зима оказывается еще более снежной и холодной, чем предыдущая, а следующим за ней летом на поверхности остается еще больше снега и льда, отражающего солнечную энергию в космос. Нетрудно увидеть, что чем больше такая глобальная климатическая система отклоняется от исходной точки теплового равновесия, тем быстрее нарастают процессы, уводящие климат еще дальше от нее. В конечном итоге, на поверхности Земли в приполярных областях за долгие годы глобального похолодания образуются многокилометровые напластования ледников, которые неумолимо продвигаются в направлении всё более низких широт, принося с собой на планету очередной ледниковый период. Так что трудно себе представить более шаткое равновесие, чем глобально-климатическое.
Особого упоминания заслуживает разновидность неустойчивого равновесия, называющаяся метастабильным, или квазиустойчивым равновесием. Представьте себе шар в узкой и неглубокой канавке — например, на повернутом острием вверх лезвии фигурного конька. Незначительное — на миллиметр-другой — отклонение от точки равновесия приведет к возникновению сил, которые вернут шар в равновесное состояние в центре канавки. Однако уже чуть большей силы хватит для того, чтобы вывести шар за пределы зоны метастабильного равновесия, и он свалится с лезвия конька. Метастабильные системы, как правило, обладают свойством пребывать какое-то время в состоянии равновесия, после чего «срываются» из него в результате какой-либо флуктуации внешних воздействий и «сваливаются» в необратимый процесс, характерный для нестабильных систем.
Типичный пример квазиустойчивого равновесия наблюдается в атомах рабочего вещества некоторых типов лазерных установок. Электроны в атомах рабочего тела лазера занимают метастабильные атомные орбиты и остаются на них до пролета первого же светового кванта, который «сбивает» их с метастабильной орбиты на более низкую стабильную, испуская при этом новый квант света, когерентный пролетающему, который, в свою очередь, сбивает с метастабильной орбиты электрон следующего атома и т. д. В результате запускается лавинообразная реакция излучения когерентных фотонов, образующих лазерный луч, которая, собственно, и лежит в основе действия любого лазера.
Безразличное равновесие
Промежуточный случай между устойчивым и неустойчивым равновесием — так называемое безразличное равновесие, при котором любая точка системы является точкой равновесия, и отклонение системы от исходной точки покоя ничего не изменяет в раскладе сил внутри нее. Представьте себе шар на абсолютно гладком горизонтальном столе — куда бы вы его ни сместили, он останется в состоянии равновесия.
Физика. 10 класс
Конспект урока
Урок 14. Статика. Равновесие абсолютно твёрдых тел
Перечень вопросов, рассматриваемых на уроке:
1.Условия равновесия тела
Статика – раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой
Абсолютно твердое тело – модельное понятие классической механики, обозначающее совокупность точек, расстояния между текущими положениями которых не изменяются.
Центр тяжести – центром тяжести тела называют точку, через которую при любом положении тела в пространстве проходит равнодействующая сил тяжести, действующих на все частицы тела.
Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.
Безразличное равновесие системы — равновесие, при котором после устранения причин, вызвавших малые отклонения, система остается в покое в этом отклоненном состоянии
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017.– С. 165 – 169.
Теоретический материал для самостоятельного изучения
Равновесие – это состояние покоя, т.е. если тело покоится относительно инерциальной системы отсчета, то говорят, что оно находится в равновесии. Вопросы равновесия интересуют строителей, альпинистов, артистов цирка и многих-многих других людей. Любому человеку приходилось сталкиваться с проблемой сохранения равновесия. Почему одни тела, выведенные из состояния равновесия, падают, а другие – нет? Выясним, при каком условии тело будет находиться в состоянии равновесия.
Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Статика является частным случаем динамики. В статике твердое тело рассматривается как абсолютно твердое, т.е. недеформируемое тело. Это означает, что деформация так мала, что её можно не учитывать.
Центр тяжести существует у любого тела. Эта точка может находиться и вне тела. Как же подвесить или подпереть тело, чтобы оно находилось в равновесии.
Подобную задачу в свое время решил Архимед. Им же были введены понятие плеча силы и момента силы.
Плечо силы — это длина перпендикуляра, опущенного от оси вращения на линию действия силы.
Момент силы — это физическая величина, равная произведению модуля силы на ее плечо.
После своих исследований Архимед сформулировал условие равновесия рычага и вывел формулу:
Это правило является следствием 2-го закона Ньютона.
Первое условие равновесия
Для равновесия тела необходимо, чтобы сумма всех сил, приложенных к телу была равна нулю.
формула должна быть в векторном виде и стоять знак суммы
Второе условие равновесия
При равновесии твердого тела сумма моментов вcех внешних сил, действующих на него относительно любой оси, равна нулю.
Не менее важен случай, когда тело имеет площадь опоры. Тело, имеющее площадь опоры, находится в равновесии, когда вертикальная прямая, проходящая через центр тяжести тела, не выходит за пределы площади опоры этого тела. Известно, что в городе Пизе в Италии существует наклонная башня. Несмотря на то, что башня наклонена, она не опрокидывается, хотя ее часто называют падающей. Очевидно, что при том наклоне, которого башня достигла к настоящему времени, вертикаль, проведенная из центра тяжести башни, все еще проходит внутри ее площади опоры.
В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью.
Различают 3 вида равновесия: устойчивое, неустойчивое, безразличное.
Если при отклонении тела от положения равновесия, возникают силы или моменты сил, стремящиеся вернуть тело в положение равновесия, то такое равновесие называется устойчивым.
Неустойчивое равновесие — это противоположный случай. При отклонении тела от положения равновесия, возникают силы или моменты сил, которые стремятся увеличить это отклонение.
Наконец, если при малом отклонении от положения равновесия тело все равно остается в равновесии, то такое равновесие называется безразличным.
Чаще всего необходимо, чтобы равновесие было устойчивым. Когда равновесие нарушается, то сооружение становится опасным, если его размеры велики.
Примеры и разбор решения заданий
1. Чему равен момент силы тяжести груза массой 40 кг, подвешенного на кронштейне АВС, относительно оси, проходящей через точку В, если АВ=0,5 м и угол α=45 0
Момент силы – это величина равная произведению модуля силы на её плечо.
Сначала найдём плечо силы, для этого нам надо опустить перпендикуляр из точки опоры на линию действия силы. Плечо силы тяжести равно расстоянию АС. Так как угол равен 45°, то мы видим, что АС=АВ
Модуль силы тяжести находим по формуле:
После подстановки числовых значений величин мы получим:
F=40×9,8 =400 Н, М= 400 ×0,5=200 Н м.
2. Приложив вертикальную силу F, груз массой М — 100 кг удерживают на месте с помощью рычага (см. рис.). Рычаг состоит из шарнира без трения и однородного массивного стержня длиной L=8 м. Расстояние от оси шарнира до точки подвеса груза равно b=2 м. Чему равен модуль силы F, если масса рычага равна 40 кг.
По условию задачи рычаг находится в равновесии. Напишем второе условие равновесия для рычага:
.
После подстановки числовых значений величин получим
Физика. 10 класс
Конспект урока
Урок 14. Статика. Равновесие абсолютно твёрдых тел
Перечень вопросов, рассматриваемых на уроке:
1.Условия равновесия тела
Статика – раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой
Абсолютно твердое тело – модельное понятие классической механики, обозначающее совокупность точек, расстояния между текущими положениями которых не изменяются.
Центр тяжести – центром тяжести тела называют точку, через которую при любом положении тела в пространстве проходит равнодействующая сил тяжести, действующих на все частицы тела.
Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.
Безразличное равновесие системы — равновесие, при котором после устранения причин, вызвавших малые отклонения, система остается в покое в этом отклоненном состоянии
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017.– С. 165 – 169.
Теоретический материал для самостоятельного изучения
Равновесие – это состояние покоя, т.е. если тело покоится относительно инерциальной системы отсчета, то говорят, что оно находится в равновесии. Вопросы равновесия интересуют строителей, альпинистов, артистов цирка и многих-многих других людей. Любому человеку приходилось сталкиваться с проблемой сохранения равновесия. Почему одни тела, выведенные из состояния равновесия, падают, а другие – нет? Выясним, при каком условии тело будет находиться в состоянии равновесия.
Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Статика является частным случаем динамики. В статике твердое тело рассматривается как абсолютно твердое, т.е. недеформируемое тело. Это означает, что деформация так мала, что её можно не учитывать.
Центр тяжести существует у любого тела. Эта точка может находиться и вне тела. Как же подвесить или подпереть тело, чтобы оно находилось в равновесии.
Подобную задачу в свое время решил Архимед. Им же были введены понятие плеча силы и момента силы.
Плечо силы — это длина перпендикуляра, опущенного от оси вращения на линию действия силы.
Момент силы — это физическая величина, равная произведению модуля силы на ее плечо.
После своих исследований Архимед сформулировал условие равновесия рычага и вывел формулу:
Это правило является следствием 2-го закона Ньютона.
Первое условие равновесия
Для равновесия тела необходимо, чтобы сумма всех сил, приложенных к телу была равна нулю.
формула должна быть в векторном виде и стоять знак суммы
Второе условие равновесия
При равновесии твердого тела сумма моментов вcех внешних сил, действующих на него относительно любой оси, равна нулю.
Не менее важен случай, когда тело имеет площадь опоры. Тело, имеющее площадь опоры, находится в равновесии, когда вертикальная прямая, проходящая через центр тяжести тела, не выходит за пределы площади опоры этого тела. Известно, что в городе Пизе в Италии существует наклонная башня. Несмотря на то, что башня наклонена, она не опрокидывается, хотя ее часто называют падающей. Очевидно, что при том наклоне, которого башня достигла к настоящему времени, вертикаль, проведенная из центра тяжести башни, все еще проходит внутри ее площади опоры.
В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью.
Различают 3 вида равновесия: устойчивое, неустойчивое, безразличное.
Если при отклонении тела от положения равновесия, возникают силы или моменты сил, стремящиеся вернуть тело в положение равновесия, то такое равновесие называется устойчивым.
Неустойчивое равновесие — это противоположный случай. При отклонении тела от положения равновесия, возникают силы или моменты сил, которые стремятся увеличить это отклонение.
Наконец, если при малом отклонении от положения равновесия тело все равно остается в равновесии, то такое равновесие называется безразличным.
Чаще всего необходимо, чтобы равновесие было устойчивым. Когда равновесие нарушается, то сооружение становится опасным, если его размеры велики.
Примеры и разбор решения заданий
1. Чему равен момент силы тяжести груза массой 40 кг, подвешенного на кронштейне АВС, относительно оси, проходящей через точку В, если АВ=0,5 м и угол α=45 0
Момент силы – это величина равная произведению модуля силы на её плечо.
Сначала найдём плечо силы, для этого нам надо опустить перпендикуляр из точки опоры на линию действия силы. Плечо силы тяжести равно расстоянию АС. Так как угол равен 45°, то мы видим, что АС=АВ
Модуль силы тяжести находим по формуле:
После подстановки числовых значений величин мы получим:
F=40×9,8 =400 Н, М= 400 ×0,5=200 Н м.
2. Приложив вертикальную силу F, груз массой М — 100 кг удерживают на месте с помощью рычага (см. рис.). Рычаг состоит из шарнира без трения и однородного массивного стержня длиной L=8 м. Расстояние от оси шарнира до точки подвеса груза равно b=2 м. Чему равен модуль силы F, если масса рычага равна 40 кг.
По условию задачи рычаг находится в равновесии. Напишем второе условие равновесия для рычага:
.
После подстановки числовых значений величин получим
Равновесие тел. Виды равновесия тел
Виды равновесия тел
Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. Например, шарик, лежащий на дне сферического углубления (рис.1 а).
В данном случае при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия. Примером может служить шарик, находящийся в верхней точке выпуклой сферической поверхности (ри.1 б).
В этом случае при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю. Например, шарик, лежащий на плоской поверхности (рис.1,в).
Рис.1. Различные типы равновесия тела на опоре: а) устойчивое равновесие; б) неустойчивое равновесие; в) безразличное равновесие.
Статическое и динамическое равновесие тел
Если в результате действия сил тело не получает ускорения, оно может находиться в состоянии покоя или двигаться равномерно прямолинейно. Поэтому можно говорить о статическом и динамическом равновесии.
Динамическое равновесие — это такое равновесие, когда по действием сил тело не изменяет своего движения.
В состоянии статического равновесия находится подвешенный на тросах фонарь, любое строительное сооружение. В качестве примера динамического равновесия можно рассматривать колесо, которое катится по плоской поверхности при отсутствии сил трения.
Условия равновесия в механике
Равновесие в статике – это отсутствие движения. Чтобы объект находился в равновесии, нужно, чтобы выполнялись некоторые условия, рассмотрим их.
Условие равновесия материальной точки
Чтобы материальная точка находилась в равновесии, нужно, чтобы она не двигалась поступательно.
Примечания:
Материальная точка будет находиться в равновесии, когда выполняются два условия:
1. Векторная cумма сил, действующих на точку, должна равняться нулю.
Примечание: При выполнении этого условия, точка будет либо покоиться, либо двигаться вдоль прямой с одной и той же скоростью. Это следует из первого закона Ньютона.
2. Систему отсчета дополнительно выберем так, чтобы координаты точки в системе не менялись при выполнении условия 1.
Примечание: Такая система отсчета будет называться инерциальной, а точка будет покоиться относительно этой системы.
Условие равновесия тела
Чтобы тело находилось в равновесии, нужно, чтобы оно не двигалось поступательно и не вращалось.
Примечание: Тело, состоящее из нескольких точек, может вращаться вокруг оси, проходящей через центр этого тела. Поэтому, для тела условия равновесия нужно дополнить еще одним пунктом. Таким образом, получим три условия.
1. Алгебраическая cумма моментов сил, действующих на тело, должна равняться нулю.
\[ \large \boxed < M_<1>+ M_ <2>+ M_ <3>+ \ldots + M_
Примечания:
2. Векторная cумма сил, действующих на тело, должна равняться нулю.
Примечания:
3. Систему отсчета выберем так, чтобы координаты всех точек тела не менялись в ней при равенстве нулю векторной суммы сил.
Условия равновесия применяются для решения задач статики, связанных с моментами сил.
Виды равновесия
Различают такие виды равновесия:
Рассмотрим однородный шар (или, например, мяч), который покоится (рис. 1) на горке – а), на горизонтальном участке – б), и в ложбинке – в).
Неустойчивое равновесие
На вершине горы мяч находится в неустойчивом равновесии, потому, что стоит нам подтолкнуть мяч и, он скатится с горки (рис. 1а).
Равновесие неустойчивое:
при малом отклонении
потенциальная энергия тела уменьшается
силы и моменты сил
еще больше уводят тело от положения равновесия.
В состоянии неустойчивого равновесия потенциальная энергия тела максимальна!
Безразличное равновесие
На горизонтальном участке мяч будет покоиться в любом месте, в которое мы его поместим (рис. 1б). Подтолкнем мяч, он перекатится в другое положение и там будет оставаться в безразличном равновесии.
Если потенциальная энергия тела при его перемещении из одной точки пространства в другую точку остается постоянной, равновесие можно назвать безразличным.
Устойчивое равновесие
Мяч находится в ложбинке в устойчивом равновесии (рис. 1в). Легонько подтолкнув мяч, мы выведем его из равновесия, но через непродолжительное время мяч опять вернется в ложбинку.
Равновесие устойчивое:
при малом отклонении от равновесия
потенциальная энергия тела увеличивается
силы и моменты сил
возвращают тело в положение равновесия.
Примечание: Потенциальная энергия тела будет минимально возможной, когда тело находится в устойчивом равновесии!
Равновесие тела, могущего вращаться вокруг горизонтальной оси
Рассмотрим однородный шар, изготовленный, к примеру, из пенопласта. Проткнем его спицей, после закрепим ее горизонтально, подобно перекладине на двух опорах (рис. 2).
Спица будет являться неподвижной осью вращения.
Рассмотрим три случая для тела, могущего вращаться вокруг оси. Ось вращения
Примечание для случаев устойчивого и неустойчивого равновесия:
центр масс расположен на вертикальной линии (пунктир на рисунках 2б и 2в), проходящей через ось вращения.
Вокруг неподвижной оси может вращаться любое тело, в том числе, продолговатое, например, рычаг. В задачах статики для него применяют условия равновесия рычага.
Тело опирается на площадь поверхности
Условие равновесия для такого тела:
Проекция центра масс должна лежать внутри площади основания.
Допустим, зодчий захотел построить наклонную башню. Заменим для упрощения башню однородным наклонным цилиндром (рис. 3).
Упадет ли наклонная башня?
На рисунке 3а проекция центра масс попадает внутрь площади основания. Поэтому, башня, обладающая таким наклоном, не упадет.
Если центр масс выйдет за пределы площади, на которую тело опирается, то башня опрокинется (рис 3б).
Примечание: Башня своим весом давит на площадь основания – круг. Сила давления распределяется по всему основанию тела.