какое расстояние может пролететь вертолет без дозаправки
Ми-8АМТШ, транспортно-штурмовой вертолет
Вертолет Ми-8АМТШ разработан на базе многоцелевого вертолета Ми-8АМТ. «Терминатор» — неофициальная кличка, под которой прототип этой машины демонстрировался в 1999 году на авиасалоне в британском Фарнборо. Вертолет принят на вооружение ВВС России в 2009 году. Экспортный вариант вертолета —Ми-171Ш.
Машина сохранила десантно-высадочные возможности, заодно получив комплекс управляемого вооружения, аналогичный вертолету Ми-24, а также усиленную броневую защиту (из облегченной металлокерамической брони) и новую авионику.
Максимальная взлетная масса 13 тонн. Максимальная скорость 250 км/ч, крейсерская 230 км/ч. Дальность 610 км. Полезная нагрузка до 4000 кг. Перевозит до 26 десантников или 12 раненых на носилках в сопровождении медперсонала. Экипаж три человека: командир, второй пилот (он же оператор управляемого вооружения) и борттехник, выполняющий также функции стрелка пулеметных установок.
Двигатели — два турбовальных ТВ3-117ВМ взлетной мощностью 2100 л.с., на модернизированных Ми-8АМТШ-В, пошедших в войска с лета 2014 года, — два ВК-2500-03 с усиленной трансмиссией.
Машина оснащается новым комплексом авионики, включающим в себя, помимо прочего, метеорадар, аппаратуру спутниковой навигации и инфракрасную аппаратуру, а также очки ночного видения для пилотов. Комплекс обороны включает экранно-выхлопные устройства и систему отстрела ловушек АСО-2В.
Также существует специальный вариант Ми-8АМТШ-ВА, оборудованный для применения в условиях Крайнего Севера, в т.ч. в полярной ночи.
Летные, технические и эксплуатационные характеристики вертолетов Robinson
Когда специалисты предлагают потенциальному покупателю вертолеты компании Robinson, они акцентируют внимание на уникальных технических характеристиках этих воздушных судов. О каких параметрах идет речь и что они значат?
Технические характеристики вертолетов объединяются в группы:
Летные характеристики вертолетов Robinson
К летным характеристикам относятся крейсерская и максимальная скорости полета, дальность и длительность полета, практический и теоретический потолок, скороподъемность.
Крейсерской называют скорость, при которой достигается оптимальный режим работы двигателя. На крейсерской скорости минимизируется расход топлива и износ деталей двигателя. Показатель составляет:
При максимальной скорости двигатель работает на пределе возможностей, а расход топлива увеличивается. Показатель для моделей Robinson R22, R44 Raven II и R66 составляет 180, 240 и 259 км/ч соответственно.
Дальность полета — это максимальное расстояние, которое воздушное судно может преодолеть без посадки и дозаправки. Показатели для моделей R22, R44 Raven II и R66 составляют 463, 563 и 648 км соответственно.
Не путайте дальность и длительность полета. Вторая характеристика показывает, сколько времени винтокрылая машина может находиться в воздухе без дозаправки. Показатель составляет 2.2, 3.5 и 3 часа для моделей R22, R44 Raven II и R66 соответственно.
Скороподъемность — это показатель скорости набора высоты. Все модели вертолетов Robinson набирают высоту со скоростью 5 м/с или 304 м/мин.
Практический потолок — это максимальная высота, на которой возможно летать на вертолете на практике без избыточной нагрузки на двигатель. На практической высоте летательный аппарат сохраняет запас мощности для набора высоты со скоростью 0,5 метров в секунду. Теоретический потолок — это высота, на которой воздушное судно перестает подниматься при работе двигателя на всех оборотах.
Для всех моделей вертолетов Robinson практический потолок составляет 1500 метров, а теоретический достигает 4250 метров.
Благодаря летным характеристикам воздушные суда Robinson занимают ведущие позиции в классе легких вертолетов. Они демонстрируют одну из самых высоких крейсерских скоростей на рынке. Также винтокрылые машины Robinson опережают основных конкурентов по показателю дальности полетов и уж точно превосходят всех конкурентов в вопросах ценообразования.
Технические параметры вертолетов Robinson
К техническим параметрам относятся тип и характеристики двигателя, расход топлива, емкость топливного бака.
На вертолетах Robinson устанавливается один двигатель. Типы R22 и R44 Raven II оснащаются поршневыми силовыми установками. На R66 устанавливается газотурбинный двигатель. Поршневые двигатели более тяжелые и габаритные, но они обеспечивают экономный расход топлива. Газотурбинный двигатель легче поршневого. Он обеспечивает высокую скорость полета, но потребляет больше горючего по сравнению с поршневым. Но нельзя забывать о том, что авиационный керосин, на котором работают газотурбинные двигатели, в разы дешевле в России авиационного бензина 100 LL, который предназначен для поршневых моторов.
Более мощные двигатели потребляют больше топлива, но тем не менее, они дешевле в эксплуатации. На практике они обеспечивают высокую скорость полета и грузоподъемность летательного аппарата.
Robinson R22 оснащается двигателями Lycoming O-360 с четырьмя цилиндрами. Мощность агрегата составляет 180 л. с. Двигатель расходует около 34,5 л/ч.
Robinson R44 Raven II имеет двигатель Lycoming IO-540 с шестью цилиндрами. Его мощность ‒ 260 л/с, а расход топлива около 57 л/ч.
Robinson R66 оснащен газотурбинным двигателем Rolls-Royce RR300. Его мощность ‒ 300 л/с, а расход топлива достигает в среднем 87 л/ч.
Емкость штатного топливного бака модели R22 ‒ 72,6 л. Для моделей R44 Raven II и R66 этот показатель составляет 120 и 285 л соответственно.
Эксплуатационные характеристики воздушных судов Robinson
К эксплуатационным параметрам относятся габариты и масса вертолета, количество пассажирских мест, грузоподъемность.
Габариты и масса вертолетов Robinson указаны в таблице.
Дальность и продолжительность полета на вертолете
Главная страница » Дальность и продолжительность полета на вертолете
Дальностью полета L называется расстояние, которое может пролететь (пролетел) вертолет по маршруту полета от места вылета до места посадки. Продолжительностью полета t пол называется время пребывания вертолета в полете (т. е. время, прошедшее с момента взлета до посадки).
Дальность и продолжительность полета зависят от количества (запаса) топлива на борту вертолета при взлете и экономичности его расходования. Запас топлива на вертолете может зависеть от массы перевозимого груза. Экономичность расходования зависит от свойств СУ, полетной массы вертолета и режима полета. Следовательно, в зависимости от поставленной задачи и условий ее выполнения могут быть разными как запас топлива, так и его расход и, естественно, возможные дальность и продолжительность полета.
Кроме того, могут быть отклонения от заданного маршрута или режима полета, вызванные неточностями вертолетовождения экипажем, а также различными внешними причинами, предвидеть которые не всегда удается (изменения метеорологических условий, действия противника и т. д.). Поэтому при определении возможностей по дальности и продолжительности полета необходимо учитывать как различные эксплуатационные факторы, так и случайные причины, которые могут повлиять на дальность и продолжительность полета.
Каждый полет вертолета состоит из нескольких этапов. Определив дальность и продолжительность каждого этапа, можно определить суммарную дальность и продолжительность полета. Простейший схематизированный профиль полета вертолета состоит из трех этапов: набора высоты, горизонтального полета и снижения. Таким образом, дальность полета L можно определить как сумму трех величин — расстояний (дальностей), достигнутых при наборе Lнaб, в горизонтальном полете Lгп и при снижении LCH:
L = Lнаб + Lгп + Lсн.
t пол = t наб + t гп + t сн
У вертолетов пути набора высоты и снижения обычно составляют очень небольшую долю общей дальности полета. Поэтому нет необходимости останавливаться на методах их расчета. Наивыгоднейшие режимы набора высоты и снижения указываются в Инструкции экипажу конкретно для каждого типа вертолета. Там же на графиках и в таблицах приводятся значения Lнаб, Lсн, и соответствующие затраты топлива в зависимости от набираемой (теряемой) высоты полета.
Остается, таким образом, найти величины дальности и продолжительности горизонтального полета и проанализировать основные закономерности, их определяющие. Проще всего эти величины определяются при выполнении горизонтального полета с постоянной скоростью в безветрие.
При полете вертолета на дальность можно считать, что режим работы двигательной установки не изменяется и, следовательно, характеристики расхода топлива на данном участке неизменны. Каждый тип двигателя имеет свои характеристики экономичности расхода топлива. Расход топлива силовой установкой за час полета называется часовым расходом Q ч (кг/ч). При этом двигатели развивают эффективную мощность Ne.
Отношение часового расхода топлива к эффективной мощности называется удельным расходом топлива Се:
Се = Q ч / Ne
Св — расход топлива на выработку 1 л. с. мощности двигателя в час.
При полете вертолета со скоростью V силовая установка за час расходует Q ч кг топлива, а вертолет (в штиль) пролетает за это время S км пути. Следовательно, поделив Q ч на V, можно найти сколько топлива тратится на каждый километр пройденного пути:
q км = Q ч / V
Величина q км называется километровым расходом топлива.
Зная располагаемый запас топлива для горизонтального полета Wгп и величины километрового и часового расходов, легко определить дальность и продолжительность этого участка полета:
Lгп = Wгп /q км
t гп =Wгп / Q ч
t гп = Lгп/ V
По этим формулам находятся общие возможные дальность и продолжительность полета.
Различают понятия «техническая дальность», «практическая дальность», «тактическая дальность». Наиболее важным является понятие «практическая дальность», рассматриваемое в настоящей главе.
Практической для заданного режима и профиля полета называется дальность полета вертолета при данной заправке топлива, рассчитанная без расходования минимального гарантийного и невырабатываемого остатков топлива. Аналогично понятию «практическая дальность» применяется понятие «практическая продолжительность полета». Часто бывает важно знать, на каком максимальном расстоянии от аэродрома вылета вертолет может выполнить какое-либо задание и вернуться на свой аэродром. При этом используется понятие «радиус действия».
Тактическим радиусом действия называется максимальное расстояние, которое может пролететь вертолет (группа) с заданным режимом или профилем полета от аэродрома вылета до объекта действий с выполнением поставленной задачи и возвращением на свой аэродром при данной заправке топлива без расходования минимального гарантийного и невырабатываемого остатков топлива.
В реальных условиях при выполнении различных задач количество этапов полета может быть больше трех, а сами этапы по виду траектории и характеру пилотирования могут быть более сложными. При этом описанные выше принципы расчета дальности и продолжительности полета остаются справедливыми, но количество участков, на которые разбивается полет, увеличивается. Участки выбираются исходя из условия, чтобы в пределах каждого из них величины километрового и часового расходов топлива можно было считать неизменными.
Располагаемый запас топлива
Располагаемым (полным) запасом Wполн называется максимальное количество топлива, которое может быть в распоряжении экипажа на вертолете для выполнения задания (максимально возможная заправка).
Однако не всегда можно заправлять топливную систему полностью. На вертолетах заправка топлива во многих случаях зависит от нагрузки. Ведь взлетная масса вертолета mвзл не должна превышать предельную по условиям взлета и посадки mпред или максимально допустимую в эксплуатации mмак.
Поэтому на долю топлива остается разность между предельной (максимальной) массой вертолета и массой всего остального, что необходимо перевозить в полете.
WРАСП = GМАК — GВЕРТ — GЭКИП — GГР
ГДЕ GВЕРТ = GКОНСТР + GМАСЛ + GСЪЕМ.ОБ + GСПИРТ
Запасом топлива для горизонтального полета Wгп называется максимальное количество топлива, которое может быть израсходовано в гори- зонтальном полете:
Wгп = Wполн — Wземл — Wнаб — Wсн — Wгарант — Wневыр
Определение режимов максимальной дальности и продолжительности горизонтального полета
Максимальная дальность и продолжительность горизонтального, полета достигаются при наличии на борту располагаемого (максимального) запаса топлива. При этом дальность полета будет наибольшей, когда минимален километровый расход, а продолжительность — при минимальном часовом расходе. Величины часового и километрового расходов топлива существенно зависят от экономичности двигателя, показателем которой является его удельный расход топлива Се, и режима полета.
Удельный расход топлива дается в характеристиках двигателя. Он изменяется с изменением мощности двигателя и зависит, как и мощность, от числа оборотов. Эти зависимости различны для разных типов двигателей. Особенно резкая зависимость удельного расхода от числа оборотов наблюдается у газотурбинных двигателей. У поршневых двигателей эта зависимость менее резкая, уменьшение их мощности даже наполовину практически мало влияет на удельный расход, уменьшая его иногда на 5 — 10%. У ГТД (при уменьшении мощности до 0,5 номинальной) удельный расход повышается на 25—35%.
У вертолетов с ГТД часовой расход топлива достигает минимума при полете с такой скоростью, при которой мощность, потребная для выполнения горизонтального полета. Следовательно, наименьшее количество топлива в течение заданного времени будет израсходовано при полете на этой скорости. Поэтому такая скорость полета называется экономической V эк или скоростью наибольшей продолжительности полета Vtмах.
При данном запасе топлива продолжительность полета на экономической скорости будет максимальной. Полет на скорости, большей или меньшей Vэк приводит к уменьшению возможной продолжительности вследствие роста часового расхода, так как увеличивается N г п Так, продолжительность полета на режиме висения почти в два раза меньше максимальной.
Характер изменения продолжительности полета вертолета в зависимости от скорости показан на рис. 1.
Величина скорости VL max находится путем проведения касательной из начала координат к зависимости Qч =/(V) (рис.2).
При этой скорости полета километровый расход минимален, так как точка касания определяет минимум отношения Qч/V=q км. Зависимости q км =f(V) показаны на рис.1.
При отклонении скорости полета от скорости наибольшей дальности в ту или другую сторону возможная дальность полета уменьшается (рис.2).
Влияние различный эксплуатационных факторов на дальность и продолжительность полета
В итоге действие этих противоречивых тенденций приводит к тому, что у вертолетов с ГТД, у которых скорости VLmax близки к максимальным, дальность полета при увеличении высоты в связи с уменьшением qKM увеличивается примерно до границы высотности двигателя. При наборе еще одного километра высоты полета дальность практически не изменяется, а на высотах, больших Нр +1000 м, начинает уменьшаться вследствие увеличения q км из-за существенного возрастания Nrn. Так, для вертолета Ми-8 дальность полета достигает максимума при полетах на высотах 2000 — 3000 м. Продолжительность полета у вертолетов с ГТД от высоты практически не зависит.
Как изменяются скорости наибольшей дальности и продолжительности полета в зависимости от высоты?
При увеличении высоты полета истинное значение скорости Vэк растет, но приборное не изменяется. Это значит, что независимо от высоты полета для выдерживания режима наибольшей продолжительности летчик должен выполнять полет при постоянной приборной скорости, равной Vэк у земли. Для вертолета Ми-8 эта скорость составляет 120-130 км/ч.
Истинное значение скорости наибольшей дальности при увеличении высоты вначале растет примерно пропорционально 1 / v. Следовательно, приборная скорость VLmax также остается постоянной.
Однако, начиная с некоторой высоты полета (1500—2000 м), величины скоростей наибольшей дальности сильно приближаются k значениям максимально допустимой скорости (особенно у вертолетов с ГТД). При этом начинают сказываться соответствующие ограничения по скорости полета. Поэтому, начиная с высот 1500—2000 м, значения скорости наибольшей дальности начинают уменьшаться, фактически соответствуя ограничениям максимально допустимой скорости, и на высоте динамического потолка становятся равными Vэк.
Влияние полетной массы вертолета
В среднем каждый процент увеличения массы сверх нормальной приводит к сокращению дальности на 0,4 ±0,6% при полетах на высотах до 1000—1500 м и на 0,8 — 1% при полетах на высотах 2000—3000 м у вертолетов с ГТД. Полетная масса вертолета в течение полета может уменьшаться как постепенно за счет выработки топлива, так и резко за счет выброски десанта или грузов. При небольших изменениях полетной массы (5 — 10%) можно расчет дальности проводить, считая массу неизменной, равной ее среднему значению.
В среднем каждый процент увеличения массы сверх нормальной приводит к сокращению дальности на 0,4 ±0,6% при полетах на высотах до 1000—1500 м и на 0,8 — 1% при полетах на высотах 2000—3000 м у вертолетов с ГТД. Полетная масса вертолета в течение полета может уменьшаться как постепенно за счет выработки топлива, так и резко за счет выброски десанта или грузов. При небольших изменениях полетной массы (5 — 10%) можно расчет дальности проводить, считая массу неизменной, равной ее среднему значению.
Влияние внешних подвесок
Внешние подвески увеличивают силу лобового сопротивления вертолета, а также его полетную массу по сравнению с вертолетом без подвесок. Поэтому мощность, потребная для горизонтального полета вертолета с подвесками, больше, чем без них на той же скорости за счет увеличения Nдв, а также Nинд и в некоторой степени Nnp.
Это приводит к увеличению как часового, так и в еще большей степени километрового расхода топлива на всех высотах полета. Поэтому дальность и продолжительность полета вертолета с внешними подвесками уменьшаются. Уменьшение дальности полета происходит более заметно и в зависимости от формы (силы лобового сопротивления) подвесок может достигать до 15-25%.
При некоторых видах внешних подвесок на тросе допустимые скорости полета существенно меньше, чем VLmax, а q км значительно возрастает. В таких случаях уменьшение дальности полета может достигать 50—60% по сравнению с вертолетом той же полетной массы, но без подвесок.
Влияние ветра
Если по условиям выполнения задания необходимо обеспечить наибольшую продолжительность пребывания в воздухе, полет следует выполнять на постоянной приборной скорости, равной экономической Vэк независимо от направления и скорости ветра. При этом наличие ветра не сказывается на максимальной продолжительности полета. Однако пройденный вертолетом путь за это время будет существенно зависеть от скорости и направления ветра, так как ветер изменяет путевую скорость, увеличивая ее при попутном и уменьшая при встречном направлении.
Изменение путевой скорости приводит к изменению продолжительности полета на заданную дальность. Кроме того, при изменении путевой скорости изменяется также километровый расход топлива q км . При попутном ветре q км уменьшается, при встречном — увеличивается: Поэтому попутный ветер увеличивает, а встречный уменьшает максимальную дальность полета по сравнению со штилевыми условиями. Вследствие относительно небольших скоростей полета вертолетов влияние ветра оказывается довольно заметным.
Влияние оборотов (частоты вращения) несущего винта
Уменьшение числа оборотов (частоты вращения) НВ приводит к некоторому уменьшению мощности, потребной для создания заданной тяги, за счет уменьшения профильных и индуктивных потерь. Это ведет к уменьшению N г.п. Поэтому на тех вертолетах, где допускается небольшое регулирование летчиком оборотов свободной турбины и НВ, целесообразно в полете на крейсерской скорости уменьшить их на 2—3%. Это обеспечивает уменьшение километрового расхода топлива на 1—1,5% и соответствующее увеличение дальности полета.
Однако уменьшение оборотов НВ приводит к более раннему по скорости появлетпо срыва потока с отсrупающих лопастей НВ. На высотах полета более 1500-2000 м скорости VLrmx близки к ограничениям по срыву потока. Поэтому использовать незначительные преимущества, получаемые за счет уменьшения оборотов НВ, можно практически лишь до высот 1000-1500 м.
Вертолет Ми-8. Летно-технические характеристики
МОСКВА, 26 ноя — РИА Новости. На севере Красноярского края потерпел крушение вертолет Ми-8, в результате чего, по предварительным данным, погибли 12 человек.
Ми-8 — многофункциональный вертолет, сферы применения которого расширяются за счет постоянной модернизации и возможности оснащения его широким набором дополнительного оборудования для выполнения различных задач. Вертолет имеет возможность применения в широком диапазоне условий и температур (от —50 до +50 градусов по Цельсию), прост в эксплуатации и обслуживании.
Разработка вертолета В-8 (Ми-8) началась в ОКБ имени М.Л. Миля (ныне ОАО «Московский вертолетный завод имени М.Л. Миля», входящий в холдинг «Вертолеты России») в мае 1960 года для замены хорошо зарекомендовавшего себя в эксплуатации многоцелевого поршневого вертолета Ми-4. Ми-8 создавался как глубокая модернизация Ми-4 с газотурбинным двигателем. Вертолет разрабатывался одновременно в двух вариантах: пассажирском Ми-8П и транспортном Ми-8Т.
Первый прототип нового вертолета (с одним двигателем и четырехлопастным несущим винтом) поднялся в воздух в июле 1961 года, второй (с двумя двигателями и пятилопастным винтом) — в сентябре 1962 года, первый полет опытного вертолета состоялся в 1962 году.
Серийное производство Ми-8 началось в 1965 году на ОАО «Казанский вертолетный завод» и ОАО «Улан-Удэнский вертолетный завод».
На вертолетах Ми-8 в 1964-1969 годах было установлено семь мировых рекордов (в основном женщинами-вертолетчицами).
Ми-8 превосходит Ми-4 по максимальной грузоподъемности в 2,5 раза и по скорости в 1,4 раза. Трансмиссия вертолета Ми-8 аналогична вертолету Ми-4.
Вертолет выполнен по одновинтовой схеме с рулевым винтом, двумя газотурбинными двигателями и трехопорным шасси.
Лопасти несущего винта цельнометаллические. Они состоят из полого лонжерона, спрессованного из алюминиевого сплава. Все лопасти несущего винта оснащены пневматической сигнализацией повреждения лонжерона. В системе управления используются мощные гидроусилители. Ми-8 оборудован противообледенительной системой, которая работает как в автоматическом, так и в ручном режимах. Система внешней подвески вертолета позволяет перевозить грузы массой до 3 тонн.
При отказе одного из двигателей в полете другой двигатель автоматически выходит на повышенную мощность, при этом горизонтальный полет выполняется без снижения высоты. Ми-8 оборудован автопилотом, обеспечивающим стабилизацию крена, тангажа и рыскания, а также постоянную высоту полета. Навигационно-пилотажные приборы и радиосредства, которыми оснащен вертолет, позволяют совершать полеты в любое время суток и в сложных метеоусловиях.
Вертолет, в основном, используется в транспортном и пассажирском вариантах. В пассажирском варианте (Ми-8П) вертолет оборудован для перевозки 28 пассажиров.
Военный вариант Ми-8Т имеет пилоны для подвески вооружения (неуправляемые ракеты, бомбы). Следующая военная модификация Ми-8ТВ имеет усиленные пилоны для подвески большого количества вооружения, а также пулеметную установку в носовой части кабины.
Ми-8МТ — модификация вертолета, которая явилась логическим завершением перехода от транспортного к транспортно-боевому вертолету. Установлены более современные двигатели ТВЗ-117 МТ с дополнительной газотурбинной установкой АИ-9В и пылезащитным устройством на входе в воздухозаборники. Для борьбы с ракетами типа «земля-воздух» имеются системы рассеивания горячих газов двигателей, отстрела ложных тепловых целей и генерации импульсных ИК-сигналов. В 1979-1988 годах вертолет Ми-8МТ принимал участие в военном конфликте в Афганистане.
Ми-8 является наиболее распространенным в мире транспортным вертолетом.
По числу модификаций Ми-8 является мировым рекордсменом. Их насчитывается более 100. Модификации создавались на МВЗ имени М.Л. Миля, на казанском и улан-удэнском заводах, ремонтных предприятиях, непосредственно в воинских частях и отрядах Аэрофлота, а также за рубежом в процессе эксплуатации.
Тактико-технические характеристики вертолета:
Экипаж — 3 человека.
Максимальная взлетная масса — 13 000 кг.
Двигатель ГТД Климов ТВ3-117 — 2.
Мощность — 2 на 1620 кВт.
Длина — 18,424/25,352 м.
Высота — 4,756/5,552 м.
Максимальная скорость — 250 км/ч.
Практическая дальность полета — 950 км.
Практический потолок — 5000 м.
Полезная нагрузка — до 24 солдат или 12 носилок с сопровождающими или 4000 кг груза.