какое правило называют функцией
Что такое Функция?
7 класс, 11 класс, ЕГЭ/ОГЭ
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.
Что такое функция (ЕГЭ — 2022)
Понятие «функция» пронизывает все сферы математики и не только.
Мы все знаем, что функция записывается как \( \displaystyle y=f\left( x \right)\), но можешь ли ты ответить, что обозначает эта формула?
Если да, то ты большой молодец!
А если нет, – не страшно! Сейчас быстренько во всем разберемся!
Функции — коротко о главном
Определение функции:
Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).
Свойства и способы задания:
Допустимые значения аргумента, или область определения функции \( \displaystyle D\left( y \right)\) – это то, что связано с возможными \( \displaystyle x\), при которых функция имеет смысл.
Область значений функции \( \displaystyle E\left( y \right)\) – это то, какие значения принимает \( \displaystyle y\), при допустимых значениях \( \displaystyle x\).
Существует 4 способа задания функции:
Основные виды функций:
Сейчас все это разберем подробнее.
Что такое функция — человеческим языком
Так вот, функция отражает зависимость величин друг от друга: то есть при изменении одного числа \( \displaystyle x\), по некоторому закону \( \displaystyle f\left( x \right)\) изменяется \( \displaystyle y\).
Зависимость, или взаимосвязь – вот ключевые слова при определении понятия функции.
Попробуй самостоятельно придумать несколько примеров из жизни, где четко проявляется зависимость одного от другого.
И?… Не можешь придумать ни один пример? Как так! Смотри:
Допустим автомобиль движется со средней скоростью \( \displaystyle 110\) км/ч, как тогда выразить зависимость пути \( \displaystyle S\) от времени \( \displaystyle t\)?
\( \displaystyle S=110\cdot t\)
То есть чем больше времени автомобилист проведет за рулем, тем больше расстояние он преодолеет на своем автомобиле. Чем не зависимость?
Что в этом случае будет \( \displaystyle y\), что \( \displaystyle x\), и как будет выражено в итоге \( \displaystyle f\left( x \right)\)?
Проведем параллели между физической формулой и привычной нам записью функции \( \displaystyle y=f\left( x \right)\):
Разобрался что к чему? Теперь перейдем на математический язык.
Что такое функция — на языке математики
Итак. Еще раз смотрим на нашу формулу:
\( \displaystyle y=f\left( x \right)\)
Слева стоит \( \displaystyle y\) – это и есть функция. За этой буквой может быть все что угодно: температура, скорость, сила, путь – неважно! \( \displaystyle y\) – зависимая величина.
Она может зависеть от множества критериев. Например, как в нашем случае, зависимость пути от времени, проведенном в дороге при движении с постоянной скоростью.
Справа у нас стоит \( \displaystyle x\). Эта величина переменная, или, как говорят математики, «аргумент».
Логично, что чем больше времени проведет автомобилист в дороге, тем большее расстояние он проедет (конечно, если скорость будет постоянна, и он не встрянет намертво в пробках).
Справа у нас также есть \( \displaystyle f\), за этим скрываются все действия, совершаемые над \( \displaystyle x\).
В нашем случае мы говорим, что \( \displaystyle S=\nu \cdot t\), а так как \( \displaystyle \nu =110\)км/ч, то под \( \displaystyle f\) скрывается умножение на \( \displaystyle 110\), вот мы и получаем – \( \displaystyle f\left( x \right)=110\cdot x\).
Теперь, думаю, тебе все понятно?
Подведем итог:
Теперь, когда ты понял суть понятия «функция» и знаешь, что такое переменная величина, а что постоянная, посмотрим на определение функции, каким его дают математики.
Определение функции
Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).
Вроде и \( \displaystyle x\) есть… и \( \displaystyle y\) есть, и даже правило \( \displaystyle f\) есть, но что это за множества такие?
«О них мы ни слова не говорили!» – воскликнешь ты. Не паникуй! 🙂 Множества – это очень просто, сейчас все-все проясним!
Область определения функции
Вернемся к нашему примеру.
Автомобилист едет с постоянной скоростью и проезжает расстояние, которое зависит от того, сколько времени он провел в пути. Все верно?
Разбираемся дальше. Мы говорили, что \( \displaystyle x=t\), это как раз и есть время, проведенное в пути.
Каким оно может быть? Ты сейчас можешь быть крайней удивлен такой постановкой вопроса, но все же, каким может быть это время?
Правильно, чисто теоретически от \( \displaystyle 0\) до \( \displaystyle +\infty \).
Вот ты сам и определил для нашего конкретного случая множество \( \displaystyle X\), а иначе говоря, допустимые значения аргумента или область определения функции \( \displaystyle D\left( y \right)\).
Запомнить очень легко: что определяет нашу функцию? От чего зависит игрек, и что мы меняем?
Функцию определяет икс! Соответственно, область определения – это возможные значения \( \displaystyle x\).
Теперь давай рассматривать, что такое множество \( \displaystyle Y\).
Область значений функции
Думаю, ты сам ответишь, что путь не может быть отрицательным, так что \( \displaystyle y=S\) в нашей с тобой придуманной функции так же может принимать значения в промежутке от \( \displaystyle 0\) до \( \displaystyle +\infty \).
Это называется областью значений функции \( \displaystyle E\left( y \right)\), то есть множество \( \displaystyle Y\), которые существуют для данной функции.
Итак, сделаем небольшой вывод по последнему:
Допустимые значения аргумента, или область определения функции \( \displaystyle D\left( y \right)\) – это то, что связано с возможными \( \displaystyle x\), при которых функция имеет смысл.
Область значений функции \( \displaystyle E\left( y \right)\) – это то, какие значения принимает \( \displaystyle y\), при допустимых значениях \( \displaystyle x\).
Давай потренируемся находить области определения функции и ее допустимые значения.
Область определения функции по графикам
Решение
Обязательно пробуй сначала решать самостоятельно!
Все верно? Молодец! Что-то не понятно? Спрашивай в комментариях!
Теперь попробуем найти область значения фунции.
Области значений функции по графикам
Еще раз поработаем с графиками, только теперь чуть-чуть посложнее…
Области значений и определения функции по графикам
Решение:
(Б) \( \displaystyle D\left( y \right)=\left( 1;+\infty \right)\)
\( \displaystyle E\left( y \right)=\left\< 1 \right\>\).
Область определения функции по формулам (аналитически)
С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь, как это сделать, прочитай раздел про ОДЗ — область допустимых значений).
Справился? Смотри ответы:
Еще один важный момент
Еще раз повторю определение и сделаю на нем акцент:
Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).
Заметил? Слово «единственный» – это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.
Допустим, у нас есть функция, заданная прямой. \( \displaystyle y=5x+3\). При \( \displaystyle x=0\), мы подставляем данное значение в наше «правило» и получаем, что \( \displaystyle y=3\).
Одному значению \( \displaystyle x\) соответствует одно значение \( \displaystyle y\). Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.
А вот и график с нашими отмеченными точками:
Как ты убедился – графиком является прямая, в которой одному значению \( \displaystyle x\) соответствует одно значение \( \displaystyle y\) (данный факт показан красными линиями).
Соответственно, данная зависимость подходит под определение функции.
А что ты скажешь о такой зависимости: \( \displaystyle y=2<
Дело в том, что, при расчёте для \( \displaystyle x=0\), мы получили один игрек. И при расчёте с \( \displaystyle x=2\) мы получили один игрек. Так что все верно, парабола является функцией.
Посмотри на график:
Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!
Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:
Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» – нескольким разным икс соответствует один и тот же игрек.
Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:
Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие несколько элементов \( \displaystyle y\) множества \( \displaystyle Y\). Соответственно, это не функция.
Проверим твои знания на практике. Определи по рисункам, что является функцией, а что нет:
Разобрался? А вот и ответы:
Почему? Да вот почему:
На всех рисунках кроме В) и Е) на один \( \displaystyle x\) приходится несколько \( \displaystyle y\)!
Уверена, теперь ты с легкостью отличишь функцию от «НЕ функции», скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции.
Приступаем к следующему разделу – как задать функцию?
4 способа задать функцию
Задать функцию — это значит определить правило, по которому по значениям переменной можно найти ее значения.
Разберемся во всем по порядку, а начнем с аналитического способа.
Аналитический способ заданий функции
Аналитический способ – это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ.
Если у тебя есть формула, то ты знаешь о функции абсолютно все – ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.
Рассмотрим функцию \( \displaystyle f\left( x \right)=<
«Что это значит?» – спросишь ты. Сейчас объясню.
Напомню, что в записи \( \displaystyle f(x)\) выражение в скобках называется аргументом.
И этот аргумент может быть любым выражением, не обязательно просто \( \displaystyle x\). Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо \( \displaystyle x\) в выражении \( \displaystyle f(x)\).
В нашем примере получится так:
Пример из ЕГЭ
Найдите значение выражения \( \displaystyle \frac
Уверена, что сначала ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!
Что же нужно сделать в нашем примере? Вместо \( \displaystyle f\left( x-15 \right)\) надо написать \( \displaystyle <<5>^
А дальше, используя свойства степени (можешь лишний раз одним глазком заглянуть в соответствующую тему – не помешает), а именно:
сократить получившееся выражение:
Теперь попробуй самостоятельно найти значение следующих выражений:
Справился? Сравним наши ответы:
Мы привыкли, что функция имеет вид \( \displaystyle y=f\left( x \right)\), даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например \( \displaystyle 5x+2y-3=0\). Попробуй построить эту функцию самостоятельно.
Вот как строила ее я.
Какое уравнение мы в итоге вывели? Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:
А теперь строим по данным точкам график:
Вот так из неявной формулы получилась линейная функция.
А теперь посмотри следующую формулу: \( \displaystyle <
Попробуй подставить различные значения \( \displaystyle x\) и посмотреть, какой \( \displaystyle y\) им соответствует.
Вот как раз то, о чем мы говорили… Одному \( \displaystyle x\) соответствует несколько \( \displaystyle y\). Попробуем нарисовать то, что получилось:
Является ли то, что у нас получилось функцией? Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?
«Потому что одному значению \( \displaystyle x\) соответствует несколько значений \( \displaystyle y\)!»
Какой вывод мы можем из этого сделать?
Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!
Табличный способ задания функции
Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:
Как ты уже знаешь, в первой строчке мы ставим значение аргумента, а во второй строчке – соответствующие ему значение функции. Таким образом, в таблице каждому иксу соответствует одно значение игрека.
Заметь, в последней приведенной табличке невозможно четко определить правило, по которому игрек зависит от икс. Так тоже бывает и в этом нет ничего страшного, просто мы не можем вот так сразу взять и определить правило.
Если тебя это смущает, приведу в пример другую таблицу:
Здесь ты сразу подметил закономерность – игрек в три раза больше чем икс.
А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции \( \displaystyle y=3x\)?
Не будем долго рассуждать, а будем рисовать!
Итак. Рисуем функцию, заданную обоими способами:
Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:
Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них.
Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!
Графический способ построения функции
Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее.
Графический и аналитический способы одни из самых распространенных.
Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале – не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:
Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали – аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать.
Как это? Да очень просто!
Словесный способ задания функции
Как же описать функцию словесно?
Возьмем наш недавний пример – \( \displaystyle y=3x\).
Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного.
Ты, конечно, возразишь: «Есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой.
Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа».
Теперь рассмотрим, как наше словесное описание функции реализуется на практике:
Пусть \( \displaystyle x=256\)
Наибольшая цифра в данном числе – \( \displaystyle 6\), соответственно, \( \displaystyle 6\) – уменьшаемое, тогда:
Основные виды функций
Теперь перейдем к самому интересному – рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику.
А еще будет полезно узнать про то, как строятся графики функций. Загляни сюда:
Линейная функция
Функция вида \( \displaystyle y=kx+b\), где \( \displaystyle k\), \( \displaystyle b\) – действительные числа.
Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.
Положение прямой на координатной плоскости зависит от углового коэффициента \( \displaystyle k=tg\alpha \).
Область определения функции (aka область допустимых значений аргумента) – \( \displaystyle D\left( y \right)-\mathbb
Область значений – \( \displaystyle E\left( y \right)-\mathbb
Квадратичная функция
Функция вида \( \displaystyle y=a<
^<2>>+bx+c\), где \( \displaystyle a\ne 0\)
Графиком функции является парабола, при \( \displaystyle a 0\) — вверх.
Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле \( \displaystyle D=<^<2>>-4ac\)
Положение параболы на координатной плоскости относительно значения \( \displaystyle D\) и коэффициента \( \displaystyle a\) показаны на рисунке:
Область определения – \( \displaystyle D\left( y \right)=\mathbb
Область значений \( \displaystyle E\left( y \right)\) зависит от экстремума данной функции (точки вершины параболы) и коэффициента \( \displaystyle a\) (направления ветвей параболы)
Обратная пропорциональность
Функция, задаваемая формулой \( \displaystyle y=\frac
\), где \( \displaystyle k\ne 0\)
Число \( \displaystyle k\) называется коэффициентом обратной пропорциональности.
В зависимости от того, какое значение \( \displaystyle k\), ветви гиперболы находятся в разных квадратах:
Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике
Элементарные функции и их графики (ЕГЭ 18. Задача с параметром)
Задачи с параметром из ЕГЭ зачастую предполагают исследование функций или хотя бы знание их свойств.
Чтобы научиться исследовать функции, для начала лучше всего научиться строить их графики.
На этом уроке мы рассмотрим основные элементарные функции, научимся строить их графики и узнаем, как на них влияют разные параметры (коэффициенты в функциях).
Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)
Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?
Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?
Можно! И на этом уроке мы научимся производить такие трансформации.
Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
К ЕГЭ можно подготовиться абсолютно бесплатно. У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете.
Если у вас с этим сложности, приходите к нам.
И если вам нужен действительно высокий балл, приходите на наши курсы:
Мы качественно готовим к ЕГЭ даже тех, у кого «нет способностей».
Слово лучшему ученику! (тебе 🙂 )
Сегодня ты понял смысл функции, научился задавать ее разными способами… И, главное, создал себе прочную опору для изучения конкретных функций более подробно.
Расскажи нам ниже в комментариях, все ли было понятно? Понравилась ли тебе статья?
Что думаешь о ней? О стиле ее написания?
Если остались вопросы, тоже пиши. Мы обязательно ответим.
Добавить комментарий Отменить ответ
7 комментариев
Добрый день, ребенок в 7 классе. Подскажите, есть ли возможность изучать ваш учебник? На каких условиях? Как можно заниматься 7-8 классам?
Наталья, спасибо за интерес к учебнику. По учебнику можно заниматься почти с любого возраста. У нас есть пятиклассник, который занимается по учебнику с мамой. Потому что он написан от простого к сложному, как мы говорим, человеческим языком, и если тему в 7-8-м классе проходят, то заходите в содержание учебника https://youclever.org/book, открывайте нужную тему, читайте и решайте задачи.
Мы пока не продаем полный доступ к нему, но возможно вернемся к этому со следующего учебного года, потому что его постоянно просят вернуть… Я вам на почту пришлю персональное предложение, по поводу учебника. Посмотрите.
Почему в задаче на обл опр под номером 2 идет промежуток (6,2)? Надо наоборот.
Юлия, спасибо за комментарий и внимательность! Исправили. Действительно, нужно в промежутках идти от меньшего к большему. 🙂
Спасибо, Маша! Заходите еще! )
Некоторые отзывы на эту статью за прошлые годы:
ВЛАД,10КЛАСС
23 октября 2017
Тому кто написал данную статью большое спасибо.Побольше бы таких людей.Вы мне очень помогли. СПАСИБО.
Anastira
29 марта 2018
Здравствуйте) Очень полезная статья, помогло разобраться с тем, чего я не понимала Но разве в разделе «Квадратичная функция» на 4, 5, 6 рисунке а > 0?
Светланаа
08 августа 2018
Очень хорошая у вас статья — даже инженеру в помощь.
Кристина
20 августа 2018
Спасибо огромное, очень доступно. А скажите,будь ласка, как найти аналитическую формулу функции по ее табличному виду, без подбора. Благодарю.
Марина
19 октября 2018
У меня скоро экзамен, недавно писала пробник, написала плохо, никогда не понимала функции, сейчас села, нашла эту статью, все переписала, попробовала решить и все получилось. У меня улыбка до ушей, спасибо огромное
Артемий
04 февраля 2019
Статья написана классно как всегда, но очень много важных моментов скрыто. И по этой причине не могу сказать что статья хорошая (но все равно лучше чем 90% всех тех что можно найти в инете). Откройте плиз область «Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене». Хотя бы один пример.