какое полное название качественного реагента

Химические реактивы. Понятия и классификация

Химические реактивы – это вещества, которые используются в химических и медицинских лабораториях для анализа веществ, приготовления растворов, проведения реакции, изготовлении красителей, моющих средств, ароматизаторов и т.п. Реактивы делятся на несколько основных видов:какое полное название качественного реагента

Органические реагенты бывают трех видов: растворители; кислоты; соли и соединения. Чаще всего они используются для титриметрии, люминесцентного анализа, фотометрии и др. Преимуществом данных реактивов, пожалуй, является их высокая чувствительность и избирательность, благодаря которым можно использовать определенный реагент для определения какого-то одного иона даже в присутствии мешающих ионов.

Неорганические реагенты – это соли, кислоты, оксиды, гидроксиды, металлы и неметаллы. Реактив Несслера также является неорганическим веществом.

Аналитические реактивы используют для приготовления некоторых растворов и проведения аналитических опытов в учебных и научно-исследовательских заведениях.

Растворители в свою очередь тоже делятся на органические и неорганические. Они могут быть как одним веществом, так и смесью из двух, трех и т.д.

Индикаторы подразделяются на 4 группы: металлоиндикаторы; редокс-индикаторы; кислотно-основные и адсорбционные индикаторы. Меняя цвет раствора, в который их добавляют, они показывают, какая реакция произошла в растворе и какие ионы там присутствуют. Индикаторы по-разному проявляют себя в разных pH и при образовании комплексов, осадков и других соединений.

Практически все вещества в природе имеют в себе примеси. На заводе по производству реактивов, прежде чем получить нужное вещество, оно проходит множество этапов обработки. В связи с этим полученный реактив не всегда получается чистым и имеет до 5% примесей. По степени чистоты все химические реактивы классифицируются на 5 групп:

какое полное название качественного реагента

Помимо общепринятых сокращений, на банках с веществами ставятся метки – цветные полосы, которые помогают быстро сориентироваться, какой чистоты это вещество. Технические реактивы – это реактивы, содержащие в себе около 5% примесей и только 95% основного вещества. Эта квалификация считается самой низшей. На упаковке метка обозначается коричневым цветом.

Чистые реактивы содержат в себе от 98% основного вещества. Полоса на упаковке обозначается зеленым цветом.

Чистый для анализа реактив должен содержать в себе много больше 98% основного компонента и минимальное количество примесей. Цвет для такого реактива – синий.

Химически чистые реактивы являются высшей степенью чистоты реактива с содержанием в себе 99 и более процентов. Цвет – красный.

Примеси в растворах мешают проведению анализа, приготовлению растворов и т.д. Чем их больше, тем менее точным получится результат проделанного опыта. Особо чистые реактивы содержат настолько малую долю примеси, что ошибки такого рода практически сводятся к нулю.

ГСО и Стандарт-титры

ГСО – это некий образец вещества, либо материала, по химическому составу и физическим свойствам который схож с какой-то группой веществ или материалов и прошедший метрологическую аттестацию. Государственный стандартный образец нужен для метрологического анализа объектов окружающей среды, химической и нефтяной продукции.

какое полное название качественного реагентаСтандарт-титры представляют собой запаянные ампулы или пластиковые флаконы с определенным количеством какого-либо вещества и служат для приготовления раствора с определенной концентрацией или с определенным значением pH, в случае со стандарт-титрами для приготовления буферных растворов. Приготовление растворов с помощью стандарт-титра происходит следующим образом: в мерную колбу, объемом 1000 мл (или другого объема, указанного в паспорте), помещают лабораторную воронку, в которую вставляется стеклянный бойок, с помощью которого пробивается запаянная часть ампулы с одного конца, затем с другого. Все содержимое ампулы переносится в колбу через воронку, путем промывания ампулы дистиллированной водой. Важно, чтобы все содержимое ампулы перешло в колбу. Далее объем доводят до метки на мерной колбе. Готовые растворы хранят в плотно закрытой лабораторной посуде в темном месте.

Все химические реактивы по степени опасности согласно СанПиН и ГОСТу делятся на классы:какое полное название качественного реагента

Приготовление растворовкакое полное название качественного реагента

Все вещества обладают таким свойством, как растворимость. Растворимость вещества выражается в граммах вещества на 100 граммов раствора (растворителя) – сколько граммов растворенного вещества содержится в 100 граммах раствора (растворителя).

Для приготовления раствора заданной концентрации необходимо пипеткой перенести нужный объем вещества в мерную колбу заданного объема и довести до метки дистиллированной водой. Для расчёта можно воспользоваться формулой C1V1=C2V2, где C1 – концентрация исходного раствора, а V1 – его объем; C2 – необходимая концентрация, а V2 – неизвестное, т.е. тот объем, который нужно найти для конечного раствора: V2= C1V1/ C2. Самое важное правильно при разбавлении концентрированных кислот – нужно добавлять кислоту в воду, а не наоборот: это чревато такими последствиями, как разбрызгивание кислоты и попадание ее на кожу и одежду. Это правило необходимо знать не только химикам, но и домашним хозяйкам, которые в быту пользуются разбавлением кислот, например, уксусной.

Хранение реактивов

какое полное название качественного реагентаСуществуют реактивы, при взаимодействии друг с другом которые способны взрываться или устраивать пожар. Для этого необходимо знать такие реактивы и хранить отдельно. Во всех коробках с реактивами есть инструкция по хранению данных веществ. Следует неукоснительно следовать ей, во избежание не только серьезных последствий, но и простой порчи реактивов из-за неправильного хранения. Также следует уделить внимание и тем регентам, которые относятся к какому-либо классу опасности, дабы избежать отравления или даже летального исхода.

Реактивы, которые нельзя хранить в стеклянных тарах (например, плавиковая кислота и щелочи), должны хранится в пластиковых бутылях.

какое полное название качественного реагента

Вещества, которые разлагаются или меняют свои свойства под действием света, хранятся в темных или желтых стеклянных тарах.

Некоторые реактивы нуждаются в герметичном хранении, добиться этого можно с помощью промазывания пробок парафином. На каждой таре необходимо указывать название, концентрацию и срок годности данного реактива. Сливать отработанные реактивы нужно в специально отведенные для этого склянки для последующей переработки или утилизации.

Химические лаборатории должны быть оборудованы специальными вытяжными и обычными шкафами для хранения, а также хорошо вентилируемыми помещениями, в которых непосредственно хранятся все реактивы.

Источник

химические реактивы классификация

Химические реактивы / chemical reagents: определение понятия, классификация по различным признакам

Химическими реактивами называются вещества, которые используются для проведения различных синтезов, а также для количественного и качественного анализа в лабораторных условиях, другими словами, помогают качественно выявить отдельные элементы, их группы или целые молекулы, которые входят в состав исследуемого вещества.

Химические реакции, анализ веществ и синтез веществ

Часто реактивы химические, участвующие в химических реакциях при анализе и синтезе различных веществ, называют реагентами.

Неорганические, органические и содержащие радиоактивные изотопы

Химреактивы разделяют на группы и в зависимости от их состава: неорганические реактивы, органические реактивы, реактивы, содержащие радиоактивные изотопы, и др. Из числа химических реактивов по назначению выделяют, прежде всего, аналитические реактивы, а также индикаторы химические и органические растворители.

Классификация химических реактивов и хим. веществ по группам и типам, степени опасности и воспламенения.

Все химреактивы делятся на группы

Марки химических реактивов: Х., Ч.Д.А., Х.Ч.

Зачастую различают следующие степени чистоты химических реактивов:

Многие химические реактивы специально производятся для лабораторного использования, но находят применение и очищенные химические продукты, выпускаемые для промышленных целей.

Чистота химических реактивов в России регламентируется Государственными стандартами (ГОСТ) и техническими условиями (ТУ).

Reagents grade (реактивная чистота)

Существует даже такое широко применяемое выражение, как Reagents grade (реактивная чистота). Выражение «технический продукт» применяется как синоним определения «неочищенный». Но в большинстве случаев такое представление о технических продуктах давно устарело.

По степени чистоты химические реактивы делятся на следующие категории:

Квалификацию «чистый» (ч.) присваивают реактивам химическим с содержанием осн. компонента не ниже 98,0%. Для реактивов химических квалификации «чистый для анализа» (ч. д. а.) содержание осн. компонента м. б. выше или значительно ниже 98,0% в зависимости от области применения.

Химреактивы особой чистоты оптическое стекловарение, волоконная оптика

Химреактивы особой чистоты используются для специальных целей, например, в оптическом стекловарении или в волоконной оптике.

Для различия подклассов веществ особой чистоты введена маркировка. На таре с реактивом каждого подкласса имеется этикетка особого цвета:

ПодклассЦвет этикеткиСодержание основного компонента, %Содержание примесей, %
А1Коричневый99,910-1
А2Серый99,9910-2
B3Синий99,99910-3
B4Голубой99,999910-4
B5Темно-зеленый99,9999910-5
B6Светло-зеленый99,99999910-6
C7Красный99,999999910-7

Другие методы классификации веществ особой чистоты

Существуют и другие методы классификации веществ особой чистоты. Так, в научно-исследовательском институте химических реактивов и особо чистых веществ (ИРЕА) предложено характеризовать чистоту препарата по суммарному содержанию определенного числа микропримесей.

Особо чистый SiO2 нормируется десять примесей

Например, для особо чистого SiO2 нормируется десять примесей (Al, B, Fe, Ca, Mg, Na, P, Ti, Sn, Pb), причем общее содержание их не превышает 1·10-5. Для такого препарата устанавливается индекс «ос. ч. 10-5». Для упаковки препаратов высокой чистоты необходимо полностью

отказаться от стеклянной посуды, являющейся источником загрязнений. Поэтому чаше всего используют полиэтиленовые банки, еще лучше применять банки из тефлона (фторопласт-4).

или количественно определены при добавлении реактива. Специфическими химическими реактивами, в свою очередь, считаются такие реагенты, которые дают характерную реакцию с анализируемым веществом или ионом в известных условиях, независимо от присутствия других ионов.

Для контроля качества питьевой воды и воды источников водоснабжения применяют специальные наборы химических реактивов.

Наборы химических реактивов

В наборы химических реактивов включены эталонные растворы определяемых ионов для градуировки измерительных приборов и оценки точности измерений.

Химреактивы в наборах расфасованы по принципу точных навесок (фиксаналов) и приготовление рабочих растворов сводится к разведению химических реактивов, входящих в набор, дистиллированной водой по прилагаемой к набору инструкции.

Техника безопасности – ТБ при работе с едкими, легковоспламеняющимися, токсичными веществами.

Многие химические вещества являются опасными не только для здоровья, но и для жизни людей. Их неправильное использование грозит необратимыми последствиями, поэтому крайне важно знать и применять на практике правила техники безопасности при работе с химреактивами.

Некоторые препараты, особо чувствительные к воздуху, например, металлические рубидий и цезий, сохраняют в запаянных стеклянных ампулах, которые заполнены инертным газом или водородом.

На любых ёмкостях, в которых содержатся химические препараты, должны быть наклеены этикетки с указанием веществ.

Емкости и сосуды с химреактивами

Емкости и сосуды с химреактивами следует брать одной рукой за горлышко, придерживая снизу за дно другой рукой.

Не заглядывать в открытые нагреваемые ёмкости сверху, чтобы избежать поражения в случае выброса горячей массы.

Категорически запрещается использовать любую химическую посуду для питья – это может привести к тяжелейшим отравлениям.

Любые эксперименты с веществами, опасными для здоровья, ядовитыми или имеющими неприятный запах, следует непременно проводить под тягой.

Ни в коем случае не пробовать никакие химические реактивы на вкус. Нельзя также ртом набирать в пипетку едкие или ядовитые жидкости, для этой цели следует использовать грушу.

Разбавление серной кислоты следует производить приливанием кислоты в воду и ни в коем случае не наоборот. В качестве посуды нужно использовать термостойкие стаканы, потому что в этом процессе выделяется значительное количество тепла.

Для работы с крепкими кислотами обязательно нужно пользоваться защитными очками и, желательно, длинным резиновым фартуком.

Категорически запрещается проводить нагревание на сетке, на голом огне, в открытых сосудах или вблизи открытого пламени горючих и легковоспламеняющихся веществ, в частности, бензола, этилового спирта, ацетона, уксусно-этилового эфира и др.

Летучие жидкости органического происхождения могут легко воспламеняться даже при отсутствии открытого огня, просто при попадании на раскаленную поверхность. Легковоспламеняющиеся жидкости также нельзя выливать в банки или вёдра для мусора – это может привести к возгоранию от случайно брошенной спички.

Для слива отработанных жидкостей (агрессивных, ядовитых и легковоспламеняющихся) следует применять специально предназначенные ёмкости.

Правила хранения химических реактивов, реагентов

Обращение со многими химическими реактивами требует неукоснительного соблюдения правил по технике безопасности.

Для обеспечения безопасности большое значение имеет правильное размещение, хранение и использование химических реактивов.

На каждой таре с химическим реактивом должна быть наклеена этикетка с полным названием и химической формулой препарата, кроме того, на склянке с огнеопасными веществами должно быть указано: «Огнеопасно» на этикетке. Хранение химических веществ без этикеток не разрешается.

Различные способы очистки химических реактивов: физические, химические, с помощью ионообменных смол. Чаще всего в лабораторной практике используются при разделении и очистке веществ следующие приёмы: перегонка и сублимация, экстракция, кристаллизация и перекристаллизация, высаливание.

Ионный обмен и адсорбция

Интересно, что наряду с обычными ионообменными смолами можно применять окисленный уголь, получаемый при обработке угля азотной кислотой или другими окислителями.

Экстракция

Экстракционный метод разделения веществ применяют уже в течение многих десятилетий, особенно в аналитической химии, но только в последнее время он приобрел очень важное значение для получения чистых и сверхчистых веществ. Метод основан на извлечении одного из компонентов раствора с помощью несмешивающегося с раствором органического растворителя.

Экстрагируемый компонент распределяется между раствором и слоем органического растворителя в отношении, зависящем от коэффициента распределения:

Достоинства экстракционного метода:

Этот метод очистки основан на различии растворимости примеси в твердом веществе и в расплаве. Образец твердого вещества (например, стержень из металла, подлежащего очистке) медленно передвигают через узкую зону нагревания, при этом происходит постепенное расплавление отдельных участков образца, находящихся в данный момент в зоне нагревания. Примеси, содержащиеся в образце, накапливаются в жидкой фазе, вместе с ней передвигаются вдоль образца и по окончании плавки оказываются в конце образца. Как правило, зонную плавку повторяют многократно. Зачастую образец движется через несколько обогреваемых зон, что позволяет в несколько раз сократить время очистки.

Зонная плавка

Достоинствами зонной плавки являются простота аппаратурного оформления, сравнительно невысокие температуры проведения процесса (по сравнению с ректификацией) и высокая эффективность очистки. Таким путем, например, очищается германий до содержания примесей порядка 10-8%. С каждым годом все большее число веществ, предназначенных для самых ответственных целей, проходит очистку методом зонной плавки.

С равным успехом можно очищать неорганические и органические продукты. Правда, зонная плавка не всегда может быть успешно использована. Например, зонной плавкой нельзя отделить Au от Ag. Аналогичный принцип положен в основу так называемого метода вытягивания Чохральского.

Транспортные реакции

Этот метод широко используется при получении особо чистых веществ для полупроводниковой техники и радиоэлектроники. Принцип его состоит в том, что очищаемое твердое или жидкое вещество А, взаимодействует по обратимой реакции с газообразным веществом В, образует газообразный продукт С, переносимый (транспортируемый) в другую часть системы, где вследствие изменения условий происходит его разложение с выделением чистого вещества А:

Классическим примером транспортной реакции является очистка металлического никеля через его карбонил (метод Монда). Порошок никеля обрабатывают при 45-50 °С окисью углерода: Ni + 4CO ⇆ Ni(CO) 4

Газообразный Ni(CO) 4 поступает в другую часть реакционного аппарата, где при 180-200 °С разлагается, давая чистый никель, а CO снова направляют в процесс.

Метод транспортных реакций удобен для очистки от элементов, отличающихся по своим химическим свойствам от основного элемента. Достоинством транспортных реакций является возможность проведения всех операций в стерильных условиях, поскольку эти реакции проходят в замкнутом объеме и без больших количеств реагентов.

Перекристаллизация

Из всех методов очистки солей и других твердых электролитов и органических соединений на первое место по применимости следует поставить перекристаллизацию. Это связано как с простотой процесса, так и с его эффективностью (во всяком случае, при грубой очистке).

Такова элементарная схема процесса перекристаллизации.

В действительности перекристаллизация протекает гораздо сложнее, так как ей может сопутствовать ряд процессов, значительно снижающих эффективность очистки при кристаллизации. Так, ионы или молекулы примесей могут быть механически захвачены образующимися кристаллами основного вещества (окклюзия, инклюзия).

Неизбежна также большая или меньшая адсорбция ионов примесей на поверхности кристаллов, хотя при образовании крупных кристаллов, имеющих небольшую удельную поверхность, роль адсорбции невелика.

Эффективность очистки вещества перекристаллизацией зависит также от его растворимости. При растворимости вещества, лежащей в пределах 5-30%, очистка происходит значительно полнее, чем при растворимости 75-85%. Отсюда следует, что перекристаллизация нецелесообразна при очистке очень легкорастворимых веществ.

Дистилляция и ректификация

Часто приходится сталкиваться с системами, при перегонке которых все компоненты отгоняются в неизменном соотношении (азеотропные смеси). В этом случае разделения не происходит и очистка перегонкой невозможна. В качестве примеров азеотропных смесей можно привести водные растворы НСl (20,24% HCl) и этилового спирта (95,57% С2Н5ОН).

Для получения чистых веществ (особенно при глубокой очистке) вместо простой дистилляции предпочитают использовать ректификацию, т. е. процесс, при котором происходит автоматическое сочетание процессов дистилляции и конденсации. В ректификационной колонне пар встречается с различными фракциями конденсата, при этом часть менее летучего компонента конденсируется из пара в жидкость, а часть более летучего компонента переходит из жидкости в пар.

Проходя через множество полок («тарелок») ректификационной колонны, пар успевает настолько обогатиться более летучим компонентом, что на выходе из колонны практически содержит только этот компонент (или азеотропную смесь).

Ректификация используется для очистки не только жидких препаратов. Общеизвестно применение ректификации для разделения сжиженных газов (кислород, азот, инертные газы и т. д.).

Для разделения на составные части растворов жидкостей или твердых тел в жидкости чаще всего пользуются перегонкой (дистилляцией). В основе этого способа лежит различная летучесть составных частей при кипячении раствора. К перегонке прибегают также для определения температуры кипения жидкости. Перегонку ведут или при обыкновенном давлении, или в разреженном пространстве. Перегонку в прежнее время очень часто производили в ретортах стеклянных, глиняных или металлических. Реторты нагревали на очаге, а пары сгущали в баллоне-приемнике, охлаждаемом водой. В последнее время применение реторт для перегонки стало крайне ограничено. Неудобство их заключается, главным образом, в том, что в приемник могут легко попадать брызги кипящей жидкости. Кроме того, они не предоставляют достаточно места для термометра; наконец, теперь существуют для этой цели более простые и дешевые приспособления. Реторты поэтому применяют теперь лишь в исключительных случаях.

В настоящее время перегонка обыкновенно ведется в баллоне с припаянной сбоку трубкой. Перегонка при помощи разного рода бань идет равномернее, но часто медленнее, чем на голом огне; вообще, выбор того и другого способа нагревания зависит от многих обстоятельств.

Перегонку веществ легко воспламеняющихся, например, эфира, сероуглерода и т. п., нужно вести с большими предосторожностями, приемник хорошо охлаждать, закрывать, ставить подальше от огня и пр. При перегонке часто жидкость, вследствие перегревания, кипит неправильно, толчками, так что может переброситься в приемник. Чтобы избежать этого, в баллон бросают заранее какое-либо пористое тело, напр. пемзу или тонкие капиллярные трубки, иногда тальк, платину и пр. В этих условиях парообразование идет правильно и вся поверхность жидкости покрывается мелкими пузырьками.

Возгонка, сублимация.

Многие твердые тела уже при нагревании ниже температуры плавления улетучиваются и садятся на холодных стенках, как говорят, сублимируются. Одни улетучиваются легче, другие труднее; этим и пользуются для разделения их; вещества кристаллические могут дать при этом прекрасно образованные кристаллы.

Другой прием для разделения рассматриваемых смесей основан на употреблении растворителей. Здесь можно различить два случая: растворитель извлекает какие-либо одни вещества, не трогая других, или в раствор переходят все и затем разделяются соответственными приемами. В первом случае прежде всего стараются, чтобы взятое вещество было, по возможности, лучше измельчено, чтобы не был затруднен доступ растворителю. Обработка растворителем ведется, как при растворении. Количество растворителя находится в зависимости от натуры вещества, степени измельчения, температуры и пр., но оно по возможности должно быть мало, чтобы раствор получился крепче. Удобно заставлять растворитель фильтроваться через слой извлекаемого вещества, напр. его помещают в трубку с оттянутым концом и приливают растворитель. Если он летуч, то все это делается в закрытом пространстве. Нагревание значительно облегчает извлечение (экстрагирование). Существует множество приборов, где экстрагирование ведется одним и тем же количеством растворителя, который отгоняется при самой операции. Очень удобен прибор Сокслета.

Другой способ разделения состоит в кристаллизации из растворов.

Сущность его заключается в следующем: вещество растворяют, раствор затем охлаждают или медленно испаряют, тогда выделяются вещества менее растворимые или (при одинаковой растворимости) те, которые находятся в большем количестве. Кристаллизация ведется до известного предела; жидкость потом удаляется с кристаллов, они вновь растворяются и раствор вновь подвергают кристаллизации и т. д.

С каждой кристаллизацией кристаллы все более и более становятся однородными по составу, если, понятно, была взята смесь, способная к разделению кристаллизацией. В качестве растворителя выбираются такие жидкости, в которых растворимость выделяемых солей с температурой сильно изменяется. По большей части применяется вода, спирт, эфир, бензол, ацетон, хлороформ и пр. или их смеси. Для растворения берут как можно меньше жидкости и при нагревании получают насыщенный или близкий к насыщению раствор. Нерастворимый остаток отфильтровывают, употребляя воронку с нагреванием. Кристаллизация производится в стакане или в кристаллизаторах.

Когда хотят получить большие и хорошо образованные кристаллы, насыщенный при нагревании раствор оставляют спокойно и по возможности медленно охладиться; но такие кристаллы постоянно заключают в себе следы растворителя. Чтобы получить мелкие кристаллы, раствор охлаждают при помешивании. Если вещество образует пересыщенные растворы, то вызывают кристаллизацию, бросив в раствор кристаллик выделяемого вещества. В некоторых случаях кристаллизация производится при выпаривании, напр. когда вещество почти одинаково растворимо при нагревании и обыкн. темп. Кристаллы отделяются от маточного раствора указанным уже выше образом. Маточный раствор подвергается дальнейшей кристаллизации или нет, смотря по обстоятельствам. В редких случаях, получив смесь кристаллов, их разделяют пинцетом под лупой или на основания их удельного веса, бросая их, напр., в такую жидкость, в которой одни тонут, а другие нет.

Обезвоживание органических реактивов.

Самым распространённым обезвоживающим средством для органических жидкостей, содержащих небольшое количество воды, является прокалённый хлористый кальций, но им нельзя сушить спирты и амины.

Абсолютирование спирта.

Для освобождения эфира от воды настаивают его с прокалённым СаCl2, далее с металлическим Na (до прекращения выделения пузырьков Н2), и затем отгоняют. Необходимый для обезвож-я абсолютный спирт готовится следующим образом: измельченный медный купорос прокаливают в тигле до тех пор, пока он от потери воды не примет вида белого порошка, который и всыпают в склянку со спиртом. Безводный медный купорос отнимает от спирта воду, причем делается снова синим.

Этим путём можно кроме того испытывать доброкачественность абсолютного алкоголя: прокалённый белый купорос не должен в нём синеть. При обезвоживании эфира поступают так же, как и при обезвож-и спирта. Обезвоживание начинают сразу с 100°-ного спирта в тех случаях (здесь он же является и фиксатором), когда нужная для окраски субстанция, например гликоген, растворяется в водных фиксаторах.

Возможности получения абсолютно чистых веществ.

Прежде всего следует подчеркнуть, что в практическом смысле чистота вещества понятие относительное, зависящее от назначения вещества. Так, в быту называют чистой обычную воду и уж, во всяком случае, относят к этой категории дистиллированную воду, поскольку в многочисленных случаях ее использования такая вода ведет себя как химический индивидуум. На самом деле дистиллированная вода далеко не является чистым веществом, она содержит растворенные газы, пылинки и в небольших количествах соли и кремниевую кислоту, извлеченные из стекла. Такая вода не только не может служить эталоном чистоты, но даже не может быть использована во многих ответственных работах (определение электропроводности, получение полупроводниковых материалов и т. д.).

Часто дается определение чистого вещества как физически и химически однородного материала, обладающего определенным комплексом постоянных свойств и не изменяющегося при дальнейшей очистки его самыми совершенными средствами. Однако такое определение далеко не безупречно, и оценка чистоты в сильной степени зависит от уровня развития техники. Содержание примесей в препаратах особой чистоты измеряется миллионными и миллиардными долями процента и с точки зрения практического использования такие препараты можно считать вполне чистыми. В самом деле: что значит примесь 3·10-8%? Это значит, что один атом примеси приходится на 30 миллиардов атомов вещества.

В меньшей мере известен тот факт, что тщательное высушивание веществ, т. е. удаление последних следов сорбированной воды, приводит к резкому изменению физических констант.

Когда метиловый спирт высушили фосфорным ангидридом в течение 9 лет, то температура кипения спирта вместо 66 оказалась 120 °С.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *