какое поле есть вокруг каждого предмета

Представление о магнитном поле

Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.

Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.

За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.

В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.

какое поле есть вокруг каждого предмета

Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.

Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.

какое поле есть вокруг каждого предмета

Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.

Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.

какое поле есть вокруг каждого предмета

Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.

Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.

Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.

Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:

какое поле есть вокруг каждого предмета

Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).

Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.

А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.

какое поле есть вокруг каждого предмета

Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.

Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.

Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:

какое поле есть вокруг каждого предмета

При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.

Модель магнитного поля движущегося заряда

Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.

Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.

какое поле есть вокруг каждого предмета

Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.

какое поле есть вокруг каждого предмета

Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.

А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.

какое поле есть вокруг каждого предмета

Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.

Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».

Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.

какое поле есть вокруг каждого предмета

И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.

У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).

Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:

какое поле есть вокруг каждого предмета

Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.

какое поле есть вокруг каждого предмета

Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.

Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia

UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.

Источник

Электрическое поле и способы его описания

Если снять шерстяной свитер в сухую погоду, мы услышим треск. А если снимать свитер в темноте, иногда можно даже заметить искорки электрических разрядов.

Если расчесывать в сухую погоду сухие волосы пластмассовой расческой, то происходит ее электризация трением. Наэлектризованная расческа получит заряд и сможет притягивать небольшие кусочки бумаги.

Проделывая опыт с расческой и сухими волосами, можно убедиться, что наэлектризованные волосы и расческа буду притягиваться. Мы наблюдаем притяжение, значит, волосы и расческа обладают противоположными зарядами. Приближая расческу к волосам, обнаружим, что притяжение между ними возрастает.

какое поле есть вокруг каждого предмета

Этот опыт позволил убедиться, что заряды действуют друг на друга на расстоянии. Чем ближе заряды находятся, тем сильнее их взаимное действие друг на друга.

Существует, так же, безударное взаимное действие тел – их притяжение, или отталкивание. К примеру, в механике, силу притяжения между телами, имеющими массу, вычисляют с помощью закона всемирного тяготения.

А силу взаимодействия электрических зарядов описывает закон Кулона.

Взаимодействие зарядов передается без участия вещества

Заряды будут притягиваться и отталкиваться не только в воздухе, но, даже в безвоздушном пространстве. В этом легко убедиться, если поместить заряженный электроскоп под колокол и откачать из-под колокола воздух. Полоски бумаги, имеющие одинаковые заряды, все так же, продолжат отталкиваться, независимо от того, в воздухе ли они находятся, либо в безвоздушном пространстве.

какое поле есть вокруг каждого предмета

Это значит, что передача взаимодействия зарядов происходит не через вещество.

Ученые из Англии – Майкл Фарадей и Джеймс Максвелл, долгое время изучали электрические заряды. Они выяснили, что заряды окружены особым видом материи, которую они назвали электрическим полем.

Любой заряд окружен электрическим полем — особым видом материи.

Теории дальнодействия и близкодействия

Физики выдвигали различные теории, пытаясь объяснить взаимодействие зарядов. Наибольшее распространение получили две – их называют теориями близкодействия и дальнодействия.

Дальнодействие

Теория дальнодействия сообщает, что один заряд действует на другой заряд непосредственно. То есть, чтобы передать действие одного заряда на другой, посредники не нужны.

Кроме того, взаимодействие происходит мгновенно на любых расстояниях. Это значит, что если убрать один из взаимодействующих зарядов, то его действие на оставшийся заряд прекратится мгновенно.

Близкодействие

В противоположность этой теории Майкл Фарадей предложил свою теорию близкодействия.

Эта теория заявляет о том, что непосредственно действовать друг на друга заряды не могут. То есть, для передачи своего воздействия заряду нужна некоторый помощник. И каждый заряд создает в пространстве вокруг себя этого помощника. Фарадей назвал его электрическим полем.

На другие заряды будет действовать не сам заряд, а поле, созданное этим зарядом. Такое поле распространяется в пространстве не мгновенно, а с конечной скоростью.

Примечание: Как выяснилось позже, это очень большая скорость – триста тысяч километров в секунду. Ее называют скоростью света.

Поэтому, если один из взаимодействующих зарядов быстро убрать, то второй заряд узнает о его исчезновении не мгновенно, а через некоторое, пусть небольшое, время.

Получается, что взаимодействие зарядов протекает не непосредственно, а в виде цепочки. Каждый заряд создает вокруг себя поле, именно поле действует на другой заряд, помещенный в него.

А сила, действующая на заряд, расположенный в какой-либо точке пространства, зависит от характеристик поля в этой точке.

какое поле есть вокруг каждого предмета

В настоящее время общепринятой теорией, объясняющей взаимодействие зарядов, является теория близкодействия Фарадея. Так как эта теория полностью подтвердилась экспериментально.

Примечание: Кроме электрических существуют, так же, магнитные поля. В отличие от электростатического, магнитное поле не имеет своих магнитных источников. Оно возникает в пространстве вокруг движущихся зарядов. То есть, магнитное поле – это поле электрических зарядов, находящихся в движении.

Джеймс Клерк Максвелл в середине 19-го века показал, что электрическое и магнитное поля связаны и это электромагнитное поле распространяется в пространстве с очень большой, но конечной скоростью.

Поле и вещество – это два вида материи

Мир, окружающий нас, материален. Значит, материя – это то, что существует реально, независимо от того, наблюдаем ли мы за ней, или нет.

Она может проявлять себя в виде двух частей — вещества и поля. Нас окружает вещество, а атомы и молекулы — это мельчайшие единицы вещества.

Поле – это еще один вид материи. Поле веществом не является, однако, оно существует реально.

какое поле есть вокруг каждого предмета

Как обнаружить электрическое поле

Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.

Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.

В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.

какое поле есть вокруг каждого предмета

Примечания:

Мы можем обнаружить электрическое поле благодаря его действию на другие заряды. Электрическая сила — это сила, с которой поле действует на внесенный в него пробный заряд.

Примечание: Не следует путать пробный и элементарный заряд.

Две характеристики электростатического поля

Поле, окружающее неподвижные заряды, называют электростатическим полем.

Электрическое поле можно описать двумя величинами – векторной величиной — напряженностью \(\large \vec\) и скалярной величиной – потенциалом \(\large \varphi \).

какое поле есть вокруг каждого предмета

Примечание: Применяют, так же, еще одну характеристику электрического поля — вектор электрической индукции \(\large \vec\).

Описываем электрическое поле с помощью вектора

Рассмотрим два неподвижных точечных электрических заряда. Один заряд обозначим большой буквой Q:

\(\large Q \left( \text<Кл>\right) \) – этот заряд создает вокруг себя электрическое поле.

Чтобы обнаружить это поле, на некотором расстоянии от заряда Q поместим еще один заряд.

\(\large r \left( \text<м>\right) \) — расстояние между зарядами.

\(\large q \left( \text<Кл>\right) \) — второй заряд, будем называть его пробным.

Примечания:

Свойство 1: Поле, создаваемое зарядом, влияет только на другие заряды. Это поле не влияет на заряд, породивший его.

Благодаря своим электрическим полям заряды q и Q действуют друг на друга. Силу их взаимодействия можно рассчитать по закону Кулона:

\(\large F \left( H \right) \) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

Для нас важным сейчас является само наличие взаимодействия. Чтобы не выяснять, будет ли сила воздействия силой притяжения, или отталкивания, каждый заряд поместим внутрь модуля.

Свойство 2: Электрическое поле, принадлежащее заряду Q в какой-либо точке пространства, не зависит от того, есть ли в этой точке какой-то другой заряд.

Что такое напряженность поля

Введем физическую величину, которая описывает поле заряда Q и не зависит от пробного q заряда. Для этого разделим обе части уравнения на пробный q заряд:

Обратите внимание, что правая часть полученного уравнения не зависит от пробного заряда. Потому, что пробный заряд, обозначенный малой буквой q, не входит в правую часть. Правая часть зависит только от заряда, создавшего поле и обозначенного большой буквой Q.

Введем обозначение для дроби, расположенной в левой части полученного уравнения:

\( \large \vec \left( \frac <\text<м>> \right) \) – напряженность электрического поля, измеряется в Вольтах, деленных на метр, или в Ньютонах, деленных на Кулон;

Напряженность электростатического поля в выбранной точке пространства – это векторная величина. Она равна отношению силы, действующей на пробный заряд, находящийся в выбранной точке поля к величине этого заряда. В различных точках поля силы могут быть разными, значит, будут различаться и напряженности в этих точках.

Чтобы найти (длину) модуль вектора E напряженности поля, создаваемого точечным зарядом, приравняем к величине E правую часть полученного выше выражения:

\(\large k = 9\cdot 10^ <9>\left( H \cdot \frac<\text<м>^<2>><\text<Кл>^<2>>\right)\) – постоянная величина;

\(\large |Q| \left( \text<Кл>\right) \) — заряд, создающий в пространстве вокруг себя электрическое поле;

\(\large r \left( \text<м>\right) \) – расстояние от заряда Q до точки, в которую мы поместили пробный заряд.

какое поле есть вокруг каждого предмета

Примечание: Поле мы измеряем в той точке, в которую помещаем пробный заряд.

Напряженность – это вектор. Две главные характеристики вектора – его длина и направление.

Величина \( \large \vec \) является силовой характеристикой электрического поля. Чем больше напряженность E, тем больше сила F, действующая на пробный заряд, помещенный в это поле.

Если на заряд 1 Кулон, помещенный в электростатическое поле, действует сила 1 Ньютон, то напряженность этого поля равна единице.

По третьему закону Ньютона, силы, с которыми взаимодействуют два заряда, будут равными.

Каждый неподвижный заряд создает свое собственное электростатическое поле. Если заряды имеют различные величины, то напряженности их полей различаются.

Куда направлен вектор Е

Обратим в очередной раз внимание на формулу:

Заряд q – скалярная величина. А сила F – векторная.

Воспользуемся математическими свойствами векторов: разделив вектор F на скаляр q, мы получим новый вектор E:

какое поле есть вокруг каждого предмета

Вектор E сонаправлен с вектором силы, действующей на помещенный в поле пробный заряд. Для положительного заряда его вектор E направлен от этого заряда. А для отрицательного заряда его вектор E направлен к этому заряду.

Примечание: Однонаправленные или противоположно направленные, то есть, параллельные векторы, называют коллинеарными. У них может отличаться длина.

Как изменяется длина вектора Е с расстоянием

Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:

\[\large E = k \cdot \frac > \]

Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.

А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.

На рисунке 9 отражено изменение длины вектора напряженности. Обратите внимание на направление этого вектора и знак заряда:

какое поле есть вокруг каждого предмета

Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:

Подобную зависимость на графике можно отразить такой кривой:

какое поле есть вокруг каждого предмета

Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.

Как по известной напряженности вычислить силу, с которой поле действует на заряд

Если известна напряженность поля, то силу, которая действует на заряд, помещенный в это поле, можно вычислить по формуле:

\[\large \boxed < \vec\cdot q = \vec > \]

\(\large q \left( \text<Кл>\right) \) – заряд, положительный, или отрицательный, помещенный в выбранную точку пространства, в которой существует электрическое поле;

Формула записана в векторном виде. Это значит, что она позволяет найти обе характеристики силы, действующей на заряд — направление вектора силы и его модуль.

Умножив заряд на напряженность в выбранной точке поля, можно вычислить силу, действующую на заряд со стороны поля.

какое поле есть вокруг каждого предмета

Так как напряженность входит в формулу для вычисления силы, ее называют силовой характеристикой электрического поля.

Зная силу, мы можем по второму закону Ньютона вычислить ускорение заряда. А с помощью формул кинематики для равнопеременного движения, зная ускорение, можно определить перемещение заряда или траекторию его движения.

Как изобразить электрическое поле единичного заряда

Пусть неподвижный положительный точечный заряд создает в пространстве, окружающем его, электрическое поле. Нарисуем несколько векторов напряженности этого поля.

Красной точкой на рисунке обозначен заряд. А черным цветом обозначены точки, в которые помещали пробный заряд и измеряли поле.

какое поле есть вокруг каждого предмета

По длине векторов можно сделать вывод, чем ближе к заряженному телу расположен пробный заряд, тем сильнее на него действует поле. Увеличив же расстояние между заряженным телом и пробным зарядом, заметим, что действие поля уменьшится.

Поля, действие которых будет различаться в разных точка пространства, называют неоднородными. Значит, электрическое поле вокруг точечных зарядов, неоднородное.

Изображаем неоднородное электрическое поле силовыми линиями

Как видно, мы можем изобразить поле с помощью нарисованных в различных точках векторов напряженности. Однако, есть более удобный способ.

Присмотревшись к рисунку, можно заметить, что векторы напряженности, окружающие заряд, располагаются на некоторых прямых. Эти прямые обозначены пунктирными линиями на рисунке. Из называют линиями электрического поля, или линиями напряженности.

Примечание: Изображать электростатическое поле удобнее не с помощью векторов, а с помощью линий напряженности.

Если заряд единственный, а поблизости от него других зарядов нет, то его поле изображают радиально расходящимися во все стороны линиями.

какое поле есть вокруг каждого предмета

Линии положительных зарядов направлены от них, а линии отрицательных зарядов – к этим зарядам, так же, как векторы напряженности.

Мы помним, что вектор напряженности описывает силу, с которой поле, созданное зарядом может действовать на другие заряды. Поэтому, линии напряженности, так же, часто называют силовыми линиями поля.

Как выглядит поле двух взаимодействующих зарядов

Рассмотрим теперь поле взаимодействующих зарядов — положительного и отрицательного.

какое поле есть вокруг каждого предмета

Как видно, линии взаимодействующих зарядов искривляются и, их конфигурация искажается.

Мы знаем, что поле одного точечного заряда неоднородное. Поле двух взаимодействующих зарядов, так же, неоднородное.

Теперь проведем обобщение, на рисунке неоднородное поле изображают:

По мере удаления от зарядов расстояние между линиями будет увеличиваться. Чем дальше линии располагаются одна от другой в некоторой области пространства, тем слабее поле в этой области.

Будет ли поле действовать на заряд, расположенный между силовыми линиями

У начинающих изучать электростатику часто возникает вопрос, а будет ли на заряд, находящийся на рисунке между силовыми линиями, действовать сила с стороны электрического поля? Конечно, будет.

Не имеет значения, находится ли заряд на силовой линии на рисунке, или в пространстве между силовыми линиями. Поле существует во всех точках рассматриваемой области, поэтому на заряд будет действовать сила в любой точке поля, независимо, находится ли эта точка на силовой линии, или нет.

Примечание: Силовые линии – это всего лишь способ графического обозначения поля в некоторой области пространства. Поле существует во всех точках пространства, а не только на силовых линиях.

Свойства силовых линий электростатического поля

Можно выделить два свойства силовых линий поля, создаваемого неподвижными зарядами:

какое поле есть вокруг каждого предмета

Примечание: Существует, так же, вихревое электрическое поле. Это поле не связано с неподвижными зарядами. Его линии замкнуты сами на себя. Картина такого поля представляет собой нечто похожее на вихрь, отсюда и появилось его название. Подробнее о вихревом электрическом поле написано в статье, посвященной электромагнитным волнам.

Поле сильней там, где его линии располагаются ближе одна к другой, а так же там, где длиннее вектор Е.

Где заканчиваются линии единственного заряда

Линии электростатического поля, начавшись на положительном заряде, должны закончиться на каком-либо отрицательном заряде.

Если поблизости от какого-либо заряда не располагается второй заряд, имеющий противоположный знак, то линии поля такого одинокого заряда уходят в бесконечность.

Там, далеко, на бесконечности, всегда найдется заряд, имеющий противоположный знак, на котором будут заканчиваться линии рассматриваемого одиночного заряда.

какое поле есть вокруг каждого предмета

Почему заряды называют источниками электрического поля

Электростатическое поле имеет свои электрические источники.

Нам известно, что линии электростатического поля имеют начало и конец. Они начинаются на положительных зарядах, а на отрицательных зарядах заканчиваются.

Поэтому, положительные заряды называют источниками поля, а отрицательные – стоками.

какое поле есть вокруг каждого предмета

Как изобразить однородное электрическое поле

Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.

Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.

Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.

Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.

какое поле есть вокруг каждого предмета

Если во всех точках пространства, в которых существует электрическое поле, вектор напряженности имеет одинаковое направление и длину, то это поле называют однородным.

Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.

Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.

Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).

Связь между векторами E неоднородного поля и линиями напряженности

Рассмотрим еще раз рисунок, на котором изображено поле двух взаимодействующих зарядов. Выберем на нем одну силовую линию. Вычислим длины нескольких векторов E и нарисуем их в выбранных точках, расположенных на этой линии.

какое поле есть вокруг каждого предмета

Если через каждый вектор напряженности провести прямую линию, можно заметить, что эти линии образуют семейство касательных. Такие касательные прямые линии ограничивают собой кривую. Эта кривая и будет являться силовой линией.

Теперь можно дать определение силовых линий:

Силовая линия электростатического поля – это линия, касательная к которой в любой выбранной точке будет сонаправлена с вектором напряженности электрического поля в этой же точке.

В отдельной статье будет рассказано о работе электрического поля и еще одной его характеристике — потенциале.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *