какое название у жидкой части крови

Биохимия крови

Сайт:Образовательный портал МБФ (ВолгГМУ)
Курс:Нарушения метаболизма. Биохимия специализированных тканей. (Для клин.ордов КЛД)
Книга:Биохимия крови

Оглавление

1. Общие сведения

2. свойства крови

3. Состав крови. Гематокрит

какое название у жидкой части крови

3.1. Плазма крови

Пла́зма кро́ви (от греч. πλάσμα — нечто сформированное, образованное) — жидкая часть крови, в которой взвешены форменные элементы — вторая часть крови. Процентное содержание плазмы в крови составляет 52—61 %. Макроскопически представляет собой однородную несколько мутную (иногда почти прозрачную) желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

Центрифуги-сепараторы выделяют из крови плазму. Плазма крови состоит из воды, в которой растворены вещества — белки (7—8 % от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины — 55—65 %, α1-глобулины — 2—4 %, α2-глобулины 6—12 %, β-глобулины8 — 12 %, γ-глобулины — 2-4 % и фибриноген — 0,2—0,4 %. В плазме крови растворены также питательные вещества (в частности глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические вещества.

В среднем 1 литр плазмы человека содержит 900—950 г воды, 65—85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH — 7,36—7,44.

Существует обширная практика собирания донорской плазмы крови. Плазма отделяется от эритроцитов центрифугированием с помощью специального аппарата, после чего эритроциты возвращаются донору. Этот процесс называется плазмаферезом.

Плазма с высокой концентрацией тромбоцитов (богатая тромбоцитами плазма) находит все большее применение в медицине в качестве стимулятора заживления и регенерации тканей организма. В настоящее время на её основе разработана многофункциональная медицинская методика, используемая в стоматологии и косметологии.

3.2. Форменные элементы

У взрослого человека форменные элементы крови составляют около 40—50 %, а плазма — 50—60 %. Форменные элементы крови представлены эритроцитами, тромбоцитами и лейкоцитами:

Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новых органами кроветворения. Главным из них у человека и других млекопитающих является костный мозг. У человека красный, или кроветворный, костный мозг расположен в основном в тазовых костях и в длинных трубчатых костях. Основным фильтром крови является селезёнка (красная пульпа), осуществляющая в том числе и иммунологический её контроль (белая пульпа).

4. Биохимия эритроцита

4.1. Транспорт кислорода кровью

4.2. Созревание эритроцита

4.3. Структурно-метаболические особенности эритроцита

Особенности структурной организации мембраны эритроцитов

Эритроцит окружен плазматической мембраной, структура которой хорошо изучена, идентична таковой в других клетках. Цитоплазматическая мембрана эритроцитов включает бислой фосфолипидов, в то время как белки или «плавают» на поверхности мембран, или пронизывают липиды, обеспечивая прочность и вязкость мембран. Площадь мембраны одного эритроцита составляет около 140 мкм2.

На долю белков приходится примерно 49 %, липидов – 44 %, углеводов –7 %. Углеводы химически связаны либо с белками, либо с липидами и образуют соответственно гликопротеиды и гликолипиды.

Важнейшими компонентами мембраны эритроцитов являются липиды, включающие до 48 % холестерина, 17-28 % – фосфотидилхолина, 13-25 % – сфингомиелина и ряд других фосфолипидов.

Фосфотидилхолин мембраны эритроцитов несет нейтральный заряд, практически не вступает в реакции взаимодействия с положительно заряженными каналами Са2+,, обеспечивая тем самым атромбогенность эритроцитов. Благодаря таким свойствам, как текучесть, пластичность, эритроциты способны проходить через капилляры диаметром

Белки мембраны эритроцита делят на периферические и интегральные. К периферическим белкам относят спектрин, анкирин, белок 4.1., белок р55, адуцин и др. В группу интегральных белков входит фракция 3, а также гликофорины А, В, С, О, Е. Анкирин образует соединение с р-спектрином. В составе эритроцитов обнаружено около 340 мембранных и 250 растворимых белков.

Пластичность эритроцитов связана с фосфорилированием мембранных белков, особенно белков полосы 4.1.

Белок фракции 4.2. – паллидин обеспечивает связывание спектрин-актин-анкиринового комплекса с фракцией 3, относится к группе трансглутаминазных протеинов.

К числу сократительных белков мембраны эритроцитов относятся р-актин, тропомодулин, строматин и тропомиозин.

Гликофорины – интегральные белки мембраны эритроцитов, определяющие отрицательный заряд, способствующий отталкиванию эритроцитов друг от друг и от эндотелия сосуда.

Протеин 3 – основной белок актинов, регулирующий дефосфорилируемость эритроцита.

Как указывалось выше, мембрана эритроцита представляет собой сложный комплекс, включающий определенным образом организованные липиды, белки и углеводы, которые формируют наружный, средний и внутренний слои эритроцитарной мембраны.

Касаясь пространственного расположения различных химических компонентов эритроцитарной мембраны, следует отметить, что наружный слой образован гликопротеидами с разветвленными комплексами олигосахаридов, которые являются концевыми отделами групповых антигенов крови. Липидным компонентом наружного слоя являются фосфатидилхолин, сфингомиелин и неэстерифицированный холестерин. Липиды наружного слоя мембраны эритроцита играют важную роль в обеспечении постоянства структуры мембраны, избирательности ее проницаемости для различных субстратов и ионов. Вместе с фосфолипидами холестерин регулирует активность мембранно-связанных ферментов путем изменения вязкости мембраны, а также участвует в модификации вторичной структуры ферментов. Молярное отношение холестерин / фосфолипиды в мембранах клеток у человека и многих млекопитающих равно 0,9. Изменение этого соотношения в сторону увеличения наблюдается в пожилом возрасте, а также при некоторых заболеваниях, связанных с нарушением холестеринового обмена.

Снижение текучести мембраны эритроцита и изменение ее свойств отмечается также и при увеличении содержания сфингомиелина,

Средний бислой мембраны эритроцита представлен гидрофобными «хвостами» полярных липидов. Липидный бислой обладает выраженной текучестью, которая обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами гидрофобной части бислоя. Интегральные белки, к которым относятся ферменты, рецепторы, транспортные белки, обладают активностью только в том случае, если находятся в гидрофобной части бислоя, где они приобретают необходимую для активности пространственную конфигурацию. Поэтому любые изменения в составе липидов эритроцитарной мембраны сопровождаются изменением ее текучести и нарушением работы интегральных белков.

Внутренний слой мембраны эритроцита, обращенный к цитоплазме, состоит из белков спектрина и актина. Спектрин является специфическим белком эритроцитов, его гибкие вытянутые молекулы, связываясь с микрофиламентами актина и липидами внутренней поверхности мембраны, формируют своеобразный скелет эритроцита. Небольшой процент липидов во внутреннем слое мембраны эритроцита представлен фосфатидилэтаноламином и фосфатидилсерином. От наличия спектрина зависит подвижность белков, удерживающих двойной бисой липидов.

Одним из важных гликопротеинов является гликофорин, содержащийся как на внешней, так и на внутренней поверхностях мембран эритроцитов. Гликофорин в своем составе содержит большое количество сиаловой кислоты и обладает значительным отрицательным зарядом. В мембране он располагается неравномерно, образует выступающие из мембраны участки, которые являются носителями иммунологических детерминант.

Строение и состояние эритроцитарной мембраны, низкая вязкость нормального гемоглобина обеспечивают значительные пластические свойства эритроцитам, благодаря которым эритроцит легко проходит по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка, и может принимать самые разнообразные формы. Другим периферическим мембранным белком эритроцитов является анкирин, образующий соединение с молекулой Р-спектрина.

Функции эритроцитарной мембраны

Мембрана эритроцитов обеспечивает регуляцию электролитного баланса клетки за счет активного энергозависимого транспорта электролитов или пассивной диффузии соединений по осмотическому градиенту.

В мембране эритроцитов имеются ионно-проницаемые каналы для катионов Na+, K+, для O2, CO2, Cl– HCO3–.

Транспорт электролитов через эритроцитарную мембрану и поддержание его мембранного потенциала обеспечивается энергозависимыми Na+, K+, Ca2+ – АТФ-азными системами.

Мембрана эритроцитов хорошо проницаема для воды при участии так называемых белковых и липидных путей, а также анионов, газообразных соединений и плохо проницаема для одновалентных катионов калия и натрия.

Белковый путь трансмембранного переноса воды обеспечивается при участии пронизывающего мембрану эритроцитов белка «полосы 3», а также гликофорина.

Молекулярная природа липидного пути переноса воды через эритроцитарную мембрану практически не изучена. Прохождение молекул небольших гидрофильных неэлектролитов через эритроцитарную мембрану осуществляется также, как и перенос воды, за счет белкового и липидного путей. Перенос мочевины и глицерина через мембрану эритроцита обеспечивается за счет ферментативных реакций.

Перенос органических анионов через эритроцитарную мембрану обеспечивается, как и транспорт неорганических анионов, при участии белка «полосы 3».

Эритроцитарная мембрана обеспечивает активный транспорт глюкозы, кинетика которого обеспечивается зависимостью Михаэлиса-Ментен. Важная роль в транспорте глюкозы через эритроцитарную мембрану отводится полипептиду полосы 4,5 (белки с ММ 55 кД – возможные продукты распада полипептида полосы 3). Высказывается предположение о наличии специфического липидного окружения у белков – переносчиков сахаров в эритроцитарной мембране.

Неравномерное распределение моновалентных катионов в системе эритроцит – плазма крови поддерживается при участии энергозависимой Na+-помпы, осуществляющей трансмембранный обмен ионов Na+ эритроцитов на ионы К+ плазмы крови в соотношении 3:2. Кроме указанного трансмембранного обмена Na+/K+, Na+ помпа осуществляет еще, по крайней мере, четыре транспортных процесса: Na+→ Na+ обмен; K+→K+обмен; одновалентный вход ионов Na+, сопряженный с выходом К+.

Молекулярной основой Na+ помпы является фермент Na+, K+ –АТФ-аза – интегральный белок, прочно связанный с мембранными липидами, состоящий из 2х полипептидных субъединиц с ММ 80-100кД.

Транспортная система имеет 3 центра, связывающих ионов Na+, локализованных на цитоплазматической стороне мембраны. С наружной стороны мембраны на транспортной системе имеется 2 центра связывания ионов К+. Важная роль в поддержании высокой активности фермента отводится мембранным фосфолипидам.

Функционирование Са2+-помпы обеспечивается нуклеотидами, а также макроэргическими соединениями, преимущественно АТФ, ЦТФ, ГТФ, в меньшей степени ГТФ и ЦТФ.

Как в случае Nа+-помпы, функционирование Са2+помпы в эритроцитах связано с проявлениями активности Са2+, Mg2+ –АТФ-азы. В мембране одного эритроцита обнаруживается около 700 молекул Са2+, Mg2+ –АТФ-азы.

Наряду с барьерной и транспортной функциями, мембрана эритроцитов выполняет рецепторную функцию.

Экспериментально доказано наличие на мембране эритроцитов рецепторов к инсулину, эндотелину, церулоплазмину, а2-макроглобулину, α- и β-адренорецепторов. На поверхности эритроцитов находятся рецепторы к фибриногену, обладающие достаточно высокой специфичностью. Эритроциты также несут на мембране рецепторы к гистамину, ТхА2, простациклину.

В мембране эритроцитов обнаруживаются рецепторы для катехоламинов, снижающих подвижность жирных кислот липидов мембран эритроцитов, а также осмотическую устойчивость эритроцитов.

Установлена перестройка структуры мембраны эритроцитов под влиянием низких концентраций инсулина, гормона роста человека, простагландинов группы Е и Е2.

В мембранах эритроцитов высока и ц – АМФ активность. При увеличении концентраций в эритроцитах ц–АМФ ( до 10–6 М) усиливаются процессы фосфорилирования белков, что приводит в свою очередь к изменению степени фосфорилированности и проницаемости мембран эритроцитов для ионов Са2+.

Эритроцитарная мембрана содержит изоантигены различных систем иммунологических реакций, определяющих групповую принадлежность крови человека по этим системам.

4.4. Антигенная структура эритроцитарной мембраны

Эритроцитарная мембрана содержит различные антигены видовой, групповой и индивидуальной специфичности. Различают два вида изоантигенов эритроцитов, определяющих групповую специфичность крови человек – А и В агглютиногены. Соответственно в плазме или сыворотке крови обнаруживаются две разновидности изоантител – агглютинины α и β. В крови человека не содержатся одноименных агглютиногенов и агглютининов. Их встреча и взаимодействие может возникать при переливании несовместимых групп крови, приводить к развитию агглютинации и гемолиза эритроцитов.

Как известно, I (0) группа крови характеризуется отсутствием в эритроцитах агглютиногенов А и В при наличии в плазме или сыворотке крови агглютининов α и β, встречается у 40-50 % людей стран центральной Европы.

II (А) группа крови характеризуется наличием в мембране эритроцитов агглютиногена А, в то время как в плазме крови содержатся агглютинины β. Указанная группа крови распространена у 30–40 % людей.

III (В) группа крови характеризуется наличием агглютиногена В в мембране эритроцитов, а в плазме или сыворотке крови – наличием агглютининов типа α. Эта группа крови имеет место примерно у 10 % населения.

IV (АВ) группа крови характеризуется наличием в мембране эритроцитов фиксированных А и В агглютиногенов, при этом в плазме или сыворотке крови отсутствуют естественные агглютинины α и β. Данная группа крови встречается у 6 % населения.

Генетический контроль антигенной системы А,В,О мембран эритроцитов представлен генами О, Н, А, В, локализованными в длинном плече 9-й пары хромосом.

Агглютинины α и β относятся к классу Ig M, являются естественными антителами, образуются у ребенка на первом году жизни, достигая максимума к 8 – 10 годам.

Второе место среди антигенных свойств мембран эритроцитов по клинической значимости занимает система Rh – Hr. Впервые Резус-фактор был открыт в 1940 году К. Ландштейнером и А. Винером, содержится в эритроцитах у 85 % людей белой расы. У 15 % людей эти эритроцитарные антигены отсутствуют. В настоящее время установлена липопротеидная природа антигенов данной системы, их насчитывается около 20, они образуют различные комбинации в мембране эритроцитов. Наиболее распространенными резусантигенами являются 6 разновидностей: Rh0 (D), rh’ (C), rh’’ (E), Hr0 (d), hr’ (c), hr’’ (e). Наиболее сильным антигеном этой группы является Rh0 (D).

Антитела системы Rh и Hr – антирезусагглютинины являются приобретенными, иммунными, отсутствуют в крови Rh (-) людей с момента рождения, синтезируются при первом переливании Rh (+) крови Rh (-) реципиенту, а также при первой беременности Rh (-) женщины Rh(+) плодом. При первой беременности эти антитела синтезируются медленно в течение нескольких месяцев в небольшом титре, не вызывая серьезных осложнений у матери и плода. При повторном контакте резус-отрицательного человека с резус-положительными эритроцитами возможен резус-конфликт. Антитела системы Rh – Hr относятся к классу Ig G, поэтому они легко проникают через плацентарный барьер, вызывают реакции агглютинации и гемолиза эритроцитов плода, что сопровождается развитием гемолитической желтухи новорожденных. В случае повторного переливания несовместимой по Rh–антигенам крови донора и реципиента может наблюдаться гемотрансфузионный шок.

Источник

Кровь – внутренняя среда организма

Кровь – внутренняя среда организма, образованная жидкой соединительной тканью.

Состоит из плазмы и клеток (лейкоцитов, эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями тела. В среднем, массовая доля крови к общей массе тела человека составляет 6,5-7 %.

Плазма крови – жидкая часть крови, которая содержит воду и взвешенные в ней вещества (белки и другие соединения). Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).

Эритроциты (красные кровяные тельца) – самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке. В эритроцитах содержится железосодержащий белок – гемоглобин. Он обеспечивает главную функцию эритроцитов – транспорт газов, в первую очередь – кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин, который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ.

Тромбоциты (кровяные пластинки) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга (мегакариоцитов). Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от кровопотери.

Лейкоциты (белые клетки крови) являются частью иммунной системы организма. Они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов — защита от чужеродных тел и соединений. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества; В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.

Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новых органами кроветворения. Главным из них у человека и других млекопитающих является костный мозг. У человека красный, или кроветворный, костный мозг расположен в основном в тазовых костях и в длинных трубчатых костях.

Функции крови в организме

Кровь непрерывно циркулирует в замкнутой системе кровеносных сосудов и выполняет в организме различные функции, такие как:

какое название у жидкой части крови

По общности некоторых антигенных свойств эритроцитов все люди подразделяются по принадлежности к определённой группе крови. У каждого человека группа крови индивидуальная. Принадлежность к определённой группе крови является врождённой и не изменяется на протяжении всей жизни. Наибольшее значение имеет разделение крови на четыре группы по системе «AB0» и на две группы по системе «резус фактор».

какое название у жидкой части крови

Соблюдение совместимости крови именно по этим группам имеет особое значение для безопасного переливания крови. Существуют и другие, менее значимые группы крови. Можно определить вероятность появления у ребёнка той или иной группы крови, зная группу крови его родителей.

Источник

Компоненты и препараты крови, кровезаменители

» data-image-caption=»» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/06/perelivanie-krovi.jpg» title=»Компоненты и препараты крови, кровезаменители»>

Алена Герасимова (Dalles) Разработчик сайта, редактор

Не будет преувеличением сказать, что выделение отдельных компонентов (составных частей) крови — огромное достижение современной медицины. Широкое внедрение их в практику сыграло большую роль в разработке лечения многих болезней.

Компоненты крови: эритроциты, лейкоциты, тромбоциты

Пациенты, которым требуется переливание крови, часто даже не знают о том, что в медицине часто используются отдельные компоненты.

Дифференцированное применение отдельных компонентов крови уменьшает возможность образования антител к клеткам крови и предотвращает развитие реакций на переливание.

Кровезаменители: плазма и ее компоненты

Наилучший естественный кровезаменитель — плазма, жидкая часть крови, богатая белками и содержащая вещества, способствующие остановке кровотечения. При шоковых состояниях без кровопотери или при кровотечениях с небольшой потерей крови переливание плазмы может оказать полноценное лечебное действие.

Плазма, заготовленная в условиях строгой стерильности, сохраняется длительное время, не портясь. Высушенная особым способом, она может храниться месяцами и даже годами. Перед переливанием ее разводят дистиллированной водой.

» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg» loading=»lazy» src=»https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg» alt=»Плазма крови» width=»900″ height=»600″ srcset=»https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/06/plazma-krovi-768×512.jpg 768w» sizes=»(max-width: 900px) 100vw, 900px» title=»Компоненты и препараты крови, кровезаменители»> Плазма крови

Стало возможным приготовление и целенаправленное применение отдельных, белков плазмы, обладающих специфическим, присущим каждому из них, действием.

Альбумин. Наиболее ценный препарат для белкового питания тканей и органов. Он поддерживает так называемое коллоидно-осмотическое давление, удерживающее жидкость в кровяном русле. С этим связано его противоотечное действие.

Привлекая тканевую жидкость в кровяное русло, альбумин повышает кровяное давление, если оно почему-либо падает (например, при шоке). Раствор альбумина является высоко эффективным белковым препаратом при травматических и операционных шоках.

Он весьма полезен при недостатке в организме белка. Белковая недостаточность может явиться следствием многих заболеваний, ведущих к потере белка с мочой, мокротой, гноем, ожоговой жидкостью, либо из-за нарушения всасывания пищевых белков (болезни желудочно-кишечного тракта) или от расстройства белкового обмена (болезни печени).

Протеин. Протеин состоит в основном из альбумина, но содержит некоторое количество и других полезных белков. Он готовится из «утильной» крови, например, плацентарной или гемолизированной (которая непригодна для переливания из-за содержащихся в ней разрушенных эритроцитов).

Вследствие этого протеин является более дешевым и доступным препаратом, чем чистый альбумин. От плазмы же он отличается не только более высоким содержанием альбумина, но и тем, что его, как и альбумин, можно прогревать при высокой температуре для уничтожения вируса гепатита, иногда проникающего в кровь. Протеин применяется и оказывает хорошее действие при тех же заболеваниях, что и альбумин.

Знание механизмов свертывания крови и уточнение факторов, вызывающих их нарушение, позволяет применить переливание отдельных недостающих в организме больного действующих веществ.

Фибриноген. Это тот белок крови, который при ее свертывании переходит в нерастворимый фибрин, образующий основу сгустка. Иногда при некоторых патологических родах возникает сильное кровотечение, вызванное недостаточностью одного из белков, необходимых для свертывания фибриногена. Тогда выручает лечебный препарат фибриноген.

Он быстро останавливает фибринолитическое кровотечение в послеродовом периоде, после операций на внутренних органах, при операциях с искусственным кровообращением.

Фибринная пленка применяется местно, при операциях на органах для предотвращения кровотечений мелких сосудов, а также как рассасывающийся материал при ожогах, нейрохирургических операциях на мозге и др.

Тромбин. Тромбин в виде порошка, растворяемого в физиологическом растворе, применяется только местно, на мелких сосудах: при оперативных вмешательствах на паренхиматозных органах (печени, легких, селезенке и др.), кровотечениях из десен, носа и т. д.

Антигемофильный глобулин. Останавливает кровотечение у больных гемофилией, в организме которых он отсутствует. Он быстро разрушается в консервированной крови и содержится в свежезаготовленной, а также в особо приготовленной антигемофильной плазме и в препаратах фибриногена.

Фибринолизин. Существуют заболевания при которых нарушения свертываемости крови ведут к кровоточивости. Но существуют некоторые болезненные состояния, в возникновении которых играет роль повышенная свертываемость.

Если переливание крови, плазмы и некоторых ее препаратов оказывает хорошее кровоостанавливающее действие, то имеется и такой белковый ферментативный препарат крови, как фибринолизин, который уменьшает свертывание, растворяет свежие фибриновые сгустки и применяется в лечении от тромбозов: при тромбофлебитах, инфаркте, тромбозах, легочной артерии, мозговых и периферических сосудов.

В медицинской практике широко используется отдельно выделенный один из компонентов сывороточных белков — гамма-глобулин, обладающий защитными свойствами: с ним связывают образование антител. Поэтому этот препарат, повышающий сопротивляемость организма, с успехом применяется не только при разнообразных инфекционно-воспалительных процессах, но и профилактически у здоровых людей, соприкасающихся с некоторыми инфекционными больными (корь, гепатит и др.).

Несколько слов о гамма-глобулинах направленного действия

У доноров на введение ослабленных, абсолютно безвредных микробов вырабатываются антитела. Взятая у них в определенные сроки кровь богата такими антителами. Приготовленный из этой крови гамма-глобулин обладает специфической направленностью действия против соответствующих микробов.

И в тех случаях, когда с помощью бактериологического исследования удается распознать возбудителя инфекции наряду с применением антибиотиков с успехом используются специфические гамма-глобулины (противокоревой, противостафилококковый, противогриппозный, противококлюшный и др.). Применение противостафилококкового гамма-глобулина иногда оказывает при стафилококковом сепсисе почти чудодейственный эффект.

Как получают плазму крови: плазмаферез

Компоненты и препараты крови, о которых шла речь, могут понадобиться в любое время суток, в любом уголке страны, и для того, чтобы быть всегда «начеку», ученые создали условия, при которых они могут храниться длительное время и при этом биологические, функциональные свойства их сохраняются.

Необходимость удовлетворения растущих потребностей лечебных учреждений в плазме и ее препаратах заставило ученых искать пути получения больших количеств плазмы без вреда для донора. Теперь широко применяется так называемый плазмаферез. Его сущность заключается в разделении полученной от донора крови на плазму и форменные элементы (путем центрифугирования) и возвращении обратно донору эритроцитов.

Дело в том, что хотя кроветворные органы при взятии крови у донора восполняют потерю эритроцитов, но это занимает известное время и для полной безвредности кроводачи у каждого донора берут кровь не чаще пяти раз в год.

Всего за год можно от одного донора получить не более 1 литра плазмы. Если же вернуть донору эритроциты, то он теряет только плазму, а восстановление ее составных частей (в основном белков) при здоровой печени занимает всего несколько дней (а донорами могут быть только вполне здоровые люди!).

Поэтому процедуру плазмафереза можно повторять каждые 1—2 недели и за год получить 6—7 литров плазмы от одного донора без всякого вреда для его здоровья. Это значительно увеличивает ресурсы для заготовки препаратов из плазмы.

» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg» loading=»lazy» src=»https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg» alt=»Плазмаферез» width=»900″ height=»600″ srcset=»https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/06/plazmaferez-768×512.jpg 768w» sizes=»(max-width: 900px) 100vw, 900px» title=»Компоненты и препараты крови, кровезаменители»> Плазмаферез

Искусственные кровезаменители

Большим достижением медицины является открытие и применение искусственных кровезаменителей, т. е. жидкостей, введение которых может в одних случаях заменить переливание крови, а в других временно его отсрочить. Конечно, полностью кровь не может быть заменена ни плазмой, ни каким-либо из кровезамещающих растворов, потому что в них отсутствуют переносчики кислорода — эритроциты.

Однако применение некоторых кровезаменителей может вывести больного или раненого из тяжелого шокового состояния даже при большой кровопотере. Этим устраняется непосредственная угроза для его жизни. Переливание крови, если оно все же требуется, может в таком случае быть отложено.

Гидролизаты содержат не целые белки, а полученные путем гидролиза составные их части— аминокислоты. Из них организм строит (синтезирует) собственные белки. Они могут вводиться в больших количествах и покрывать тяжелую недостачу белков или даже на время удовлетворять потребность организма в пищевых белках.

Поэтому гидролизат казеина с успехом применяется при заболеваниях или операциях, повлекших за собой прекращение или затруднение приема пищи через рот (ожоги глотки и пищевода, вмешательства на пищеводе и желудочно-кишечном тракте, челюстно-лицевые операции), а также при подготовке к операциям ослабленных больных, в послеоперационном периоде и др.

Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь

Конечно, ни плазма, ни кровезаменители не могут целиком заменить переливания крови, так как в них не содержатся переносчики кислорода — эритроциты, введение которых раненому, больному необходимо при обильной кровопотере или тяжелом хроническом малокровии.

Русским ученым принадлежит заслуга использования для переливания не донорской крови. С. И. Спасокукоцкий первый, в 1938 г., выдвинул эту идею и предложил пользоваться так называемой «утильной» кровью (источником ее получения могут служить кровопускания, производимые с лечебной целью, у перенесших закрытую травму черепа, у некоторых сердечных больных и др.).

Идея С. И. Спасокукоцкого оказалась весьма плодотворной, но использование такого источника получения не донорской крови не вошло в широкую практику, встретив некоторые затруднения. М. С. Малиновский в 1933 г. предложил брать для переливания плацентарную кровь, т. е. ту, что можно взять из последа (плаценты) после родов.

Ученые и врачи Санкт-Петербурга (тогда Ленинграда) и других городов страны осуществили множество переливаний плацентарной крови еще в довоенное время, но повсеместного распространения этот метод не получил. Главным образом из-за трудности уберечь плацентарную кровь от попадания в нее инфекции в момент извлечения. Ныне плацентарная кровь весьма широко используется с целью получения весьма ценных лечебных препаратов: протеина, гамма-глобулина и др.

Мысль использовать для переливаний кровь погибших, что было подкреплено целой серией убедительных опытов на животных, принадлежит В. И. Шамову (1928 г.) и С. С. Юдину. Выдающийся ученый, хирург С. С. Юдин загорелся смелой идеей: «Кровью мертвых лечить живых»; он осуществил и внедрил ее в лечебную практику (1933 г.) и вместе со своими сотрудниками (М. Г. Скундина, Р. Г. Сакаян и другие) многое сделал в этом направлении.

В чем суть такого метода? Кровь, взятая в первые шесть часов после внезапной гибели от несчастного случая (закрытой травмы) или мозгового удара, сохраняет все ценные биологические свойства, по существу является живой. Исходя из этого переливание ее применяется в хирургии, а впоследствии вошло и в терапевтическую практику.

Ученые сделали следующее интересное наблюдение. Такая кровь, набранная в сосуд без противосвертывающего вещества, либо вовсе не свертывается, либо, сначала свернувшись, затем вновь переходит в жидкое состояние. Объясняется это происходящим в ней фибринолизом.

Иногда извлеченную посмертно кровь называют «фибринолизной» и применяют без лротивосвертывающих веществ. Совершенно ясно, что получение ее и использование находятся под самым жестким и тщательным контролем, гарантирующим полную безвредность для реципиента.

Теперь, когда различные органы погибших современная наука все шире использует для спасения живых, уже не кажется удивительным переливание подобной крови. И следует подчеркнуть, что сама эта идея была впервые осуществлена в нашей стране еще в середине прошлого века.

Как переливание крови явилось первой успешной пересадкой живой ткани другому человеку, так и переливание фибринолизной крови — первым удачным использованием для этой цели тканей и органов умершего.

Как быстро восстанавливается кровь у донора

Обычно к концу первых суток после отбора крови у донора восполняется объем крови. Это происходит в результате перехода в кровяное русло жидкости из тканей и мобилизации крови из резервов.

Переливание крови – донор

Переливание крови – донор

Сразу же после отбора крови усиливается деятельность органов кроветворения: число эритроцитов в крови начинает увеличиваться, а процессы разрушения приостанавливаются. Постоянное обновление красных кровяных клеток способствует сохранению неизменного состава крови.

Обновление эритроцитов — естественный процесс. Каждую минуту из костного мозга в кровь поступает около 115 миллионов молодых красных кровяных клеток. Соответствующее число отживших эритроцитов удаляется из кровеносного русла. Частично они поглощаются клетками селезенки и печени, частично используются костным мозгом при образовании новых красных кровяных клеток.

Компенсаторные возможности костного мозга очень велики. При большой потере крови интенсивность образования эритроцитов возрастает по сравнению с нормой в 6—7 раз.

Если донор сдал 225 миллилитров крови (то есть половинную дозу), процесс восстановления ее состава заканчивается примерно на пятнадцатый день. Если была взята полная доза — 450 миллилитров, то, как показали исследования, число эритроцитов возвращается к исходному уровню через семь-восемь недель. Важно подчеркнуть, что у доноров, сдающих кровь повторно, процессы регенерации (восстановления) происходят быстрее.

Таким образом, здоровый человек без всякого для себя вреда может отдавать кровь 5 раз подряд, соблюдая интервал в 60 дней, потом необходим трехмесячный перерыв.

Тысячи доноров, сохраняя отменное здоровье, имеют стаж двадцать — двадцать пять лет. Они пользуются заслуженным почетом в нашей стране, и каждый из них по праву может гордиться спасением многих и многих жизней.

Донорство должно быть основано на твердом принципе: максимальная польза больному и никакого вреда тому, кто дает свою кровь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *