какое напряжение после трехфазного выпрямителя
Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическ.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.
Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.
Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax
— максимальное обратное напряжение диода – Uобр ;
— максимальный ток диода – Imax ;
Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.
Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.
Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.
Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.
Какое напряжение после трехфазного выпрямителя
Как и обычно, в силовой электронике и электротехнике однофазное подключение нагрузок применяется при сравнительно малых мощностях. С увеличением уровня мощности используются трехфазные схемы.
Трехфазная схема выпрямителя со средней точкой изображена на рис. 4.1. В схему входит трансформатор с вторичными обмотками, соединенными звездой. Первичные обмотки соединяются звездой или треугольником. Пусть выпрямитель идеализированный, нагрузка активная.
Диоды схемы работают попеременно в течение одной трети периода переменного напряжения. В какой-либо момент времени проводит ток тот диод, потенциал анода которого по отношению к нулевой точке трансформатора выше, чем у других диодов. Переход тока с диода на диод происходит в моменты, соответствующие точкам пересечения синусоид фазных напряжений. Отсюда следует, что кривая выпрямленного напряжения схемы u d может быть получена как огибающая синусоид фазных напряжений вторичных обмоток трансформатора.
Среднее значение выпрямленного напряжения определяется на периоде повторяемости процессов в цепи нагрузки (т.е. на интервале 2 π 3 ):
Амплитуда переменной составляющей выпрямленного напряжения здесь меньше, чем в схеме однофазного выпрямителя со средней точкой, а частота переменной составляющей в три раза больше частоты переменного напряжения.
Токи диодов будут одновременно и токами вторичных обмоток трансформатора. Серьезным недостатком схемы является, подобно и схеме однофазного однополупериодного выпрямителя, вынужденное намагничивание сердечника трансформатора. Во избежание насыщения из-за вынужденного намагничивания приходится увеличивать сечение магнитопровода, что приводит к завышению массо-габаритных показателей трансформатора.
Поток вынужденного намагничивания может быть исключен введением дополнительных обмоток (т.е. усложнением трансформатора) на вторичной стороне и соединением вторичных обмоток зигзагом. Однако лучшие результаты дает применение трехфазной мостовой схемы, не имеющей потока вынужденного намагничивания и обладающей рядом других преимуществ.
Совместив, подобно схеме на рис. 3.1, в, два выпрямителя, получим двухполярный выпрямитель, как показано на рис. 4.2.
Рис. 4.2 — Совмещение двух выпрямителей со средней точкой
Между точками а и b будет сформировано удвоенное выпрямленное напряжение. При подключении нагрузки к указанным точкам и отключении нулевого вывода вторичных обмоток трансформатора получим трехфазную мостовую схему выпрямления, приведенную на рис. 4.3.
Таким образом, для обеспечения одинакового значения выпрямленного напряжения в трехфазной мостовой схеме требуется вдвое меньшее значение напряжения вторичных обмоток трансформатора, чем в трехфазной схеме выпрямления со средней точкой.
Верхнюю группу диодов схемы (см. рис. 4.3) принято называть катодной, а нижнюю — анодной.
В трехфазном мостовом выпрямителе нет вынужденного намагничивания сердечника трансформатора, так как ток в каждой вторичной обмотке протекает дважды за период, причем в противоположных направлениях.
Обратное напряжение, прикладываемое к диодам в закрытом состоянии, по форме повторяет обратное напряжение диодов в выпрямителе со средней точкой, но по величине оно в два раза меньше (при равных значениях выпрямленного напряжения).
В управляемых трехфазных выпрямителях угол управления α отсчитывается от точек естественной коммутации (от точек пересечения фазных напряжений). Схема управляемого выпрямителя со средней точкой приведена на рис. 4.4, а. На рис. 4.4, б, в показаны кривые выпрямленного напряжения u d для режима работы на активную нагрузку при двух различных углах управления. Естественно, что при этом кривая тока нагрузки повторяет по форме кривую выпрямленного напряжения.
Среднее выпрямленное напряжение для первой области регулирования определяется следующим образом:
Среднее выпрямленное напряжение в этом случае рассчитывается иначе:
Верхний предел интегрирования берется равным π по той причине, что далее следует интервал, где мгновенное выпрямленное напряжение равно нулю.
Как видно из (4.2), для трехфазной схемы со средней точкой при активной нагрузке предельным углом управления (при котором U d = 0 ) является угол 150°.
Схема трехфазного мостового управляемого выпрямителя приведена на рис. 4.5, а. На рис. 4.5, б, в изображены диаграммы фазных напряжений вторичных обмоток трансформатора и кривые выпрямленного напряжения для трех значений угла управления при работе схемы на активную нагрузку ( L d = 0 ).
На рис. 4.5, б штриховкой показаны выпрямленные напряжения тиристорами анодной и катодной групп (относительно общей точки вторичных обмоток трансформатора), а на рис. 4.5, в — собственно кривая выпрямленного напряжения схемы для α = 30, 60 и 90°.
Следует отметить, что для обеспечения работоспособности схемы необходимо управлять тиристорами импульсами шириной более 60° или соответствующими сдвоенными импульсами. Это объясняется тем, что при использовании одиночных импульсов с шириной меньше 60° не обеспечивается пуск выпрямителя, так как не могут включиться одновременно два тиристора в анодной и катодной группах. Кроме того, при углах управления α > 60° в кривой выпрямленного напряжения и тока появляются паузы, и, следовательно, необходимо одновременно с подачей управляющего импульса на очередной вступающий в работу тиристор подать повторный импульс на соответствующий тиристор в противоположной группе или же использовать импульсы с длительностью более 60° (порядок вступления тиристоров в работу здесь такой же, как и диодов на рис. 4.3).
Кривая выпрямленного напряжения и тока при изменении угла управления от 0 до 60° непрерывна. При углах управления более 60° выпрямленный ток прерывистый. Таким образом, при активной нагрузке мостовая схема, также как и схема со средней точкой, имеет два качественно отличных режима работы.
Для первого режима ( 0 α π 3 ) среднее выпрямленное напряжение может быть найдено следующим образом:
Для второго режима ( α > π 3 ) среднее выпрямленное напряжение равно:
В случае активно-индуктивной нагрузки ( L d → ∞ ) длительность проводящего состояния тиристоров всегда составляет одну треть периода и поэтому при α > 60 ° в кривой выпрямленного напряжения появляются отрицательные участки (аналогично другим схемам выпрямления, рассмотренным выше). Выпрямленное напряжение при этом для всего диапазона регулирования определяется по формуле (4.3), а максимальный угол управления составляет величину 90°.
Рассчитанные по (4.3) и (4.4) регулировочные характеристики трехфазного мостового управляемого выпрямителя приведены на рис. 4.6.
Как видно из графиков, в первой половине полного диапазона регулирования характеристика от типа нагрузки не зависит.
Необходимые для проектирования одно- и трехфазных выпрямителей расчетные соотношения сведены в табл. 3. Хотя соотношения определены для неуправляемых выпрямителей, они пригодны и для управляемых, т.к. при крайнем значении угла управления (α = 0) управляемый выпрямитель ничем не отличается от неуправляемого. Только коэффициент пульсаций при α ≠ 0 увеличивается по сравнению с данными табл. 2.
Таблица 3 — Основные расчетные соотношения для неуправляемых идеализированных (т.е. без потерь) выпрямителей при синусоидальном входном напряжении
Принцип действия и схема трехфазного мостового выпрямителя
Сегодня немножко углубимся в теорию и поговорим о схемах выпрямителей. Рассмотрим сам принцип выпрямления переменного тока, наиболее часто встречающиеся схемы выпрямителей, полупроводниковые элементы, которые применяются в этих схемах.
Выпрямителями называются устройства, предназначенные для преобразования переменного тока в постоянный. Общая схема стандартного однофазного выпрямителя состоит из трансформатора, выпрямительного блока на основе полупроводниковых диодов и сглаживающего фильтра в виде конденсатора.
Трансформатор служит для преобразования переменного напряжения сети 220 V в необходимое выходное напряжение нагрузки. Выпрямительный блок (диодный мост) преобразовывает переменный ток в постоянный пульсирующий, а сглаживающий фильтр преобразовывает его в ток, близкий по форме к постоянному току.
В качестве диодных выпрямителей могут использоваться как четыре отдельных диода, так и диодная сборка в едином корпусе. На схемах диодный мост обычно изображается таким образом:
Современные выпрямители различают по типу используемых выпрямителей, схеме их включения и числу фаз. Также выпрямители могут быть управляемые и неуправляемые.
Описание выпрямителей
Трехфазный мостовой выпрямитель
Основное отличие устройств от своих однофазных аналогов проявляется в следующем:
Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.
В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.
Принцип действия
Принцип работы трехфазного выпрямителя
Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.
В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.
«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.
Однополупериодный многофазный выпрямитель
Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.
Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:
Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.
Двухполупериодный выпрямитель
Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.
Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.
Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.
Проектирование
Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.
Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.
Мостовые устройства
Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.
Принцип действия трехфазного мостового выпрямителя проще всего представить так:
Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).
Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.
Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.
Кратко об управляемых преобразователях
Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.
Простой тиристорный преобразователь (на управляемых вентилях)
Особенности трехфазного моста и варианты его построения
Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».
Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.
В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.
Как организовать двухполярное питание
Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.
Схема: пример преобразователя с двухполярным выходом
Сравнение однофазных и трехфазных устройств
При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:
Расчет трехфазного выпрямителя также будет сложнее, так как в этом случае учитываются векторные составляющие действующих токов и напряжений. Это объясняется тем, что в цепях 380 Вольт фазные параметры смещены относительно друга на 120 градусов.
Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.
Свойства трехфазного напряжения
Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.
Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.
Среднее значение трехфазного выпрямленного напряжения: avg = 1,654Vmax = 1,654 x (1,414×230) = 538 В.
Таким образом, можно суммировать следующие моменты: