какое направление имеет индукционный ток

Какое направление имеет индукционный ток

Направление индукционного тока

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца. Оно основано на законе сохранения. Рассмотрим следующий опыт.

какое направление имеет индукционный ток

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром ( Δ Ф > 0), или уменьшается ( Δ Ф

3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при Δ Ф > 0 и иметь одинаковое с ними направление при Δ Ф

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток.

Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

индукционное электрическое поле

(вихревое электрическое поле )

1. создается неподвижными электрическими зарядами

1. вызывается изменениями магнитного поля

3. источниками поля являются электрические заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции

Источник

Закон электромагнитной индукции

какое направление имеет индукционный ток

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

какое направление имеет индукционный ток

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

какое направление имеет индукционный ток

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

какое направление имеет индукционный ток

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

какое направление имеет индукционный ток

Магнитный поток

какое направление имеет индукционный ток

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

какое направление имеет индукционный ток

Вот, что показали эти опыты:

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

какое направление имеет индукционный ток

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

какое направление имеет индукционный ток

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

какое направление имеет индукционный ток

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

какое направление имеет индукционный ток

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

какое направление имеет индукционный ток

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Источник

Направление индукционного тока. Правило Ленца

Урок 7. Физика 11 класс

какое направление имеет индукционный ток

какое направление имеет индукционный ток

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

какое направление имеет индукционный ток

какое направление имеет индукционный ток

какое направление имеет индукционный ток

Конспект урока «Направление индукционного тока. Правило Ленца»

«Искусство экспериментатора состоит в том,

чтобы уметь задавать природе вопросы,

и понимать ее ответы»

В данной теме разговор пойдёт о том, как определить направление индукционного тока. Рассмотрим правило Ленца.

В прошлой теме говорилось о таком явлении, как электромагнитная индукция и магнитном потоке. Магнитный поток через плоскую поверхность — это скалярная физическая величина, численно равная произведению модуля магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией.

Явление электромагнитной индукции состоит в том, что в замкнутом контуре при изменении магнитного потока в нем возникает электрический ток, который мы с вами называли индукционным.

Закон электромагнитной индукции гласит: среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак «минус» в формуле показывает, что индукционный ток противодействует изменению магнитного потока. Поэтому ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Теперь настало время поговорить об этом более подробно и дать физическое обоснование этого явления.

Как было показано в прошлых опытах в катушке, при приближении или удалении от нее магнита, возникает индукционный ток разного направления.

Индукционный ток в катушке, как и любой другой ток, создает собственное магнитное поле, которое взаимодействует с магнитным полем постоянного магнита. Задача сводится к тому, что бы разобраться в механизме этого взаимодействия.

какое направление имеет индукционный ток

Для определения направления линий магнитного поля внутри катушки с индукционным током, будем пользоваться правилом буравчика, которое гласит, что если вращать головку правого винта по току в витке, то тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса.

Если приближать магнит к катушке, например северным полюсом, то в ней возникнет индукционный ток такого направления, что на ближайшем конце катушки появится одноименный магнитный полюс.

какое направление имеет индукционный ток

Из рисунка видно, что вектор магнитной индукции поля постоянного магнита направлен вниз, а вектор магнитной индукции поля возникшего индукционного тока — вверх, так как линии магнитной индукции поля катушки выходят из северного полюса. Это значит, что в данном случае, т.е. при увеличении магнитного потока, пронизывающего катушку, в ней возникает индукционный ток такого направления, что его магнитное поле направлено навстречу магнитному полю, порождающему этот ток.

Получается два магнита, обращенных друг к другу одноименными полюсами, а известно, что одноименные полюса отталкиваются. Это приводит к тому, что в этом случае постоянный магнит будет всегда отталкиваться от катушки.

Если же удалять магнит от катушки, то на ближайшем ее полюсе возникнет магнитный полюс, противоположный полюсу постоянного магнита. Получается, что опять магнитное поле индукционного тока будет препятствовать изменению магнитного поля, порождающего этот индукционный ток.

какое направление имеет индукционный ток

Т.е. имеются два магнита, обращенных друг к другу разноименными полюсами, а известно, что разноименные полюса притягиваются, что приводит к тому, что постоянный магнит, в этом случае, будет всегда притягиваться к катушке.

Аналогично будет происходить, если поменять полюс магнита с северного на южный.

какое направление имеет индукционный ток

Таким образом, проследив за взаимодействием между полюсами катушки и магнита во всех случаях и сравнив его с направлением движения магнита, можно легко заметить, что взаимодействие между полюсами всегда препятствует движению магнита.

К аналогичным выводам в 1833 году пришел прославленный российский физик, один из основоположников электротехники, Эмилий Христианович Ленц.

какое направление имеет индукционный ток

Однако, в своих опытах, Ленц использовал не катушку, а прибор, состоящий из узкой алюминиевой пластины с алюминиевыми кольцами на концах. Одно кольцо было сплошное, а другое — с разрезом. Данный прибор был помещен на стойку и мог свободно вращаться вокруг вертикальной оси. Ленц брал полосовой магнит и вносил его в кольца.

При подносе магнита к кольцу с разрезом, никаких изменений в установке не наблюдалось. Однако, пытаясь внести этот же магнит в сплошное кольцо, Ленц наблюдал, как оно начинало «убегать» от магнита, поворачивая при этом всю пластинку. Убирая магнит от кольца, оно возвращалось в первоначальное положение. Ленц объяснял эти явления так: при приближении к кольцу магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом ток циркулировать не может.

Отталкивание сплошного кольца показывает, что индукционный ток в нем имеет такое направление, что линии индукции магнитного поля, порожденного индукционным током, направлены противоположно линиям индукции внешнего поля магнита. Т.е. кольцо и магнит будут обращены друг к другу одноименными полюсами.

При уменьшении магнитного потока (выдвигание магнита), индукционный ток имеет в нем такое направление, что линии индукции его магнитного поля совпадают по направлению с линиями индукции внешнего магнитного поля. Т.е. кольцо и магнит будут обращены друг к другу разноименными полюсами.

Таким образом, проследив за взаимодействием между кольцом и магнитом во всех случаях и сравнив его с направлением движения магнита, можно видеть, что взаимодействие между полюсами всегда препятствует движению магнита.

Эмилий Христианович Ленц обобщил найденные им закономерности и сформулировал общее правило. Найденную им связь называют его именем, правилом Ленца. Оно гласит, что электромагнитная индукция создает в контуре индукционный ток такого направления, что созданное им магнитное поле препятствует изменению магнитного потока, вызывающего этот ток.

С помощью правила Ленца всегда можно определить направление индукционного тока. Для этого необходимо:

– Выяснить причину возникновения индукционного тока (увеличивается или уменьшается магнитный поток через контур);

– Определить направление вектора магнитной индукции индуцирующего магнитного поля;

– Найти направление индукции магнитного поля индукционного тока (если DF > 0, то какое направление имеет индукционный ток; DF Оцените видеоурок

Источник

Закон электромагнитной индукции. Правило Ленца

Урок 5. Физика 11 класс ФГОС

какое направление имеет индукционный ток

какое направление имеет индукционный ток

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

какое направление имеет индукционный ток

какое направление имеет индукционный ток

какое направление имеет индукционный ток

Конспект урока «Закон электромагнитной индукции. Правило Ленца»

На прошлом уроке мы с вами ввели в рассмотрение понятие магнитного потока (или потока вектора магнитной индукции). Напомним, что так называют скалярную физическую величину, равную произведению модуля индукции магнитного поля, площади поверхности, ограниченной контуром, и косинуса угла между направлениями нормали к этой поверхности и магнитной индукции:

какое направление имеет индукционный ток

А ещё мы с вами познакомились с некоторыми опытами Майкла Фарадея, позволившие ему открыть одно из уникальных явлений современного мира — явление электромагнитной индукции. Давайте с вами вспомним, что это явление заключается в том, что при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает индукционный ток, существующий в течение всего времени изменения магнитного потока.

Но у нас с вами остался ещё один важный и нерешённый вопрос: какого же направление возникающего индукционного тока? Этим вопросом задавались многие учёные, среди которых был и петербургский академик Эмилий Христианович Ленц. В 1833 году после серии исследований явления электромагнитной индукции ему удалось сформулировать правило для определения направления индукционного тока — правило Ленца. Согласно этому правилу, возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, противодействует изменению магнитного потока, которым вызывается этот индукционный ток.

какое направление имеет индукционный ток

Правило Ленца можно проиллюстрировать на таком опыте. Возьмём два лёгких алюминиевых кольца, находящихся на острие подставки. Одно кольцо, как видно, сплошное. Другое же кольцо имеет небольшой разрез. Теперь возьмём постоянный магнит попробуем приблизить его к разрезанному кольцу. Как видим, разрезанное кольцо никак не реагирует на магнит. Это говорит нам о том, что индукционный ток в этом кольце не возникает.

какое направление имеет индукционный ток

А теперь попробуем приблизить магнит к сплошному кольцу. Как видим, оно отталкивается от магнита, подобно тому, как отталкиваются два одноимённых полюса магнита. И действительно, когда мы пытаемся внести магнит в кольцо, то в последнем возникает индукционный ток, который порождает в собственное магнитное поле. По правилу Ленца это поле имеет такое направление, что его линии индукции направлены противоположно линиям индукции внешнего поля магнита. Иными словами, кольцо и магнит оказываются обращёнными друг к другу одноименными полюсами.

Продолжим наши опыты. Но теперь, придерживая коромысло рукой, внесём магнит в сплошное кольцо. Отпустив коромысло, попробуем вытянуть магнит — кольцо следует за магнитом, подобно тому, как притягиваются два разноимённых полюса магнита. Объясним и этот случай. Когда мы пытаемся убрать магнит из кольца (то есть уменьшаем магнитный поток), то в кольце вновь возникает индукционный ток, но уже другого направления. Этот ток также порождает собственное магнитное поле. Однако линии индукции этого поля теперь направлены так же, как и линии индукции внешнего поля магнита. Иными словами, кольцо и магнит оказываются обращёнными друг к другу разноимёнными полюсами.

В более сжатой форме правило Ленца можно сформулировать следующим образом: индукционный ток всегда направлен так, что его действие противоположно действию причины, вызвавшей этот ток.

Индукционный ток, как и всякий ток, обладает энергией. Следовательно, получая индукционный ток, мы тем самым получаем электрическую энергию. Согласно закону сохранения и превращения энергии, последняя может быть получена только за счёт эквивалентного количества энергии какого-нибудь другого вида.

Когда мы приближаем, например, к катушке магнит, то возникающий в ней индукционный ток своим магнитным полем отталкивает магнит. Двигая магнит, мы преодолеваем эти силы отталкивания, то есть совершаем работу, в результате чего механическая энергия и превращается в энергию индукционного тока.

При выдвигании магнита из катушки совершается работа по преодолению силы притяжения катушки. Механическая энергия здесь также превращается в энергию индукционного тока. Таким образом, закон Ленца находится в полном соответствии с законом сохранения и превращения энергии.

Для того, чтобы определить направление индукционного тока по правилу Ленца, необходимо выполнить несколько нехитрых операций:

1) необходимо выяснить, как направлены линии магнитной индукции внешнего магнитного поля%

2) установить, увеличивается или уменьшается магнитный поток через поверхность, ограниченную проводящим контуром;

3) определить направление линий индукции магнитного поля индукционного тока. Для этого необходимо руководствоваться следующим: если изменение магнитного потока является величиной отрицательной, то направления индукций внешнего магнитного поля и магнитного поля индукционного тока совпадают, в противном случае эти направления противоположны.

4) узнав направление линий индукции магнитного поля индукционного тока, воспользоваться правилом буравчика для определения направления индукционного тока.

Открыв явление электромагнитной индукции, Фарадей буквально за полтора месяца установил все его существенные закономерности. Ему стала понятна сущность явления, которое сыграло такую важную, без преувеличения, роль для всего человечества: во всех проведённых опытах индукционный ток в проводящем контуре возникал только в результате изменения магнитного потока через поверхность, ограниченную этим контуром.

Как вы уже знаете, для существования тока в замкнутой электрической цепи необходимо, чтобы на свободные заряженные частицы действовали сторонние силы, то есть в цепи должен быть источник ЭДС. Вы, наверное, догадались, что в опытах Фарадея источником этих самых сторонних сил был изменяющийся магнитный поток, который и создавал в цепи электродвижущую силу. Эту ЭДС мы с вами будем называть электродвижущей силой индукции или, сокращённо, ЭДС индукцией.

Заметим, что для явления электромагнитной индукции именно ЭДС индукции является характерной величиной, а не индукционный ток, так как он зависит от сопротивления контура. Например, в двух одинаковых по размерам и форме проводниках при одинаковых условиях ЭДС индукции будет одинакова, а индукционный ток будет меньше в том проводнике, сопротивление которого больше.

Теперь, введя понятие ЭДС индукции мы можем дать более строгое определение явления электромагнитной индукции. Итак, явление возникновения ЭДС индукции в контуре, который либо покоится в изменяющемся во времени магнитном поле, либо движется в постоянном магнитном поле так, что магнитный поток через поверхность, ограниченную контуром, меняется, называют электромагнитной индукцией.

В 1873 году ещё один выдающийся английский физик Джеймс Клерк Максвелл, занялся анализом результатов опытов Фарадея. В частности, он заметил одно очень важное обстоятельство: чем быстрее меняется магнитный поток, пронизывающий контур, тем больший индукционный ток идёт по проводнику и, следовательно, тем большая ЭДС индукции в нём возникает:

какое направление имеет индукционный ток

Однако из закона Ома для замкнутой цепи следует, что сила индукционного тока должна быть прямо пропорциональна ЭДС индукции и обратно пропорциональна сопротивлению проводника:

какое направление имеет индукционный ток

А так как сопротивление проводника не зависит от изменения магнитного потока, то выражение для силы индукционного тока будет справедливо только тогда, когда ЭДС индукции пропорциональна скорости изменения магнитного потока

какое направление имеет индукционный ток

Чтобы обеспечить строгое равенство в записанном выражении, необходимо учесть направление индукционного тока. Как мы уже с вами выяснили, по правилу Ленца при увеличении магнитного потока ЭДС индукции отрицательная и, наоборот, при уменьшении магнитного потока ЭДС индукции положительная. Тогда можно записать, что ЭДС электромагнитной индукции в контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком:

какое направление имеет индукционный ток

В этом и состоит математическая суть закона электромагнитной индукции, установленного Джеймсом Максвеллом и названного в честь Майкла Фарадея законом электромагнитной индукции Фарадея.

Для закрепления нового материала, давайте с вами решим такую задачу. И условие первой из них такое: в однородном магнитном поле, индукция которого равна 500 мТл, вращается стержень длиной 1 м с постоянной угловой скоростью 20 рад/с. Определите ЭДС индукцию, возникающую в стержне, если ось вращения проходит через конец стержня параллельно линиям магнитной индукции.

какое направление имеет индукционный ток

В заключении урока отметим, что наибольшего значения индукционные токи достигают в массивных проводниках. Такие токи принято называть токами Фуко́ по имени исследовавшего их французского физика Поль-Мишеля Фуко. Как правило, эти токи используются для нагревания проводников, например, в индукционных печах, современных индукционных плитах и так далее. Однако существует много устройств, в которых возникновение токов Фуко́ приводит к бесполезным, а порой и нежелательным потерям энергии на выделение тепла. Поэтому, например, в электродвигателях, генераторах, и трансформаторах железные сердечники выполняются не из сплошного металла, состоящие из отдельных пластин, изолированных друг от друга.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *