какое наименьшее число делится на любое число без остатка

Признаки делимости чисел

какое наименьшее число делится на любое число без остатка

Что такое «признак делимости»

Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.

Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.

Однозначные, двузначные и трехзначные числа

Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.

Трехзначные числа — числа, в составе которых три знака (три цифры).

Чётные и нечётные числа

Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!

Признаки делимости чисел

Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.

Признак делимости на 3. Сумма цифр числа должна делиться на 3.

Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.

Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.

Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.

Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.

Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.

Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Записаться на марафон

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Делимость натуральных чисел.

Деление – это действие, обратное умножению. Рассмотрим более подробно деление натуральных чисел.

Натуральными числами называют числа, используемые для счета. Каждому количеству предметов счета соответствует некоторое натуральное число. Если предметов для счета нет, то используется число 0, но при счете предметов мы никогда не начинают с 0, и соответственно число 0 нельзя отнести к натуральным. Понятно, что наименьшим натуральное число является единица. Наибольшего натурального числа не существует, потому что каким бы большим не было число, всегда можно прибавить к нему 1 и записать следующее натуральное число.

Натуральное число k делится нацело на натуральное число n, если найдётся такое натуральное число m, для которого справедливо равенство k =n m.

Или другими словами, чтобы разделить одно число на другое, надо найти такое трете число, которое при умножении на второе дает первое

число nделителем числа k.

Числа 1, 2, 3, 6, 10, 15, 30 также являются делителями числа 30, а число 30 является кратным каждого из этих чисел. Заметим, что число 30 не делится нацело, например, на число 7. Поэтому число 7 не является делителем числа 30, а число 30 не кратно числу 7.

Выполнив действия по делению говорят: «Число k делится нацело на число n», «Число n является делителем числа k», «Число k кратно числу n», «Число k является кратным числа n».

Легко записать все делители числа 6. Это числа 1, 2, 3 и 6. А можно ли перечислить все числа, кратные числу 6? Числа 6• 1, 6• 2, 6• 3, 6• 4, 6• 5 и т. д. кратны числу 6. Получаем, что чисел, кратных числу 6, — бесконечно много. Поэтому перечислить их все невозможно.

Вообще, для любого натурального числа k каждое из чисел

является кратным числа k.

Наименьшим делителем любого натурального чис­ла k является число 1, а наибольшим делителем — само число k.

Среди чисел, кратных числу k, наибольшего нет, а наименьшее есть — это само число k.

Каждое из чисел 21 и 36 делится нацело на число 3, и их сумма, число 57, также делится нацело на число 3. Вообще, если каждое из чисел k и n делится нацело на число m, то и сумма k + n также делится нацело на число m.

Каждое из чисел 4 и 8 не делится нацело на число 3, а их сумма, число 12, делится нацело на число 3. Каждое из чисел 9 и 7 не делится нацело на число 5, и их сумма, число 16, не делится нацело на число 5. Вообще, если ни число k, ни число n не делятся нацело на число m, то сумма k + n может делиться, а может и не делиться нацело на число m.

Число 35 делится без остатка на число 7, а число 17 на число 7 нацело не делится. Сумма 35 + 17 нацело на число 7 также не делится. Вообще, если число k делится нацело на число m и число n не делится нацело на число m, то сумма k + n не делится нацело на число m.

Источник

math4school.ru

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

Делимость целых чисел и остатки

какое наименьшее число делится на любое число без остатка

Немного теории

В разнообразных задачах про целые числа используются основные понятия и теоремы, связанные с делимостью. Приведём некоторые из них.

Каждое целое число а можно разделить на натуральное число m с остатком, то есть представить в виде а = mq + r, где q и r – целые числа и r (остаток) не меньше 0, но меньше q.

Среди любых m последовательных целых чисел найдется ровно одно число, делящееся на m.

какое наименьшее число делится на любое число без остатка

Если два числа а и b при делении на число m дают одинаковые остатки, то говорят, что а сравнимо с b по модулю m. Записывают это так

какое наименьшее число делится на любое число без остатка

Если a > b, то наибольший общий делитель a и b равен наибольшему общему делителю a – b и b.

Если а и b – натуральные числа и а = bq + r (r – остаток), то наибольший общий делитель d этих чисел равен наибольшему общему делителю b и r; пользуясь этим утверждением несколько раз, можно найти его как последний не равный нулю остаток в цепочке делений с остатком:

(алгоритм Евклида); отсюда следует, что существуют целые числа х и у, такие, что d = ах + by. В частности, если числа а и b взаимно просты, то есть не имеют общих делителей, больших 1, то существуют целые х и у, для которых ах + by = 1.

Каждое натуральное число единственным образом представляется в виде произведения простых чисел (основная теорема арифметики).

Количество простых чисел бесконечно; доказательство этого утверждения по Евклиду основано на том, что произведение нескольких простых чисел, сложенное с единицей, имеет отличные от всех этих простых чисел множители.

Задачи с решениями

1. Сколько существует натуральных чисел, меньших 1000, которые не делятся ни на 5, ни на 7?

Вычёркиваем из 999 чисел, меньших 1000, числа, кратные 5: их [999/5]=199. Далее вычёркиваем числа, кратные 7: их [999/7]=142. Но среди чисел, кратных 7, имеется [999/35]=28 чисел, одновременно кратных 5; они будут вычеркнуты дважды. Итого, нами должно быть вычеркнуто 199+142–28=313 чисел. Остаётся 999–313=686.

2. Номер автобусного билета – шестизначное число. Билет называется счастливым, если сумма трёх первых цифр номера равна сумме последних трёх цифр. Докажите, что сумма всех номеров счастливых билетов делится на 13.

Если счастливый билет имеет номер А, то билет с номером В=999999–А также счастливый, при этом А и В различны. Поскольку А+В=999999=1001·999=13·77·99 делится на 13, то и сумма номеров всех счастливых билетов делится на 13.

3. Докажите, что сумма квадратов трёх целых чисел не может при делении на 8 дать в остатке 7.

Любое целое число при делении на 8 имеет остатком одно из следующих восьми чисел 0, 1, 2, 3, 4, 5, 6, 7, поэтому квадрат целого числа имеет остатком при делении на 8 одно из трёх чисел 0, 1, 4. Чтобы при делении на 8 сумма квадратов трёх чисел имела остаток 7, необходимо, чтобы выполнялся один из двух случаев: либо один из квадратов, либо все три при делении на 8 имеют нечётные остатки.

В первом случае нечётный остаток есть 1, а сумма двух чётных остатков равна 0, 2, 4, то есть сумма всех остатков равна 1, 3, 5. Остатка 7 в этом случае получить нельзя. Во втором случае три нечётных остатка это три 1, и остаток всей суммы равен 3. Итак, 7 не может быть остатком при делении на 8 суммы квадратов трёх целых чисел.

4. Докажите, что при любом натуральном n:

а) число 5 5n+1 + 4 5n+2 + 3 5n делится на 11.

б) число 2 5n+3 + 5 n ·3 n+2 делится на 17.

а) Первоначально выполним следующее преобразование заданного выражения:

Принимая во внимание бином Ньютона n-й степени, можно записать: (х+1) n = Ах+1, где А – некоторое целое число при целых х. Тогда приведённое выше выражение принимает вид 11В+5+16+1 = 11С, очевидно делящееся на 11, где В и С – некоторые целые числа.

б) Выполним следующие преобразования, из которых следует доказываемое утверждение:

2 5n+3 + 5 n ·3 n+2 = 8·32 n + 9·15 n = 8(17+15) n + 9·15 n = 17А + 8·15 n + 9·15 n = 17А + 17·15 n = 17В,

где А, В – целые положительные числа.

а) если х 2 +у 2 делится на 3 и числа х, у целые, то х и у делятся на 3;

б) если сумма трёх целых чисел делится на 6, то и сумма кубов этих чисел делится на 6;

в) если p и q простые числа и p>3, q>3, то p 2 –q 2 делится на 24;

г) если a, b, c – любые целые числа, то найдутся такие взаимно простые k и t, что ak+bt делится на c.

Таким образом, х=3а и у=3b, то есть х и у делятся на 3, что и требовалось доказать.

б) Достаточно показать, что x 3 +y 3 +z 3 –(x+y+z) делится на 6. Это так и есть, ведь каждое из слагаемых x 3 –x, y 3 –y и z 3 –z делится на 6, поскольку а 3 –а=а(а–1)(а+1) – произведение трёх последовательных целых чисел, которое обязательно делится на 2, 3, а, значит, и 6.

в) Кратность p 2 –q 2 числу 3 можно доказать так. При делении на 3 квадраты целых чисел дают остатки 0 или 1. Так как p и q простые числа больше 3, то это p 2 и q 2 при делении на 3 имеют одинаковые остатки – единицу. Тогда p 2 –q 2 делится на 3.

С другой стороны, p 2 –q 2 =(p+q)(p–q). Так как p и q нечётные и при делении на 4 имеют остатки 1 или 3, то выражение в одних скобках делится на 4, а в других – на 2, а разность квадратов p и q – на 8.

Так как p 2 –q 2 делится на взаимно простые числа 3 и 8, то p 2 –q 2 делится на 3·8=24, что и требовалось доказать.

г) Пусть наибольший общий делитель чисел b и c–a равен d, b=k·d и c–a=t·d. Тогда числа k и t взаимно просты.

Итак, a·k+b·t делится на c.

а) наибольший общий делитель чисел 2n+3 и n+7;

б) все пары натуральных чисел х, у таких, что 2х+1 делится на у и 2у+1 делится на х;

в) все целые k, для которых k 5 +3 делится на k 2 +1;

а) Заметим, что если m > n, то НОД (m; n) = НОД (m – n; n).

Иначе говоря, наибольший общий делитель двух натуральных чисел равен наибольшему общему делителю модуля их разности и меньшего числа. Легко доказать это свойство.

Пусть k – общий делитель m u n (m > n). Это значит, что m = ak, n = bk, где a, b – натуральные числа, причем a > b. Тогда m – n = k(a – b), откуда следует, что k – делитель числа m – n. Значит, все общие делители чисел m и n являются делителями их разности m – n, в том числе и наибольший общий делитель.

НОД (2n+3; n+7) = НОД (n+7; 2n+3 – (n+7)) = НОД (n+7; n–4) = НОД (n–4; 11).

Так как 11 – простое число, то искомый наибольший общий делитель равен 1 либо 11. Если n–4 = 11d, то есть n = 4+11d, то наибольший общий делитель равен 11, в противном случае – 1.

Ответ: НОД (2n+3; n+7) = 11, при n равных 4+11d; НОД (2n+3; n+7) = 1, при n не равных 4+11d.

б) Число 2х+1 нечётное и делится на у, поэтому у тоже нечётное. Аналогично х – нечётное.

Числа х и у взаимно простые. Действительно, пусть k – общий делитель х и у, тогда 2х делится на k, и (2х+1) тоже делится на k (k – делитель у, а у – делитель 2х+1). Значит, 1 делится на k, то есть k=1.

Число 2х+2у+1 делится и на х и на у, а значит, – на ху. Тогда 2х+2у+1 не меньше ху.

Пусть х 5 +3 = (k 3 –k)( k 2 +1) + (k+3), то k 5 +3 делится на k 2 +1, если k+3 делится на k 2 +1. Когда это возможно? Рассмотрим варианты:

1) k+3 = 0, а значит k = –3;

2) k+3 = k 2 +1; решая, находим k = –1, k = 2;

3) проверим целые k при которых k+3 > k 2 +1; после проверки: k = 0, k = 1.

г) пусть m = 2·3·5·7·k. Подбирая k так, чтобы m–1 делилось на 11, а m+1 – на 13, получим, что число n = m–10 удовлетворяет условию задачи.

7. Существует ли десятизначное число, делящееся на 11, в записи которого каждая цифра встречается по одному разу?

I способ. Выписывая трёхзначные числа, делящиеся на 11, можно среди них найти три числа, в записи которых участвуют все цифры от 0 до 9. Например, 275, 396,418. С их помощью можно составить десятизначное число, делящееся на 11. Например:

2753964180 = 275·10 7 + 396·10 7 + 418·10 = 11·(25·10 7 + 36·10 4 + 38·10).

II способ. Для нахождения требуемого числа воспользуемся признаком делимости на 11, согласно которому числа n=a1a2a3…a10 (в данном случае аi не множители, а цифры в записи числа n) и S(n)=a1–a2+a3–…–a10 одновременно делятся на 11.

Пусть А – сумма цифр, входящая в S(n) со знаком «+», В – сумма цифр, входящая в S(n) со знаком «–». Число А–В, согласно условию задачи, должно делиться на 11. Положим В–А=11, кроме того, очевидно, А+В=1+2+3+…+9=45. Решая полученную систему В–А=11, А+В=45, находим, А=17, В=28. Подберём группу из пяти различных цифр с суммой 17. Например, 1+2+3+5+6=17. Эти цифры возьмём в качестве цифр с нечётными номерами. В качестве цифр с чётными номерами возьмём оставшиеся – 4, 7, 8, 9, 0.

Мы видим, что условию задачи удовлетворяет, например, число 1427385960.

8. Два двузначных числа, записанных одно за другим, образуют четырёхзначное число, которое делится на их произведение. Найти эти числа.

Пусть a и b – два двузначных числа, тогда 100a+b – четырёхзначное число. По условию 100a+b = k·ab, отсюда b = a(kb–100), то есть b делится на a.

Итак, b = ma, но a и b двузначные числа, поэтому m однозначное.

Так как 100a+b = 100a+ ma = а(100+m) и 100a+b = kab, то а(100+m) = kab,

то есть 100+m = kb или 100+m = kma, откуда 100 = m(ka–1).

Таким образом, m – делитель числа 100, кроме того, m – однозначное число, значит, m = 1, 2, 4, 5.

Так как ka = 1+100/m, причём а двузначно, то отпадают для m значения 1 и 5, ибо

при m = 1 число 100/1+1 = 101 не делится ни на какое двузначное число а;

при m = 5 число 100/5+1 = 21 и имеем а=21, при котором b = ma = 5·21 – трёхзначное число.

При m = 2 имеем, ka = 51, a = 17, b = 17·2 = 34;

при m = 4 имеем, ka = 26, a = 13, b = 13·4 = 52.

Ответ: 17 и 34, 13 и 52.

Воспользуемся тем, что сумма одинаковых нечётных степеней двух чисел делится на сумму этих чисел, что следует из известного алгебраического тождества. Можно записать:

2 2k+1 + n 2k+1 = (2 + n)·А1,

3 2k+1 + (n – 1) 2k+1 = (3 + (n – 1))·А2 = (2 + n)·А2,

4 2k+1 + (n – 2) 2k+1 = (4 + (n – 2))·А3 = (2 + n)·А3 и так далее, где Аi – некоторые целые числа.

В зависимости от чётности n возможна нехватка числа для образования последней пары, избежать этого позволит умножение на 2, рассматриваемой в условии суммы. Итак,

2(1 2k+1 + 2 2k+1 +. +n 2k+1 ) = 2·1 2k+1 + (2 2k+1 + n 2k+1 ) + (3 2k+1 + (n – 1) 2k+1 ) +. + (n 2k+1 + 2 2k+1 ) =

= 2 + (n + 2)·А, где А – некоторое целое число.

Одно из слагаемых последней суммы делится на n + 2, другое при любых натуральных n – нет. Итак, рассматриваемая в условии сумма не делится на n при любых натуральных n и k.

10. Докажите, что для любого простого числа р > 2 числитель m дроби

какое наименьшее число делится на любое число без остатка

Заметим, что число р–1 чётное, и преобразуем дробь m/n к виду

какое наименьшее число делится на любое число без остатка

Приводя полученное выражение к общему знаменателю

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

Задачи без решений

1. Докажите, что при любом натуральном n:

а) число 4 n + 15n – 1 делится на 9;

б) число 3 2n+3 + 40n – 27 делится на 64;

в) число 5 n (5 n + 1) – 6 n (3 n + 2 n ) делится на 91.

а) натуральные значения n такие, что n 5 – n делится на 120;

б) наименьшее натуральное число n такое, что n делится на 19, а n + 2 делится на 82.

3. Пусть m, n – различные натуральные числа, причём m – нечётное. Докажите, что 2 m –1 и 2 n +1 взаимно простые.

4. Четыре различных целых трёхзначных числа, начинающиеся с одной и той же цифры, обладают тем свойством, что их сумма делится на три из них без остатка. Найдите эти числа.

Источник

Более рациональная реализация алгоритма перебора, чтобы найти наименьшее положительное число, которое делится на все числа от 1 до 20

Найдите такое наименьшее положительное число, которое делится на все числа от 1 до 20?

Задачку эту я решил, написав плохо оптимизированный алгоритм полного перебора вариантов.

Никак не могу понять, как лучше оптимизировать данный код.

какое наименьшее число делится на любое число без остатка

какое наименьшее число делится на любое число без остатка

3 ответа 3

Вообще-то говоря, вам надо просто искать наименьшее общее кратное для всех чисел от 1 до 20 🙂 Элементарно, никакого перебора, мгновенно.

Я могу набросать код на C или C++, Python не знаю.

какое наименьшее число делится на любое число без остатка

Эта задача решается вообще без программирования. Достаточно таблицы простых чисел и калькулятора.

Первое. Для того, чтобы делиться на числа из интервала от 1 до 20, искомое число должно делиться на все простые числа, которые встречаются среди делителей чисел из этого интервала.

То есть искомое число должно делиться на 2,3,5,7,11,13,17,19.

Второе. Простые числа входят в делители чисел из интервала от 1 до 20 с разными степенями. Так, двойка встречается в степени 4 ( 2**4==16 ), тройка в степени 2 ( 3**2==9 ), все остальные простые числа только в первой степени.

Поэтому наименьшее общее кратное всех чисел из интервала от 1 до 20 должно делиться на 2 в четвертой степени, 3 в квадрате, числа 5,7,11,13,17,19 в первой степени.

Для вычисления НОК чисел от 1 до 1000 тоже особо программировать не требуется.

Источник

деление без остатка

Деление без остатка. Сколько способов есть разделить число без отставка. Признаки strong. И деление без остатка на калькуляторе.

Делим без остатка

Признаки деления числа без остатка.

Если пример не очень сложный, то можно определить, делится ли число без остатка или нет! Зная признаки делимости чисел.

Чтобы попытаться разобраться. давайте разберем несколько примеров. делится ли данное число на второе число без остатка.

Делится ли число 126 на 2 без остатка?

Если вы знаете признак делимости на 2, то вы точно можете заявить, что число 126 делится на 2 без остатка.

И далее нам остается разделить 126 на 2, либо на калькуляторе, либо столбиком

Делится ли число 126 на 3 без остатка?

Далее мы можем проверить, делится ли число 126 на 3 без остатка. поступаем аналогично, что и в выше описанном примере!

И из этого мы узнаем, что наше число 126 длится и на 3 без остатка.

Делится ли число 126 на 4 без остатка?

Если мы проверим, делится ли число на 4 без остатка, по выше приведенному алгоритму, то мы получим, что данное число не делится без остатка :

А если числа большие!?

Как определить, что они делятся без остатка.

Определить делится ли число без остатка(любое число)

Для этого есть самый простой и эффективный метод, с помощью которого можно за пару секунд узнать делится ли данное число без остатка или делится с остатком!?

Нам опять нужен пример. я думаю, что вы точно не знаете, делится ли эти числа без остатка! Ну, и я не знаю.

Поэтому открываем калькулятор и делим данные числа

И получаем результат :

какое наименьшее число делится на любое число без остатка

Из которого мы можем извлечь вывод, что два числа 6461889 и 987 делятся без остатка.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *