какое количество теплоты нужно затратить для того
Какое количество теплоты нужно затратить для того
Задача № 1. Какое количество энергии требуется для обращения воды массой 150 г в пар при температуре 100 °С?
Задача № 2. Какое количество энергии требуется для превращения воды массой 2 кг, взятой при температуре 20 °С, в пар?
Задача № 3. Какое количество энергии нужно затратить, чтобы воду массой 5 кг, взятую при температуре 0 °С, довести до кипения и испарить её?
Задача № 4. Какую энергию нужно затратить, чтобы расплавить кусок свинца массой 8 кг, взятый при температуре 27 °С?
Задача № 5. Какое количество энергии требуется для превращения в пар спирта массой 200 г, взятого при температуре 18 °С?
Задача № 6. Какое количество энергии требуется для превращения в пар воды массой 5 кг, взятой при температуре 20 °С?
Задача № 7. Какое количество теплоты необходимо сообщить воде массой 10 г, взятой при температуре 0 °С, для того, чтобы нагреть ее до температуры кипения и испарить?
Задача № 8. Из чайника выкипела вода объемом 0,5 л, начальная температура которой была равна 10 °С. Какое количество теплоты оказалось излишне затраченным?
Задача № 9. Кофейник вместимостью 1,2 л заполнили водой при температуре 15 °С и поставили на плиту. Какое количество теплоты пошло на нагревание и кипение воды, если после снятия с плиты в результате испарения в кофейнике объем воды стал на 50 см 3 меньше? (Изменение плотности воды с изменением температуры не учитывать.)
Задача № 10. Какое количество теплоты выделяется при конденсации водяного пара массой 10 кг при температуре 100 °С и охлаждении образовавшейся воды до 20 °С?
Задача № 12. Сколько энергии понадобится, чтобы полностью испарить 100 грамм ртути, взятой при температуре 27 °С?
Краткая теория для решения Задачи на парообразование и конденсацию.
Это конспект по теме «Задачи на парообразование и конденсацию». Выберите дальнейшие действия:
Как правильно рассчитать количество теплоты, необходимое для нагревания газообразного вещества при изохорном процессе
Задача 32.
Определить количество теплоты, необходимое для нагревания 10 г азота от 20 до 25°С, если объем газа не изменяется.
Решение:
М(N2) = 28 г/моль.
Количество теплоты, получаемое системой при изохорном процессе, может быть вычислено по уравнению:
Молярная теплоемкость идеального газа при постоянном объеме для двухатомных молекул:
Ответ: Qp = 37,116 Дж.
Задача 33.
Определите количество теплоты, которое нужно затратить для нагревания 10 г водорода от 30 до 100 °С при постоянном объеме.
Решение:
М(Н2) = 2 г/моль.
Количество теплоты, получаемое системой при изохорном процессе, может быть вычислено по уравнению:
Молярная теплоемкость идеального газа при постоянном объеме для двухатомных молекул:
Cv = 5/2R. Следовательно,
Ответ: 7274,75 Дж.
Задача 34.
Определите количество теплоты, которое нужно затратить для нагревания 8,5 г аммиака от 25 до 40 °С при постоянном объеме.
Решение:
М(NH3) = 17 г/моль.
Количество теплоты, получаемое системой при изохорном процессе, может быть вычислено по уравнению:
Молекула аммиака имеет форму треугольной пирамиды. Молярная теплоемкость идеального газа при постоянном объеме без учета энергии колебательного движения, то есть при сравнительно невысоких температурах для нелинейных трехатомных и многоатомных молекул:
Сv = 3R. Следовательно,
Расчет количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении
Содержание
Количество теплоты – еще один изученный нами вид энергии. Эту энергию тело получает или отдает при теплопередаче. Мы установили, что количество теплоты, необходимое для нагревания тела, зависит от массы тела, разности температур и рода вещества. Нам известен физический смысл удельной теплоемкости и некоторые ее табличные значения для разных веществ. В этом уроке мы перейдем к численному расчету количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении.
Зачем это нужно? На самом деле, на практике очень часто используют подобные расчеты.
При строительстве зданий и проектировании систем отопления важно знать, какое количество теплоты необходимо отдавать для полного обогрева всех помещений. С другой стороны, также необходима информация о том, какое количество теплоты будет уходить через окна, стены и двери.
Формула для расчета количества теплоты
Тогда, формула для расчета количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении примет вид:
Чтобы рассчитать количество теплоты, которое необходимо затратить для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость умножить на массу тела и на разность конечной и начальной температур.
Рассмотрим подробнее особенности расчета количества теплоты на примерах решения задач.
Расчет количества теплоты, затраченного на нагревание двух тел
Обратите внимание, что нагреваться будут сразу два тела: и котелок, и вода в нем. Между постоянно будет происходить теплообмен. Поэтому их температуры мы можем считать одинаковыми.
Отметим, что массы котелка и воды различные. Также они имеют различные теплоемкости. Значит, полученные ими количества теплоты будет различными.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$m_1 = 4 \space кг$
$c_1 = 460 \frac<Дж><кг \cdot \degree C>$
$m_2 = 10 \space кг$
$c_2 = 4200 \frac<Дж><кг \cdot \degree C>$
$t_1 = 25 \degree C$
$t_2 = 100 \degree C$
Посмотреть решение и ответ
Решение:
Запишем эту формулу для количества теплоты, полученного котелком:
$Q_1 = c_1m_1(t_2 – t_1)$.
Рассчитаем это количество теплоты:
$Q_1 = 460 \frac<Дж> <кг \cdot \degree C>\cdot 4 \space кг \cdot (100 \degree C – 25 \degree C) = 1840 \frac<Дж> <\degree C>\cdot 75 \degree C = 138 000 \space Дж = 138 \space кДж$.
Количество теплоты, полученное водой при нагревании будет равно:
$Q_2 = c_2m_2(t_2 – t_1)$.
Подставим численные значения и рассчитаем:
$Q_2 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 10 \space кг \cdot (100 \degree C – 25 \degree C) = 42000 \frac<Дж> <\degree C>\cdot 75 \degree C = 3 150 000 \space Дж = 3150 \space кДж$.
Общее количество теплоты, затраченное на нагревание котелка и воды:
$Q = Q_1 +Q_2$,
$Q = 138 \space кДж + 3150 \space кДж = 3288 \space кДж$.
Расчет количества теплоты при смешивании жидкостей
Дано:
$c_1 = c_2 = c = 4200 \frac<Дж><кг \cdot \degree C>$
$m_1 = 0.3 \space кг$
$m_2 = 1.4 \space кг$
$t_1 = 100 \degree C$
$t_2 = 15 \degree C$
$t = 30 \degree C$
Посмотреть решение и ответ
Решение:
Рассчитаем эту величину:
$Q_1 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 0.3 \space кг \cdot (100 \degree C – 30 \degree C) = 1260 \frac<Дж> <\degree C>\cdot 70 \degree C = 88 200 \space Дж = 88.2 \space кДж$.
Рассчитаем эту величину:
$Q_1 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 1.4 \space кг \cdot (30 \degree C – 15 \degree C) = 5880 \frac<Дж> <\degree C>\cdot 15 \degree C = 88 200 \space Дж = 88.2 \space кДж$.
$Q_1 = Q_2 = 88.2 \space кДж$.
В ходе решения этой задачи мы увидели, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой, равны. Другие опыты дают схожие результаты.
Если между телами происходит теплоообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.
На практике часто получается так, что отданная горячей водой энергия больше, чем полученная холодной. На самом деле, горячая вода при охлаждении передает какую-то часть своей внутренней энергии воздуху и сосуду, в котором происходит смешивание.
Есть 2 способа учесть этот фактор:
Расчет температуры при известной величине количества теплоты
Дано:
$m = 300 \space г$
$t_1 = 20 \degree C$
$c = 400 \frac<Дж><кг \cdot \degree C>$
$Q = 22 \space кДж$
Посмотреть решение и ответ
Решение:
Запишем формулу для расчета количества теплоты:
$Q = cm(t_2 – t_1)$.