какое количество кислорода в воздухе по высоте

Какой процентный состав воздуха на больших высотах

Еще до недавнего времени считали, что в атмосфере, прилегающей к поверхности земли, преобладают более тяжелые газы, а вдали от нее — более легкие.

Многочисленные исследования, проведенные за последние годы, не подтвердили этого предположения. Не подтвердилось оно также и анализом проб воздуха, взятого на высоте 70 километров при помощи специальных ракет.

Результаты анализа этих проб и другие исследования показали, что состав воздуха в отдаленных от земли слоях атмосферы почти не меняется и процентное содержание кислорода в нем такое же, как и у поверхности земли.

Так как барометрическое давление воздуха по мере удаления от земли падает, то падает и давление каждой составной части воздуха в отдельности, то есть падает парциальное давление кислорода, азота и других газов, входящих в состав воздуха.

Парциальное давление кислорода на высоте 10 километров почти в 4 раза меньше, чем у поверхности земли, и составляет только 45 миллиметров ртутного столба вместо 150 на уровне моря.

Скорость проникновения кислорода к кровеносным сосудам путем диффузии определяется не процентным его содержанием в воздухе, а парциальным давлением. Вот почему, несмотря на то что содержание кислорода в воздухе на больших высотах составляет 21 процент, количество его по мере удаления от земли становится все меньше и меньше и дыхание у людей затрудняется. На высоте около 5 тысяч метров, где парциальное давление кислорода падает до 105 миллиметров ртутного столба, у человека уже появляются тяжесть в голове, сонливость, тошнота, а иногда и потеря сознания. Такое состояние характерно при кислородном голодании, которое вызывается пониженным содержанием кислорода в воздухе по сравнению с обычным его содержанием на уровне моря.

При полете на большой высоте летчик надевает кислородную маску.

Вот почему без искусственного добавления кислорода к воздуху, который вдыхают летчики при высотных полетах, было бы невозможно достичь современного потолка полета.

На высоте 4,5—5 тысяч метров летчикам приходится пользоваться дыхательными масками, в которые из баллончика к вдыхаемому воздуху добавляется немного кислорода. По мере увеличения высоты полета количество кислорода, добавляемого в маску, увеличивается. Это обеспечивает нормальное дыхание экипажу самолета.

Водолазы при работе под водой также применяют кислород для дыхания. В атмосфере удушливых газов пожарники пользуются кислородными масками, в которые воздух из окружающей среды совершенно не попадает.

Главными потребителями кислорода в природе являются животный и растительный мир. Но растения и животные потребляют кислород только для дыхания, человек же использует его и для удовлетворения своих бытовых потребностей и в промышленности.

Источник: В. Медведовский. Кислород. Государственное Издательство Детской литературы Министерства Просвещения РСФСР. Ленинград. Москва. 1953

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Какое количество кислорода в воздухе по высоте

По мере того как люди поднимаются все выше во время горных восхождении, в самолетах и космических кораблях, все более важным становится понимание влияния на человеческий организм высоты и сниженного давления газовой среды (так же, как и некоторых других факторов — ускорений, невесомости и др.).

какое количество кислорода в воздухе по высоте

а) Физиологические эффекты сниженного парциального давления кислорода в газовой среде. Барометрическое давление на различных высотах. В таблице выше даны приблизительные значения барометрического давления и парциального давления кислорода на различных высотах. Видно, что на уровне моря барометрическое давление составляет 760 мм рт. ст., на высоте 3048 м — только 523, а на высоте 15240 м — 87 мм рт. ст. Это снижение барометрического давления является основной причиной всех проблем высотной физиологии, связанных с гипоксией, поскольку по мере его падения парциальное давление кислорода в атмосфере пропорцнональ но снижается, оставаясь все время немного ниже 21% общего барометрического давления. Так, на уровне моря Рог составляет 159 мм рт. ст., тогда как на высоте 15240 м — лишь 18 мм рт. ст.

б) Альвеолярное PO2 при подъеме на различные высоты. Двуокись углерода и водяной пар уменьшают напряжение кислорода в альвеолярном газе. Даже на больших высотах двуокись углерода непрерывно выделяется из крови в альвеолы. Кроме того, с дыхательных поверхностей выдыхаемый воздух испаряется вода. Эти два газа разбавляют кислород в альвеолах, уменьшая его концентрацию. Независимо от высоты при условии нормальной температуры тела давление водяных паров в альвеолах равно 47 мм рт. ст.

Альвеолярное давление углекислого газа (PCO2) во время пребывания на очень больших высотах снижается (по сравнению с 40 мм рт. ст. на уровне моря) до более низких значений. У акклиматизированного человека, вентиляция легких которого возрастает примерно в 5 раз, PCO2 в связи с усиленным дыханием снижается до значений, близких к 7 мм рт. ст.

Теперь рассмотрим, как парциальное давление этих двух газов влияет на альвеолярный кислород. Предположим, что барометрическое давление падает от 760 мм рт. ст. (нормального значения на уровне моря) до 253 мм рт. ст. (как на вершине Эвереста, высота которого — 8847,73 м). При этом 47 мм рт. ст. приходится на водяные пары, а на все другие газы остается всего 206 мм рт. ст. У акклиматизированного человека 7 мм рт. ст. из 206 мм рт. ст. приходится на долю CO2 и, следовательно, остается лишь 199 мм рт. ст.

Если бы организм не потреблял кислород, он составлял бы 1/5 из этих 199 мм рт. ст. и, таким образом, парциальное давление кислорода в альвеолах было бы 40 мм рт. ст. Однако некоторое количество этого кислорода постоянно поступает в кровь, оставляя в альвеолярном газе примерно 35 мм рт. ст. кислорода. На вершине Эвереста только самые устойчивые к гипоксии из акклиматизированных людей с трудом могут выжить при дыхании атмосферным воздухом. Но при дыхании чистым кислородом эффект совершенно иной, как мы увидим далее.

в) Альвеолярное PO2 на различных высотах. Пятая колонка таблицы выше показывает приблизительные значения PO2 в альвеолах на различных высотах при дыхании воздухом для неакклиматизированного и акклиматизированного человека. На уровне моря альвеолярное PO2 составляет 104 мм рт. ст., на высоте 6096 м у неакклиматизированного человека оно падает приблизительно до 40 мм рт. ст., а у акклиматизированного — лишь до 53 мм рт. ст. Такая разница объясняется тем, что у акклиматизированного человека альвеолярная вентиляция возрастает в гораздо большей степени, чем у неакклиматизированного, что мы обсудим далее.

какое количество кислорода в воздухе по высотеВлияние большой высоты на насыщение артериальной крови кислородом при дыхании воздухом и дыхании чистым кислородом

г) Насыщение гемоглобина кислородом на разных высотах. На рисунке выше показано насыщение артериальной крови кислородом на разных высотах при дыхании воздухом и чистым кислородом. До высоты 3048 м насыщение артериальной крови кислородом остается на уровне не менее 90% даже при дыхании воздухом. Выше 3048 м кислородное насыщение артериальной крови, как демонстрирует голубая кривая на рисунке, быстро падает до значений чуть ниже 70% на высоте 6096 м и до значительно меньших значений на еще больших высотах.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

— Вернуться в оглавление раздела «Физиология человека.»

Источник

Атмосфера Земли медленно теряет кислород

какое количество кислорода в воздухе по высоте
Тропосфера — нижний очень тонкий слой атмосферы высотой 8-18 км, в котором сосредоточено 80% массы атмосферы Земли

Важность атмосферного O2 для биологических и геохимических процессов на Земле чрезвычайно высока. Поэтому учёные давно изучают, как изменялось содержание кислорода в истории нашей планеты. Это можно понять из расчёта парциального давления O2 и N2 в общем атмосферном давлении.

Несмотря на долгую историю вопроса, у специалистов до сих пор нет единого мнения об изменении атмосферного давления на протяжении последних 500 млн лет. Расчёты отличаются до 0,2 атм (см. диаграмму внизу). Даже за последние несколько миллионов лет нет ясной картины, как именно менялось атмосферное давление, парциальное давление и, следовательно, концентрация O2.

Вопрос непростой, ведь кислород из атмосферы постоянно потребляют животные, растения и даже камни. Группа учёных из Принстонского университета прояснила этот вопрос, изучив концентрацию воздушных пузырьков в ледяных кернах Гренландии и Антарктиды.

какое количество кислорода в воздухе по высоте
Ледяной керн с глубины 1837 м с видимыми годовыми слоями

На сегодняшний день ледяные керны — самый надёжный и точный источник данных об атмосферном давлении. Максимальный возраст льда в кернах — 800 тыс. лет, поэтому исследования ограничены этим временным интервалом.

какое количество кислорода в воздухе по высоте
Добыча ледяных кернов на научной станции «Восток» в Антарктиде

Оказалось, что в течение этого времени с Земли происходит довольно стабильная утечка кислорода со скоростью примерно 8,4 промилле за миллион лет. В частности, за последние 800 000 лет в атмосфере стало примерно на 0,7% меньше кислорода.

какое количество кислорода в воздухе по высоте
На диаграмме слева показано, как отличаются результаты научного моделирования соотношения O2/N2 в атмосфере и парциального давления. На диаграмме справа — изменение парциального давления по результатам измерения воздушных пузырьков в ледяных кернах за 800 тыс. лет

«Мы проделали эти измерения больше из интереса, чем для подтверждения теории, — сказал один из авторов научной работы Дэниель Столпер (Daniel Stolper). — Мы не знали, что получится: будет кислород увеличиваться с годами, уменьшаться или оставаться на постоянном уровне».

Уменьшение количества кислорода в атмосфере происходит довольно медленно. Вероятно, в ближайшие миллионы лет оно не угрожает человеческой жизни. Но информация о природе таких циклов очень важна для науки. Нам нужно знать, под влиянием каких факторов происходят изменения. Эту информацию можно использовать, в том числе, при терраформировании Марса, когда люди начнут заселение Красной планеты. Вероятно, нам придётся повышать количество кислорода в марсианской атмосфере.

На Земле тоже не было кислорода в первые пару миллиардов лет. Согласно наиболее вероятной теории, примерно 2,4 млрд лет назад уровень кислорода резко подскочил благодаря активности цианобактерий, известных также как сине-зелёные водоросли. Этот период резкого изменения состава атмосферы с последующей перестройкой биосферы и глобальным гуронским оледенением в истории Земли известен как кислородная катастрофа.

какое количество кислорода в воздухе по высоте
Сине-зелёные водоросли — причина, по которой 2,4 млрд лет назад на Земле появился кислород в большом количестве и возникла более продвинутая жизнь

Такую же кислородную катастрофу можно устроить на Марсе.

Учёные ещё не пришли к единому мнению, почему атмосфера Земли медленно теряет кислород. Есть две гипотезы. Одна из них — это происходит из-за увеличения скорости эрозии, в результате которой из почвы извлекается больше горных пород, которые окисляются и связывают больше кислорода. Другая теория связана с изменением климата: за последние несколько миллионов лет температура немного снизилась, несмотря на резкий рост в последние десятилетия. Из-за снижения температуры могла инициироваться цепочка экологических реакций, в результате которой больше кислорода стало растворяться и связываться в Мировом океане.

Пока что всё это лишь гипотезы, которые следует проверить.

В данный момент атмосфера Земли содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,039% углекислого газа и небольшие примеси других газов. В ней также постоянно изменяется концентрация водяного пара, который считается одним из основных парниковых газов. На уровне океана концентрация H2O в атмосфере составляет около 1%, а в среднем — около 0,4%. Общая масса атмосферы — 5,5×10 18 кг, то есть 5,5 зеттаграммов или 5,5 петатонн.

какое количество кислорода в воздухе по высоте
Накопление кислорода в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка. 1. 3,85-2,45 млрд лет назад. 2. 2,45-1,85 млрд лет назад: начало производства кислорода и поглощение его океаном и породами морского дна. 3. 1,85-0,85 млрд лет назад: окисление горных пород на суше. 4. 0,85-0,54 млрд лет назад: все горные породы на суше окислены, начинается накопление кислорода в атмосфере. 5. 0,54 млрд лет назад — настоящее время

Утечка кислорода из земной атмосферы происходит медленно. Но учёные подчёркивают, что в их исследовании нет данных по изменению уровня кислорода за последние 200 лет, после начала Индустриальной революции, когда люди начали активно окислять углеводороды из земных недр, получая энергию от этой химической реакции и связывая большое количество кислорода из атмосферы. «Мы потребляем кислород в тысячу раз активнее, чем раньше, — говорит Дэниель Столпер. — Человечество полностью замкнуло [кислородный] цикл, сжигая тысячи тонн углерода… Это ещё одно свидетельство, что совместными усилиями люди способны значительно ускорить естественные процессы на Земле».

Источник

Высотные кислородные системы: новое – хорошо забытое старое.

какое количество кислорода в воздухе по высоте

90% альпинистов используют кислородные системы при восхождениях на большие высоты. Эти системы стали практически обязательными к использованию теми, кто не имеет опыта восхождений в суровых условиях высоты. Даже некоторые из сильнейших в мире альпинистов должны полагаться на дополнительные преимущества кислорода, находясь выше 8 000 метров.

Важнейшая причина использования кислорода на большой высоте – то, что организм стремится прекратить свою работу, когда его вынуждают находиться на высших точках планеты. Все мы слышали об отеке мозга и отеке легких, обе болезни ассоциируются с недостатком кислорода в организме на высоте. Отек мозга – смертельно опасная ситуация, когда мозг начинает увеличиваться в объеме из-за недостатка кислорода. Если человека не спустить вниз немедленно, последствия могут стать трагичными очень быстро. Яркий пример такого случая можно найти в фильме моего хорошего друга Ланса Трамбулла “ Эверест: восхождение за мир” (http://www.everestpeaceproject.org/) К счастью, тогда ситуация не стала фатальной, но вполне могла бы.

Тенсинг и Хиллари тестируют кислородные системы в Базовом лагере.

какое количество кислорода в воздухе по высоте

Отек легких – еще одна очень опасная ситуация, вызванная недостатком кислорода. Болезнь вызывается тем, что легкие наполняются жидкостью, и становится почти невозможно вдохнуть даже то небольшое количество кислорода, что еще содержится в воздухе. В 1953 году, когда сэр Эдмунд Хиллари и Тенцинг Норгей впервые достигли вершины Эвереста, они восходили с новейшими, на то время, кислородными системами. Успех их восхождения привел к тому, что использование кислорода стало почти обязательным среди высотников. Та же система, с некоторыми улучшениями, используется до сих пор. Следующая информация – это то, о чем вы могли не знать:

Кислородные системы закрытого и открытого типов.

какое количество кислорода в воздухе по высоте

Система, которую использовали Хиллари и Норгей, называют системой «открытого цикла». Это означает, что воздух находится в баллоне и поступает через кислородную маску в соответствии с уровнем расхода, установленным альпинистом. Многие их тех, кто штурмует вершину Эвереста, ставят подачу на 4 литра в час.

Кислородная система «открытого цикла» была разработана Томом Бурдиллоном и Чарльзом Эвансом незадолго до успешного покорения вершины Эвереста сэром Эдмундом и Тенцингом. Приблизительно в то же время, Бурдиллон и Эванс разработали другой тип кислородной системы. Она известна как система «закрытого цикла». Эта система перерабатывает воздух, который вы выдыхаете, и позволяет вам использовать выдыхаемый кислород. В 1953 году эта концепция была новой. За три недели до триумфа Хиллари и Норгея, Бурдийон и Эванс протестировали систему закрытого цикла и достигли точки на 300 футов ниже вершины Эвереста. Хиллари и Норгей выбрали нетестированную систему «открытого цикла».

Джордж Финч тестирует кислородную систему в экспедиции 1922 г.

какое количество кислорода в воздухе по высоте

Санди Ирвин производит наладку кислородного оборудования в экспедиции 1924 г.

какое количество кислорода в воздухе по высоте

Том Бурдиллон на Южной предвершине Эвереста в аппарате закрытого типа в 1953 г.

какое количество кислорода в воздухе по высоте

Успех, сопровождающий использование продукта, помогает покорить рынок. Сегодня каждый, кто восходит с кислородом, использует систему «открытого цикла», впервые разработанную в 1953 году. Перенесемся на полстолетия вперед, и сейчас мы можем увидеть возвращение первой кислородной системы, разработанной Бурдиллоном и Эвансом.

Том Бурдиллон и Чарлз Эванс на Южном седле после попытки восхождения

какое количество кислорода в воздухе по высоте

Кислородная система закрытого цикла экстраординарна по двум причинам. Когда альпинисты впервые протестировали этот метод, было отмечено, что они могли передвигаться на больших высотах в два раза быстрее, чем используя стандартный ныне «открытый цикл». Также вы можете получать в два раза больше воздуха, во время вдоха, через вашу систему, что облегчает многие опасные проблемы, возникающие на высоте. Кроме того, поскольку система использует переработанный воздух, который вы уже выдохнули, вам никогда не придется беспокоиться о том, что кислород закончится посреди опасного восхождения. Это могло бы спасти жизнь многим альпинистам, которые были застигнуты штормом, или тем, у кого закончился кислород недалеко от вершины.

Новая система будет разрабатываться и тестироваться и дальше, перед тем, как ее выпустят на рынок, но, похоже, что оригинальная система, разработанная в далеком 1953 году, cможет, в конце концов, получить ту оценку, которой, по мнению её создателей, она заслуживает. Не только альпинисты получат преимущества от развития старой технологии, это может помочь и больным людям во всем мире. Она также могла быть полезна водолазам, пожарникам, всем, кому нужна кислородная поддержка во время развлечений или работы.

В альпинистском сообществе применения кислорода с самого начала его использования вызывало ожесточенные дискуссии.

Применение кислорода рассматривается многими альпинистами, как не спортивное поведение и, с одной стороны, хоть и значительно облегчает альпинистам нахождение на предельных высотах, с другой стороны, чревато смертельной опасностью.

Если кислород внезапно закончится, человек мгновенно оказывается в почти безвоздушном пространстве (как в разгерметизированном самолете) со всеми вытекающими последствиями.
Голландские ученые смоделировали на компьютере, что произойдет с человеком, у которого на высоте 8800 метров внезапно откажет кислородный аппарат.

Первым эффектом, который ощутит на себе оказавшийся в такой ситуации человек, будет расширение воздуха в легких и пищеварительном тракте, вызванное падением внешнего давления. Жертва внезапной декомпрессии может существенно повысить свои шансы на выживание, просто выдохнув. Если не выпустить воздух из легких в течение первых секунд, их может просто разорвать, в кровоток попадут крупные пузыри воздуха – и то, и другое ведет к неминуемой смерти. Скорее всего, спасительный выдох окажется криком, который издаст альпинист, осознавший свое положение. Впрочем, этот крик вряд или будет кем-либо услышан – как известно, в разряженном воздухе звуки почти не распространяются.

Только находящиеся рядом друзья могут успеть прийти на помощь.

В отсутствии атмосферного давления вода начнет быстро испаряться, поэтому с поверхности глаз и рта жертвы улетучится вся влага. Начнется вскипание воды в мускулах и мягких тканях, из-за чего некоторые части тела увеличатся примерно вдвое относительно своего нормального объема. Расширение вызовет многочисленные разрывы капилляров, хотя будет недостаточным для того, чтобы порвать кожу. Через несколько секунд растворенный в крови азот также начнет образовывать пузырьки газа, вызывая «кессонную болезнь», от которой страдают ныряльщики: эти пузырьки закупоривают мелкие сосуды, затрудняя циркуляцию крови по организму и вызывая тем самым кислородное голодание тканей.

На открытых участках лица, подвергшихся прямому солнечному излучению после срыва маски, появятся ультрафиолетовые ожоги. Несмотря на жуткий холод, моментальная заморозка жертве не грозит, поскольку в разряженном воздухе тепло будет отводиться от организма очень медленно.

В течение нескольких минут человек будет сохранять трезвый ум и способность к активным действиям. В принципе, этого может оказаться достаточным для принятия срочных мер к спасению. Иначе уже через пару мгновений мозг начнет испытывать острый недостаток кислорода, наступит потеря зрения и ориентации. В разряженной атмосфере газообменный процесс в легких пойдет в обратную сторону: кислород изымается из крови и выбрасывается в пространство, что, в совокупности с кессонными эффектами, ускоряет наступление глубокой гипоксии – кислородного голодания тканей.

Полная потеря сознания случится, в зависимости от особенностей организма, в промежутке от нескольких минут до получаса позднее, причем к этому моменту кожа пострадавшего примет отчетливо синюшный оттенок.

Несмотря на глубокий коллапс, мозг жертвы все еще будет оставаться неповрежденным, а сердце все еще будет биться. Если в течение ближайшего времени пострадавший будет помещен в камеру с кислородной атмосферой, он, скорее всего, довольно быстро придет в себя, отделавшись лишь незначительными повреждениями организма (правда, вызванная гипоксией слепота может сохранятся еще какое-то время). По истечении же часа-полутора давление в кровеносной системе упадет настолько, что кровь начнет закипать, а сердце остановится. После этого возврат к жизни уже невозможен.

Таким образом, время выживания внезапно оставшегося без кислорода человека на вершине Эвереста измеряется очень коротким промежутком времени.

Те же из альпинистов, кто изначально поднимался на вершину без кислорода и смог адаптироваться к высоте не подвергабт себя такой страшной опасности.
Тенсинг и Хиллари остановили свой выбор на аппаратах открытого типа. На то время эта аппаратура функционировала надежнее.

Проверка оборудования в ВС.

какое количество кислорода в воздухе по высоте

Хиллари и Тенсинг на восхождении над Южным седлом.

какое количество кислорода в воздухе по высоте

Хиллари и Тенсинг на высоте 8323 м.

какое количество кислорода в воздухе по высоте

Известнейший снимок. Тенсинг Норгей на вершине Эвереста. 11.30, 29 мая 1953 г.

какое количество кислорода в воздухе по высоте

В книге Дж.Ханта «Восхождение на Эверест» (можно скачать в сети в десятках мест) довольно много места уделено изучению «кислородного» вопроса.
Очень рекомендую почитать.
Я хочу показать здесь только совершенно фантастические проекты обеспечения альпинистов кислородом.
Все-таки 1 апеля, пора и улыбнуться.

Итак, выдержка из книги Д.Ханта

«Кислородные приборы описаны в приложении II. К ним предъявлялись два основных требования: легкость и продолжительность действия. Последнее качество в идеале должно было дать возможность избежать или, по крайней мере, свести до минимума случаи перезарядки аппарата. В основном, как я уже говорил, мы возлагали надежды на уже проверенные аппараты открытого типа. В этом приборе кислород подается из баллона, находящегося за спиной восходителя, через маску, которая допускает вдыхание атмосферного воздуха. При выдохе кислород попадает в окружающую атмосферу. Таким образом при этой системе кислород не сохраняется. После каждого вдоха он улетучивается. То, что мы в такой значительной степени положились на применение кислородных аппаратов и, в частности, усовершенствовали прибор открытого типа, явилось отчасти признанием взглядов, отстаиваемых профессором Джорджем Финчем, который высказывался за применение кислородных аппаратов описанной выше системы с тех пор, как он сам пользовался ими при восхождении на Эверест в 1922 г.

Экспериментальный прибор, сконструированный доктором Бурдиллоном и его сыном Томом, который мы также намеревались взять с собой, представлял собой аппарат закрытого типа; при этой системе восходитель вдыхает все 100% кислорода из аппарата. Атмосферный воздух под маску не попадает или, во всяком случае, не должен попадать. Часть выдыхаемого кислорода поступает обратно и снова используется, что значительно удлиняет срок работы кислородных баллонов и позволяет сократить их количество. Если бы прибор этой системы, пригодность которого для работы на больших высотах тогда еще не была проверена, показал хорошие результаты, он мог бы значительно упростить нашу задачу.

Вес нашего кислородного снаряжения, несмотря на все усилия уменьшить его, продолжал причинять нам большое беспокойство. Мы прекрасно понимали, что после значительных усовершенствований наш аппарат при данном весе был значительно лучше любого другого кислородного прибора, применявшегося в экспедициях на Эверест. Но факт оставался фактом: он был и громоздок и тяжел. В этом ни в коей мере не были повинны ни наши консультанты, ни фирмы, изготовлявшие детали и монтировавшие приборы. Дело просто заключалось в том, что за разрешение этой задачи взялись слишком поздно, чтобы можно было разработать и сконструировать радикально измененную модель. Нельзя не восхищаться той самоотверженностью, с которой работали все, кто имел отношение к этому делу, стараясь к установленному сроку создать прибор, удовлетворяющий нашим требованиям. Очевидно, наши заботы были поняты многими нашими друзьями, которые хотя и не были столь тесно связаны с этой проблемой, но не менее нас желали найти ее разрешение. Мы получили множество всевозможных предложений. К сожалению, значительная часть из них поступила спустя много времени после того, как мы были вынуждены остановиться на принятой нами конструкции кислородного прибора.

Предлагалась, например, очень заманчивая, но едва ли осуществимая идея: вооружиться крупной мортирой и палить с Западного цирка вместо снарядов кислородными баллонами, забрасывая их на Южную седловину. Как мы установили позднее, поверхность Южной седловины была столь тверда, что баллоны любой, конструкции должны были бы при приземлении не только отскакивать, но и разбиваться, не говоря уже о том, что мы были бы вынуждены заняться весьма забавной игрой – охотой за баллонами в высокогорных условиях. Перспектива недолета баллонов, которые в этом случае, набирая скорость, катились бы вниз по тысячеметровой круче обратно к месту выстрела, также нас мало прельщала.

Не менее заманчиво было и другое предложение: проложить на всем пути вверх по склону Лходзе и далее по Юго-Восточному гребню трубопровод, по которому из запасов, находящихся в Западном цирке, подавался бы кислород. У отводов, предусмотренных вдоль всего трубопровода, утомленные альпинисты могли бы время от времени останавливаться, чтобы «хлебнуть глоток-другой».

Однако, трезво рассудив, мы решили, что предпочтительней все же нести баллоны на себе, несмотря на всю их громоздкость и тяжесть. Нам также советовали уменьшить тяжесть наших кислородных аппаратов при помощи воздушного шара, наполненного водородом, ровно настолько, чтобы обезопасить себя от обвинений в мошенническом восхождении на вершину по воздуху. Видение штурмующей двойки, на цыпочках подымающейся вверх, едва касаясь снега, рассеялось, как только мы узнали о чудовищных размерах воздушного шара, необходимого для подъема.

При принятии другого предложения нам пришлось бы облечься в надувные костюмы, в которых поддерживалось бы давление при помощи либо специального механизма, прикрепленного к ноге, либо ветра, вращающего небольшой пропеллер, красующийся на лбу, что позволило бы нам одолеть трудности восхождения по склону Лходзе, имея при этом вид резиновых человечков, известных реклам автошин фирмы «Мишелен». Но от этого предложения нам пришлось отказаться. Более серьезным было предложение перебросить все наше снаряжение, включая кислородную аппаратуру, в район Западного цирка по воздуху. Даже ставился на обсуждение вопрос о заброске снаряжения на Южную седловину. Изучение этого предложения в министерстве авиации показало, что осуществление его связано с большими техническими трудностями. Абсолютной гарантии, что груз будет сброшен удачно, по сути дела, не было, и пришлось бы в любом случае заготовлять двойное количество запасов, если мы не хотели рисковать тем, что они окажутся в Тибете или что нам придется направить нашу энергию на поиски и спасение потерпевшего крушение самолета».

Следует не забывать и еще об одной проблеме использования кислорода.
Какой бы тип оборудования не применялся, везде существует проблема утилизации кислородных баллонов.
На вершине Эвереста, на Южном седле и по всему пути следования валяются тысячи пустых баллонов.

Южное седло Эвереста.

какое количество кислорода в воздухе по высоте

В основном экспедиции используют отлично зарекомендовавшую себя российскую аппаратуру НПО «Поиск».

Всем удачи и успешных восхождений на Большие Горы!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *