какое количество белка входит в состав скелетных мышц

Мышечные белки

А.Я. Данилевский впервые разделил экстрагируемые из мышц белки на 3 класса: растворимые в воде, экстрагируемые 8–12 % раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические, миофибриллярные и белки стромы. На долю первых приходится около 35%, вторых – 45% и третьих – 20% от всего количества мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой.

К группе миофибриллярных белков относятся миозин, актин и актомио-зин – белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.

какое количество белка входит в состав скелетных мышц

Рис. 20.3. Строение молекулы миозина. Объяснение в тексте.

Миозин составляет 50–55% от сухой массы миофибрилл. Представление о миозине как о главном белке миофибрилл сложилось в результате работ А.Я. Данилевского, О. Фюрта, Э. Вебера и ряда других исследователей. Однако всеобщее внимание к миозину было привлечено лишь после опубликования работ В.А. Энгельгардта и М.Н. Любимовой (1939– 1942). В этих работах впервые было показано, что миозин обладает АТФазной активностью, т.е. способностью катализировать расщепление АТФ на АДФ и Н3РО4. Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, превращается в механическую энергию сокращающейся мышцы. Молекулярная масса миозина скелетных мышц около 500000 (для миозина кролика 470000). Молекула миозина (рис. 20.3) имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи с мол. массой 205000–210000 и несколько коротких легких цепей, мол. масса которых около 20000. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головка» молекулы), способную соединяться с актином. Эти «головки» выдаются из основного стержня молекулы. Легкие цепи, находящиеся в «головке» миозиновой молекулы и принимающие участие в проявлении АТФазной активности миозина, гетерогенны по своему составу. Количество легких цепей в молекуле миозина у различных видов животных и в разных типах мышц неодинаково.

Толстые нити (толстые миофиламенты) в саркомере надо понимать как образование, полученное путем соединения большого числа определенным образом ориентированных в пространстве молекул миозина (рис. 20.4).

Актин, составляющий 20% от сухой массы миофибрилл, был открыт Ф. Штраубом в 1942 г. Известны две формы актина: глобулярный актин (G-актин) и фибриллярный актин (F-актин). Молекула G-актина с мол. массой 42000 состоит из одной полипептидной цепочки (глобула), в обра-

какое количество белка входит в состав скелетных мышц

Рис. 20.4. Строение толстого миозинового филамента.

зовании которой принимают участие 374 аминокислотных остатка. При повышении ионной силы до физиологического уровня G-актин полиме-ризуется в F-актин (фибриллярная форма). На электронных микрофотографиях волокна F-актина выглядят как две нити бус, закрученных одна вокруг другой (рис. 20.5).

Как отмечалось, кроме рассмотренных основных белков, в миофибрил-лах содержатся также тропомиозин, тропонин и некоторые другие ре-гуляторные белки.

Тропомиозин был открыт К. Бейли в 1946 г. Молекула тропомиозина состоит из двух α-спиралей и имеет вид стержня длиной 40 нм; его мол. масса 65000. На долю тропомиозина приходится около 4–7% всех белков миофибрилл.

Тропонин – глобулярный белок, открытый С. Эбаси в 1963 г.; его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиози-ном. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам Са 2+ (рис. 20.6).

Установлено, что тропонин (его субъединицы Тн-Т и Тн-I) способен фосфорилироваться при участии цАМФ-зависимых протеинкиназ. Вопрос о том, имеет ли отношение фосфорилирование тропонина in vitro к регуляции мышечного сокращения, остается пока открытым.

Белки стромы в поперечно-полосатой мускулатуре представлены в основном коллагеном и эластином. Известно, что строма скелетных мышц, остающаяся после исчерпывающей экстракции мышечной кашицы солевыми растворами с высокой ионной силой, состоит в значительной мере из соединительнотканных элементов стенок сосудов и нервов, а также сарколеммы и некоторых других структур.

какое количество белка входит в состав скелетных мышц

Рис. 20.6. Структура тонкого филамента.

Источник

Синтез и распад белка в скелетных мышцах человека во время и после упражнений

какое количество белка входит в состав скелетных мышц

Авторы: Vinod Kumar, Philip Atherton, Kenneth Smith, Michael J. Rennie.

Скелетные мышцы демонстрируют удивительную пластичность в ответ на изменения типа, продолжительности и интенсивности нагрузки, которые могут вызвать гипертрофию или атрофию, ограниченную гиперплазию и дифференциальную экспрессию множества белков и даже целых органелл, таких как митохондрии, с результирующими изменениями метаболизма субстратов и белков. С целью лучшего описания упражнения традиционно подразделяются на «аэробные / на выносливость» и «с отягощением (силовые)». Основное видимое отличие упражнений на выносливость (то есть повторяющихся низкоинтенсивных сокращений, которые могут выполняться продолжительное время) – смещение фенотипа в сторону возрастания количества волокон с более высокими окислительными способностями, в то время как повторные упражнения с отягощением (представляющие собой сокращения высокой интенсивности) вызывают гипертрофию волокон (и, вероятно, некоторую гиперплазию вследствие активации клеток-сателлитов). В реальности присутствует существенное «перекрытие» между вариантами ответов, это происходит вследствие восприятия и распределения мышцей сигналов в ответ на активность, которые приводят к постоянной адаптации к специфичной природе, интенсивности и продолжительности упражнений. В предлагаемом обзоре упражнения будут разделяться на «резистивные» (с дополнительным отягощением) и «нерезистивные» (без отягощения)…

Источник

Состав тела. Индекс массы тела.

Количественная характеристика состава тела, оценка соотношения жира и других компонентов являются в конечном итоге отражением баланса энергии и степени удовлетворения потребности организма в энергии.

Масса тела человека: сумма веса костей, мышц, внутренних органов, жидкости и жировой ткани. Вода составляет 60-65 <93832f9dd71e2ca39f49e73e1d382de1503cc58b03bb7033a33af98cc2ea3d0a>от общей массы тела и является быстро изменяющимся компонентом, хотя и в небольших количествах.

В теле человека принято различать два компонента — безжировую тощую и жировую части. Безжировая тощая масса тела человека представлена белком, водой и минеральными веществами. У здорового человека тощая масса тела имеет постоянный состав: вода — 72-74<93832f9dd71e2ca39f49e73e1d382de1503cc58b03bb7033a33af98cc2ea3d0a>, белок — около 20<93832f9dd71e2ca39f49e73e1d382de1503cc58b03bb7033a33af98cc2ea3d0a>, калий 60-70 ммоль/кг у мужчин и 50-60 ммоль/кг у женщин. В отличие от тощей части тела количество жировой части может изменяться в значительных пределах.

Антропометрические методы: измерение массы тела, роста (длины тела), окружности талии и обхват бедер, толщины подкожных жировых складок, окружностей различных частей тела и расчет ряда индексов и соотношений. Антропометрические измерения включают массу тела, рост (длина тела), окружности тела и конечностей и толщину подкожных жировых складок.

У детей скорость роста является абсолютным показателем положительного энергетического баланса. У взрослых изменения массы тела также свидетельствуют об изменении баланса потребляемой и затрачиваемой энергии.

Масса тела является основной мерой накопления жира в организме и мерой пищевого статуса. Однако абсолютные величины массы тела зависят в значительной степени от роста человека и размеров частей тела. Поэтому для диагностики пищевого статуса используется характеристика соотношения массы тела и роста.

Классификация индекса массы тела.

Диапазон величин ИМТ

Менее 16,03-я степень хронической энергетической недостаточности16,0-17,52-я степень хронической энергетической недостаточности17,5-18,51-я степень хронической энергетической недостаточности18,5-25-0 (20,0-25,0)Нормальный диапазон, наименьший риск проблем со здоровьем25,0-30,0Избыточная масса тела30,0-35,01-я степень ожирения35-40,02-я степень ожиренияБолее 40,03-я степень ожирения

Предложено несколько показателей, характеризующих соотношение массы тела и роста. Наиболее доступен и информативен — индекс массы тела (ИМТ, индекс Кетле), который расчитывается по формуле: масса тела, кг/рост, м)2.

Формула ИМТ учитывает увеличение массы тела при увеличении роста, т.е. оценка величин ИМТ не зависит от роста человека, пригоден для характеристики пищевого статуса и диагностики ожирения только у взрослых в возрасте от 20 до 65 лет. У детей и подростков метод расчета ИМТ для диагностики пищевого статуса (недостаточности питания, ожирения) не принят, так как величина ИIМТ изменяется с возрастомэ. Величина ИМТ прямо коррелирует с количеством жира в организме, т.е. со степенью ожирения. Это установлено путем сопоставления ИМТ и плотности тела или других методом объективной оценки отложения жира. Однако только по ИМТ невозможно дифференцировать ожирение от увеличения массы тела за счет мускулатуры или отеков.

Медицинское значение ИМТ заключается в том, что его величина более 25-30 прямо коррелирует с риском смертности от хронических неинфекционных заболеваний, в развити которых играют роль избыточная масса тела и ожирение.

Для популяции среднее нормальное значение ИМТ принято равным 22. По ИМТ устанавливаются 3 степени энергетической недостаточности и 3 степени ожирения. Нормальные величины ИМТ для развитых стран приняты в интервале 20-25, а для развивающихся стран приемлемым считается 18,5-25,0. Нормативные величины ИМТ и одинаковы для мужчин и женщин.

Как высокие, так и низкие величины ИМТ связаны с риском для здоровья. Зависимость риска заболеваний от ИМТ характеризуется Y- или Т-образной кривой. При низких ИМТ возрастает риск инфекционных заболеваний и заболеваний желудочно-кишечного тракта. При высоких величинах ИМТ, характеризующих ожирение, увеличивается риск сердечно-сосудистых заболеваний, гипертонии, сахарного диабета 2 типа, желчнокаменной болезни, некоторых форм рака — молочной железы и матки у женщин, рака предстательной железы и почек — у мужчин.

ИМТ может быть интерпретирован неправильно при наличии отеков или при сильно развитой мускулатуре. Поэтому для окончательного установления диагноза ожирения необходимо привлекать другие методы оценки отложения жира, например измерение толщины жировых складок, окружности талии и бедер.

Толщина подкожных жировых складок свидетельствует о величине депо подкожного жира, что, в свою очередь, является показателем общего депо жира в организме. Распределение жира в подкожной клетчатке зависит от пола, возраста, национальных особенностей строения тела. Для оценки отложения жира используется измерение толщины складок в области трехглавой и двуглавой мышц плеча, в подлопаточной области, над гребнем подвздошной кости, в подмышечной области. Толщину складок измеряют специальным прибором калипером, обеспечивающим стандартное давление на складки (10 г/мм2) и другие условия измерения.

Наиболее часто используется измерение толщины подкожной жировой складки в области трехглавой мышцы — на задней поверхности левой руки на середине расстояния между локтевым отростком и акромионом лопаточной кости. Рука сгибается в локтевом суставе на 90°, находятся локтевой отросток и акромион, отмечается середина расстояния между отростками. Затем рука испытуемого опускается свободно вдоль туловища, большим и указательным пальцами захватывается вертикальная кожная складка с подлежащим жиром, по линии, соединяющей отростки, оттягивается от мышцы и измеряется толщина складки калипером. Фиксируется среднее из трех измерений. Калиперы имеют различное устройство, и нужно следовать инструкции по их применению. Измерение толщины жировых складок характеризуется плохой воспроизводимостью результатов и дает большие погрешности при повторных сравнениях. Это подчеркивает необходимость тщательной подготовки и опыта проводящего измерение.

Информативность толщины жировых складок в различных местах зависит от возраста, пола, национальности и генетических особенностей, а также от характера отложения жира при заболеваниях. Например, при диабете отложение жира и толщина складок больше на туловище, чем на конечностях. Изменение массы тела при лечении ожирения также может характеризоваться потерей жира в разных точках. Поэтому для адекватной оценки характера отложения проводится измерение толщины складок в нескольких точках. Рекомендуется измерять, по крайней мере, одну складку на конечностях в области трицепса и одну складку на туловище под левой лопаткой. Иногда используется сумма толщины складок в двух упомянутых точках.

Площадь сечения жировой складки в срединной области плеча рассчитывается по толщине жировой складки и длине окружности плеча. Площадь сечения жировой складки является полезным индексом, позволяющим оценить количество жира в теле. Для расчета площади сечения используется уравнение:

А = ТЖС х С1/2 — л х (ТЖС)2 /4, где А — площадь сечения жировой складки, ТЖС — толщина жировой складки, C1 — окружность плеча.

Окружность талии и обхват бедер.

Отношение окружности талии к обхвату бедер является простым методом характеристики распределения жира в разных участках тела, оно увеличивается с возрастом и у лиц с выраженным ожирением. Сравнение этого соотношения с данными компьютерной томографии установило положительную корреляцию величины соотношения с отложением жира в брюшной полости на уровне пупка.

Расчет соотношения окружности талии и бедер характеризует локализацию преимущественного отложения жира и тип ожирения андроидный (мужской, абдоминальный) и гиноидный (женский). Окружность талии/бедер более 1,0 у мужчин и более 0,8 у женщин свидетельствует об ожирении по мужскому типу.

© Государственное бюджетное учреждение здравоохранения Астраханской области Александро-Мариинская областная клиническая больница, 2021

Все права на любые материалы, опубликованные на сайте, защищены в соответствии с российским и международным законодательством об авторском праве и смежных правах. Использование любых текстовых, аудио-, фото- и видеоматериалов, размещённых на сайте, допускается только с разрешения правообладателя и ссылкой на www.amokb.ru.

ИМЕЮТСЯ ПРОТИВОПОКАЗАНИЯ, ТРЕБУЕТСЯ КОНСУЛЬТАЦИЯ СПЕЦИАЛИСТА

Источник

Мышцы внутренней секреции

Наталья Резник,
кандидат биологических наук
«Химия и жизнь» №9, 2016

В движенье — жизнь

Помните, как у Жванецкого: «Может быть, большой спорт — это плохо. Но элементарная физическая подготовка. » Да, она необходима, причем не только для того, чтобы без труда догнать отъезжающий автобус или классно выглядеть на пляже. Физическая активность — залог активного долголетия, и это не лозунг, а экспериментально установленный факт. Доказывать его начали, как обычно, на грызунах. Например, у крыс, которые могли в свое удовольствие бегать в колесе, выживаемость, то есть количество особей, достигших определенного возраста, достоверно выше, чем у животных, лишенных возможности тренироваться. У мышей упражнения улучшают работу нервной системы, в том числе нервно-мышечных синапсов, снижают уровень гипергликемии и нормализуют содержание холестерина. Физическая активность благотворно влияет на сердце, почки, мозг и печень разных животных. Данные эпидемиологических исследований подтверждают, что и людям она продлевает здоровье и жизнь. И напротив, при сидячем образе жизни часто развиваются сахарный диабет 2-го типа, сердечно-сосудистые заболевания, ожирение, рак молочной железы (в постменопаузе) и другие злокачественные опухоли, а также слабоумие, депрессия и нейродегенеративные заболевания, такие, как болезнь Альцгеймера.

Есть несколько гипотез, объясняющих связь здоровья и движения. Замечено, например, что занятия физкультурой стимулируют выделение адреналина, кортизола, гормона роста, пролактина и других молекул, регулирующих работу иммунной системы. Длительные систематические тренировки снижают уровень стрессовых гормонов. Кроме того, и это отмечают многие исследователи, физическая активность позволяет избавиться от причины многих болезней — хронического системного стерильного воспаления. Названо оно так потому, что развивается в отсутствие инфекции — в результате аутоиммунных процессов или других событий. Хроническое стерильное воспаление — частый спутник малоподвижного образа жизни. Это очень опасное явление, чреватое развитием инсулиновой резистентности, атеросклероза, нейродегенеративных заболеваний и злокачественных опухолей (см. «Химию и жизнь» № 7, 2013). Цитокины воспаления выделяют разросшаяся адипозная ткань, а также печень и малоактивная скелетная мускулатура. Изменить ситуацию могут физические упражнения, они прекрасно помогают даже людям, которые начали заниматься уже в преклонном возрасте, чтобы предотвратить или остановить развитие каких-либо недугов. Но тут важно не переусердствовать, потому что чрезмерная физическая активность также провоцирует воспаление, ослабляет иммунную систему и повышает риск развития инфекционных заболеваний. Мышечная работа и воспаление связаны друг с другом сложным образом, и упражнения могут как помочь, так и навредить, в зависимости от амплитуды, частоты и других переменных. Серьезные занятия спортом без инструктора сродни самолечению.

Мышцы и PGC-1α

Движение человеческого тела обеспечивают около 600 скелетных мышц, которые составляют примерно 40–50% массы тела. Они состоят из миофибрилл, сформированных слившимися клетками-миобластами, а миофибриллы — из нитей актина и миозина, организованных в повторяющиеся блоки-саркомеры. Движение этих нитей друг относительно друга вызывает сокращение мышц. В отличие от гладкой и сердечной мускулатуры скелетные мышцы сокращаются произвольно по сигналу нейромедиатора ацетилхолина.

Работа требует энергии. При динамических сокращениях, для которых нужна выносливость (длительный бег, плаванье), и при поддержании позы энергию обеспечивает АТФ, получаемая за счет окислительного фосфорилирования, происходящего в митохондриях. Окисляются в первую очередь глюкоза и гликоген. При движениях, требующих большой силы и скорости (спринтерский бег, поднятие тяжестей), мышечные волокна расщепляют гликоген анаэробным путем в процессе гликолиза. При этом АТФ образуется в два-три раза быстрее, а механическая энергия, производимая мышцей, в два-три раза больше, чем при окислительном фосфорилировании. Но и усталость в этом случае наступает значительно быстрее.

В зависимости от типа совершаемой работы мышечные волокна синтезируют разные регуляторы транскрипции, ростовые факторы и другие молекулы, которые позволяют им адаптироваться к тому или иному виду нагрузки. Силовые тренировки приводят к преимущественному развитию так называемых быстрых волокон, которые используют гликолиз для синтеза АТФ. При соответствующих нагрузках увеличиваются их количество и площадь поперечного сечения. Волокна, которые совершают динамическую работу, называются медленными. Им нужны много митохондрий, развитая капиллярная сеть для снабжения кислородом, противодействие деградации белков, апоптозу и воспалению. Значительную роль в обеспечении этих потребностей играет регулятор транскрипции PGC-1α (коактиватор рецептора пролиферации пероксисом), который синтезируется при сокращении медленных волокон. Запомним этот белок, это один из главных персонажей нашего рассказа. Пожалуй, его роль в миофибриллах не меньше, чем у актина с миозином. У мышей он регулирует экспрессию более полутора тысяч генов: активность одних подавляет, других стимулирует, сколько у людей — пока не посчитали. У PGC-1α много функций, в том числе он стимулирует образование митохондрий, окисление жирных кислот и устойчивость к мышечной атрофии. Трансгенные мыши с избытком PGC-1α накачаны и мускулисты, а животные с неактивным геном обладают очень слабой выносливостью. Во время физических упражнений выделяются клеточные факторы, которые модифицируют белок PGC-1α, делая его более стабильным, а следовательно, и активным. По окончании тренировки уровень PGC-1α возвращается к норме в течение часа.

При длительных, систематических тренировках на выносливость доля медленных волокон возрастает за счет быстрых, и существенную роль в этих превращениях играет опять-таки PGC-1α (рис. 1). В тренированных мышцах уровень PGC-1α выше, чем в нетренированных, даже в состоянии покоя, а поскольку он регулирует метаболизм и работу многих генов в миофибриллах, то физическая нагрузка может быть полезна при некоторых заболеваниях, связанных с нарушением мышечной активности. Исследования на мышах подтвердили, что PGC-1α действительно смягчает последствия миопатии Дюшенна и митохондриальной миопатии (истощении мышц при нарушении работы митохондрий).

какое количество белка входит в состав скелетных мышц

Рис. 1. Роль PGC-1α в мышечных волокнах, тренированных на выносливость

А еще PGC-1α подавляет активность фактора NFκB, основного регулятора экспрессии провоспалительных генов. Следовательно, сидячий образ жизни провоцирует синтез провоспалительных цитокинов и развитие местных и системных воспалений, прискорбные последствия которых мы уже обсуждали.

Все мы слышали, что в здоровом теле здоровый дух. И это действительно так, потому что PGC-1α оберегает и от депрессии. Эта болезнь отравляет жизнь миллионам людей во всем мире. Депрессия связана с образованием кинуренина — продукта деградации триптофана — под действием стресса и воспаления. Синтез кинуренина происходит главным образом в почках, печени и клетках иммунной системы, но оттуда вещество попадает в кровь и мозг. Кинуренин вызывает гибель нейронов и воспаление нервной ткани, приводит к депрессии. Специалисты Каролинского университета (Швеция), экспериментируя с мышами, обнаружили, что PGC-1α усиливает синтез фермента кинуренин-аминотрансферазы в скелетных мышцах (Cell, 2014, 159, 33–45, doi: 10.1016/j.cell.2014.07.051 ). Этот фермент тоже попадает в кровь и превращает кинуренин в кинуреновую кислоту, которая не может преодолеть гематоэнцефалический барьер. Содержание кинуренина в плазме сокращается, что защищает мозг от повреждений и стресс-индуцированной депрессии. Исследователи не исключают, что PGC-1α можно использовать в терапевтических целях, но не полезнее ли заняться физкультурой?

Итак, физическая активность, в основном тренировки на выносливость, повышает уровень и активность PGC-1α, который благотворно влияет на многие жизненно важные процессы или уберегает нас от проблем со здоровьем. Кроме того, мышечные сокращения и PGC-1α активизируют синтез белков, которые влияют на процессы, происходящие как в мышечной ткани, так и в других органах, поэтому скелетную мускулатуру можно с полным правом считать органом внутренней секреции (рис. 2). Эти регуляторные белки называют миокинами. Список миокинов постоянно растет, причем в него нередко попадают соединения, уже известные нам в другом качестве, например интерлейкины — продукт синтеза лейкоцитов и непременные участники иммунного ответа.

какое количество белка входит в состав скелетных мышц какое количество белка входит в состав скелетных мышц

Рис. 2. Мышечная ткань — орган внутренней секреции

Интерлейкины

В списке миокинов пока три интерлейкина: ИЛ-6, ИЛ-8 и ИЛ-15. ИЛ-6 и ИЛ-15 известны как факторы воспаления, кроме того, ИЛ-6 вызывает инсулиновую резистентность, а также при определенных условиях повышает уровень противовоспалительных цитокинов. ИЛ-8 отвечает за привлечение нейтрофилов и ангиогенез. В мышечных клетках у них другие задачи. Все три белка — типичные миокины, их синтез в скелетной мускулатуре и концентрация в плазме крови возрастают после физической нагрузки, причем на ИЛ-8 влияют в основном упражнения, при которых нагруженная мышца удлиняется.

ИЛ-6 действует на разные ткани. Он запускает каскады биохимических реакций, в результате чего мышечные клетки потребляют больше глюкозы и активно окисляют жирные кислоты, в жировой ткани усиливается липолиз, в печени — расщепление гликогена и образование глюкозы, в поджелудочной железе — секреция инсулина. Образование глюкозы в печени и выделение жирных кислот из адипозной ткани обеспечивают энергией работающие мышцы.

Роль ИЛ-8 в скелетной мускулатуре пока неизвестна, но есть основания полагать, что этот фактор стимулирует рост новых сосудов.

ИЛ-15 изначально известен как мышечный анаболик, он также вызывает синтез сократительных белков, способствует поглощению глюкозы и окислению жирных кислот, у крыс противодействует раковой кахексии (истощению). Чем выше концентрация этого миокина в плазме у людей, тем меньше у них белого жира, а у крыс он усиливает термогенез.

Нейротрофические факторы

Эти белки, как следует из названия, синтезируются в нервных клетках и регулируют их развитие и деятельность. Например, нейротрофический фактор мозга BDNF влияет на обучение и память, его нехватка связана с ожирением и диабетом 2-го типа. Однако после физических упражнений уровень BDNF в крови существенно возрастает, причем 70–80% этого количества потребляет мозг. В скелетной мускулатуре BDNF усиливает окисление жиров и регулирует регенерацию клеток.

Другой белок, цилиарный нейротрофический фактор CNTF, отвечает за работу остеобластов — клеток, которые строят костную ткань. У мышей, дефицитных по этому гену, кости массивные и плохо минерализованные. У граждан, ведущих малоподвижный образ жизни, при нехватке CNTF часто развивается остеопороз (нарушение метаболизма костной ткани, влекущее за собой их хрупкость). При кальцификации мышц и разрастании надкостницы физическая активность, напротив, вредна, потому что усиленный синтез CNTF только усугубит эти признаки.

Факторы роста

Фактор роста эндотелия сосудов VEGF действительно регулирует рост эндотелия и стимулирует ангиогенез. Его синтез в мышечных волокнах находится под контролем PGC-1α и скоординирован с синтезом другого миокина, SPP1. Этот белок стимулирует активность макрофагов, клеток эндотелия и гладкой мускулатуры, чем тоже способствует образованию капилляров. (О том, как синтез VEGF помогает при ишемии нижних конечностей, см. в статье «Гены против ампутации», «Химия и жизнь» № 7, 2016.)

Факторы роста фибробластов регулируют деление, рост и дифференцировку клеток и клеточный метаболизм. Один из них, FGF21, синтезируется преимущественно в печени, а также в жировой ткани, поджелудочной железе и скелетной мускулатуре. В зависимости от места синтеза FGF21 выполняет разные функции. Печеночный стимулирует экспрессию PGC-1α, которая, в свою очередь, активирует окисление жирных кислот и синтез глюкозы в печени. В жировой ткани FGF21 увеличивает потребление глюкозы, а трансгенных мышей избыток FGF21 защищает от развития ожирения. Этот белок снижает у грызунов-диабетиков уровень сахара и триглицеридов в крови, то есть теоретически может быть лекарством.

Синтез FGF21 в скелетной мускулатуре зависит не от мышечной нагрузки, а от избытка инсулина или низкой температуры. В первом случае FGF21 регулирует уровень инсулина, во втором стимулирует термогенез в клетках бурого жира.

Три миокина и термогенез

Недавно в списке миокинов появились три новых члена: иризин, метеорин-подобный белок Metrnl и β-аминоизомасляная кислота (BAIBA). Все три миокина стимулируют термогенез в клетках бурого жира.

Иризин образуется при сокращении и дрожании скелетной мускулатуры, он участвует в преобразовании белого жира в бурый и усиливает термогенез, не давая разрастаться жировой ткани. Под влиянием физической нагрузки и PGC-1α иризин синтезируется также в гиппокампе, стимулируя синтез BDNF и нейрогенез в этой области мозга. У мышей иризин ускоряет метаболизм скелетных мышц и увеличивает расход энергии в мышечных клетках, а как обстоит дело у людей, еще предстоит выяснить.

Metrnl — гормон, синтез которого усиливается в клетках скелетной мускулатуры при упражнениях и в белой жировой ткани на холоде. В отличие от иризина синтез Metrnl зависит не от РGC-1α, а от его сплайсированной формы РGC-1α4, которая образуется при силовых тренировках и регулирует работу другого набора генов. Metrnl увеличивает расход энергии, увеличивает толерантность к глюкозе при ожирении и диабете и способствует побурению белого жира.

BAIBA, хотя и не белок, ведет себя как классический миокин: синтезируется в активных мышцах по сигналу РGC-1α, активирует термогенез и побурение белого жира и усиливает окисление жирных кислот в клетках печени. Содержание BAIBA в крови обратно пропорционально факторам риска сердечно-сосудистых и метаболических расстройств, и ученые предполагают, что он защищает от метаболического синдрома.

Все три миокина активно вызывают побурение белой адипозной ткани, стимулируя таким образом выделение энергии. Возможно, скелетные мышцы регулируют и координируют оба вида термогенеза: дрожательный, происходящий при сокращении скелетной мускулатуры, и недрожательный, протекающий в бурой жировой ткани (о превращении белого жира в белый и недрожательном термогенезе см. «Химию и жизнь» № 7, 2016). Действительно, иризин, как и FGF2, синтезируется в ответ на холод, и его секреция тесно связана с интенсивностью дрожания.

Двое против рака

Активный образ жизни не только снижает риск развития метаболических расстройств, но, возможно, защищает от некоторых типов злокачественных опухолей. Так, по данным Всемирного фонда исследования рака, физические упражнения снижают вероятность развития рака молочной железы и толстого кишечника на 25–30%. Ученые по-разному объясняют это влияние. В частности, два недавно обнаруженных миокина, SPARC и OSM, подавляют деление раковых клеток в толстом кишечнике и молочной железе и вызывают их апоптоз. Какую роль выполняют эти белки в здоровом теле, пока неясно. Возможно, они регулируют деление и апоптоз клеток в сокращающихся мышечных волокнах, но не исключено, что действие SPARC и OSM на нераковые клетки вообще не связано с их делением и гибелью.

Список миокинов получился длинным и, возможно, утомил читателя. Однако он был бы неполным без миостатина, который можно назвать антимиокином: мышечные сокращения не стимулируют, а подавляют его синтез.

Мутация Геракла

Миостатин (MSTN) относится к группе факторов роста. Он синтезируется в неактивных мышцах и препятствует образованию мышечной ткани: горы мускулов, если ими не пользоваться, только напрасно поглощают энергию. Регулярные физические тренировки, как силовые, так и аэробные на выносливость, подавляют синтез миостатина, что способствует образованию рельефной мускулатуры. Ген MSTN очень консервативен, его последовательность у всех позвоночных практически одинакова. У лабораторных мышей, лишенных гена MSTN, масса мышечной ткани в два-три раза больше, чем у грызунов дикого типа. Мутации MSTN, нарушающие синтез белка, приводят к появлению чрезвычайно мясистых коров и овец с гипертрофированной мускулатурой. У всех миостатиновых мутантов понижено содержание жировой ткани. По-видимому, жировая масса уменьшилась главным образом вследствие увеличения мышечной, а не из-за отсутствия миостатина.

какое количество белка входит в состав скелетных мышц какое количество белка входит в состав скелетных мышц

Рис. 3. Уиппеты дикого типа (+/+), а также гетерозиготные и гомозиготные по мутации mh, инактивирующей ген MSTN

Исследователи планировали поискать подобную мутацию у других видов. А медики из Германии и Соединенных Штатов несколькими годами ранее наблюдали чрезвычайно мускулистого мальчика, родившегося в берлинской клинике Шарите (The New England Journal of Medicine, 2004, 350, 2682-8, doi: 10.1056/NEJMoa040933 ). Новорожденный поразил специалистов развитой мускулатурой рук и ног, к четырем с половиной годам мальчик продолжал наращивать мышечную массу и мог держать на вытянутой руке трехкилограммовую гантель (рис. 4). Мальчик пока здоров.

какое количество белка входит в состав скелетных мышц

Рис. 4. Мальчик с неактивным геном миостатина. Справа — новорожденный, слева — в возрасте семи месяцев. Обратите внимание на рельефные мышцы икр и бедер

Проводя жизнь в кресле, мы лишаем себя множества полезных белков, которые могли бы синтезировать наши мышцы. Время не упущено — заняться физкультурой никогда не поздно. Мы даже не можем себе представить в полной мере, насколько это полезно, потому что исследования миокинов продолжаются.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *