какое излучение у рентгеновского аппарата

Действие рентгеновского излучения на человека

Рентгеновское излучение – это электромагнитные волны, длина которых колеблется в интервале от 0,0001 до 50 нанометров. Излучение было открыто в ноябре в 1895 году физиком из Германии Вильгельмом Конрадом Рентгеном, работавшим в Вюрцбургском университете. Он охарактеризовал свойства лучей, обнаружив их способность проникания через мягкие непрозрачные ткани.

Применение и свойства рентгеновского излучения

Излучение делится два типа:

Лучи характеристического типа получаются при перестройке атомов анода рентгеновской трубки. Волны различаются длиной, на них воздействуют номера химических элементов, которые используются при получении трубки.

Тормозные лучи появляются из-за торможения электронов, которые испаряются из вольфрамовой спирали.

У электромагнитных волн существует ряд характеристик, объясняющихся их природой. Электромагнитные волны при перпендикулярном падении на плоскость не отражаются.

Это интересно! При перечне соблюдённых условий алмаз отразит их.

Электромагнитные волны пробиваются через непроницаемые предметы: бумага, металл, дерево, живые ткани. Чем поверхность материала плотнее и толще, тем лучи поглощаются интенсивнее и больше.

Рентгеновское излучение вызывает свечение некоторых элементов. Он останавливается после прекращения воздействия электромагнитных волн. Электромагнитные волны засвечивают фотоплёнку.

Излучение рентгена

При прохождении лучей в воздухе происходит его ионизация. В итоге воздух способен проводить ток. Облучение повреждает клетки, это связано с ионизацией биологических структур.

Благодаря рентгеновскому излучению можно просветить тело человека, чтобы получить снимок его костей. При современных технологиях также возможно выявление внутренних органов. С помощью обычных приборов получают двумерную проекцию, а благодаря компьютерным томографам возможно сделать объёмное изображение человеческих органов.

В этом промежутке времени существует такое понятие как рентгеновская дефектоскопия. С помощью неё выявляют повреждения в различных изделиях, к примеру, в варочных швах и в рельсах.

Во многих науках рентгеновское излучение применяется для выявления строения элементов на уровне атомов при помощи дифракционного рассеяния рентгеновского излучения. Это называется рентгеноструктурным анализом. В качестве примера можно привести выявление структуры ДНК.

Химический состав элементов также выявляется благодаря электромагнитным волнам. Вещество, по которому осуществляется анализ, облучается электронами, в процессе происходит ионизация атомов. Такой метод называется рентгено-флюоресцентным.

На сегодняшний момент применение рентгеновского излучения осуществляется в разных отраслях. В целях безопасности создаются переносные и стационарные приборы для выявления запрещённых или опасных для жизни предметов в таможнях, аэропортах и местах, где часто происходят столпотворения людей.

Виды рентгеновского излучения

Оно бывает нескольких видов и различается по проникающей способности и по протяжённости волны:

Действует подразделение по признакам спектра и механизмам действия:

Любые типы складываются благодаря рентгеновской трубке. Этот термин значит электровакуумный прибор, который предназначен для генерации электромагнитных волн. Основой работы служит термоэлектронная эмиссия.

Тормозное излучение образуется при помощи торможения электронов полем атомарных электронов. Его диапазон — непрерывный, определяется границами волн.

Влияние рентгеновского излучения на человека

После их открытия Вильгельмом Рентгеном, который опубликовал статью, назвав их х-лучами, выяснилось, что такое излучение влияет на организм человека.

Рентгеновское излучение в повышенных дозах провоцирует изменения в кожных покровах, которые похожи на ожог от солнечных лучей. Только при облучении происходит более глубокое и серьёзное повреждение верхнего слоя кожи. Появившиеся на коже язвы требуют затяжного по времени лечения.

Со временем исследователи выявили, что такого пагубного действия реально избежать, если уменьшить дозировку или время. При этом применяется дистанционное управление процедурой.

Вред от получаемых волн иногда проявляется не сразу, а только спустя промежуток времени, постепенно: случаются непрерывные или временные преобразования в структуре эритроцитов, повышается риск развития лейкемии. Возможно характерное образование последствия в виде преждевременного старения и утери эластичности кожи.

Применение рентгена

Влияние рентгеновского излучения зависит от того, какой внутренний орган подвержен излучению. Воздействие электромагнитных волн зависит от дозы лучей. При облучении половых органов у человека развивается бесплодие, при кроветворных органах – болезни крови.

Регулярное облучение даже в самых маленьких количествах и при коротких промежутках, приводит к изменениям на генетическом фоне. Они редко обратимы.

Электромагнитные волны проникают через ткани человеческого тела, при этом осуществляется ионизация в клетках, изменяется структура. Результатами таких воздействий становятся соматические осложнения или болезни в будущем поколении. Так проявляются генетические заболевания.

У людей, подвергшихся излучению, выявляются патологии крови. После маленьких доз возникают изменения её состава, которые ещё обратимы. Распадаются эритроциты и гемоглобин вследствие гемолитических изменений. Возможна тромбоцитопения.

При облучении нередки травмы хрусталика глаза, он мутнеет, и наступает катаракта.

Однократное облучение медицинской аппаратурой не влечёт за собой сильных перемен, т.к. содержит небольшую дозировку. При чувстве пациентом повышенной тревоги он вправе попросить у медика специальный защитный фартук. После выключения аппарата вредоносное действие тут же прекращается. Частое же влияние пагубно сказывается на человеческом организме.

Исследование последствий вредного облучения позволило создать международные стандарты, в которых указаны разрешённые минимальные дозы.

Источник

И опять кое-что о рентгене. Е. В. Штрыкова (№1, 2016)

какое излучение у рентгеновского аппарата

главный специалист-эксперт отдела

за радиационной безопасностью

Межрегиональное управление № 153

Федерального медико-биологического агентства

(Межрегиональное управление № 153 ФМБА России)

Статья предназначена для самого широкого круга читателей журнала, поскольку слово «радиация» часто обладает магическим и, порой, пугающим многих людей каким-то ужасным воздействием. Все мы слышали слово «рентген». Так что же это такое – «рентген»?

Рентгенологические обследования (а также рентгенохирургические методы операбельного вмешательства) являются одними из наиболее распространенных методов в современной российской и в мировой медицине.

Рентгеновское излучение используется для получения простых рентгеновских снимков костей и внутренних органов, в флюорографии, в компьютерной томографии, в ангиографии и прочих рентгеновских методах диагностики и лечения.

Рентгенологические методы обследования используются гораздо реже в случае беременных женщин и детей, однако даже у этих категорий пациентов, в случае необходимости, рентгенологическое обследование может проведено, без существенного риска для развития беременности или здоровья ребенка.

Ключевые слова: рентгенологические обследования, эффективная доза, единица измерения эффективной дозы общего облучения человеческого тела, уровень безопасности, процедура.

Введение

Что представляют собой волны рентгеновских лучей, и какое влияние они оказывают на организм человека?

Рентгеновские лучи являются видом электромагнитного излучения, другими формами которого являются свет или радиоволны. Характерной особенностью рентгеновского излучения является очень короткая длина волны, что позволяет этому виду электромагнитных волн нести большую энергию и придает ему высокую проникающую способность. В отличие от света, рентгеновские лучи способны проникать сквозь тело человека («просвечивать его»), что позволяет врачу рентгенологу получить изображения внутренних структур тела человека.

Чтотакое растр или «отсеивающая решётка»?

Растр был изобретен в 1913 году доктором Густавом Баки.

Принцип действия растра.

Когда рентгеновский аппарат посылает излучения через тело, происходит поглощение и изменение направления рентгеновских лучей. Только около 1 процента рентгена проходят через тело по прямой линии и вызывают изменения на средстве визуализации (рентгеновская пленка, CR или DR-детектор. Остальные лучи являются лишними и их фильтрация улучшает качество рентгенограммы.

Основу растра составляет сетка из свинца, никеля и алюминия. Полоски металла должны быть очень тонкими. Это позволяет расположить большое количество ячеек на 1 мм. При 2-3 ячейках, расположенных на 1 мм растра, возможно увидеть саму решетку на рентгенограмме в виде тонкой сетки. При 6 ячейках и больше, расположенных на 1 мм растра, сетка на растре не видна. Одним из показателей растра является соотношение размера грани ячейки к ее протяженности. Чем это соотношение больше, тем лучше степень фильтрации и тем больше требований к перпендикулярности системы рентгеновский луч (детектор). В компьютерной рентгенографии растр на изображении убирается программой отцифровщика.

Изобретение относится к разделу рентгеновской техники. Оно предназначено для ограничения пучка рентгеновского излучения, выходящего из рентгеновского излучателя, и формирования узкого веерного пучка излучения в рентгенодиагностических аппаратах сканирующего типа, например цифровом флюорографе. Техническим результатом является обеспечение возможности световой имитации пучка излучения в рентгенодиагностических аппаратах сканирующего типа. Рентгеновский щелевой коллиматор содержит две плоскопараллельные пластины из материала с высоким атомным номером, закрепленные взаимно параллельно с небольшим зазором, образующим щелевой канал коллиматора, дополнен оптико-электронной системой, включающей оптически сопряженные лазер, две прямоугольные призмы и зеркальный отражатель. Лазер и первая призма находятся с внешней стороны одной из плоскопараллельных пластин и закрыты свето- и рентгенозащитным кожухом, а вторая призма и зеркальный отражатель, изготовленные из материала, слабо поглощающего рентгеновские лучи, размещены в отверстиях между плоскопараллельными пластинами и перекрывают щелевой канал коллиматора. Зеркальный отражатель, представляющий собой прямоугольный многогранник с отражающими боковыми гранями, соединен своим основанием с осью электродвигателя, проходящей перпендикулярно к щелевому каналу коллиматора, кроме того, на выходе щелевого канала установлена бленда из светонепроницаемого и рентгенопрозрачного материала.

Известен рентгеновский щелевой коллиматор, входящий в состав цифрового рентгенодиагностического аппарата сканирующего типа. Рентгеновский коллиматор имеет корпус, изготовленный из металла с высоким атомным номером, в форме плоского тубуса. Коллиматор соединен с рентгеновским излучателем. Рабочий канал коллиматора формирует узкий веерный рентгеновский пучок.

Известен также рентгеновский щелевой коллиматор, входящий в состав рентгенографической установки для медицинской диагностики. Рентгеновский коллиматор представляет собой пластину из металла с высоким атомным номером, в которой выполнена узкая продольная щель, формирующая узкий веерный пучок рентгеновского излучения.

Рентгенологические обследования являются одними из наиболее распространенных в современной медицине. Рентгеновское излучение используется для получения простых рентгеновских снимков костей и внутренних органов, флюорографии, в компьютерной томографии, в ангиографии и пр.

Исходя из того,что рентгеновское излучение относится к группе радиационных излучений, оно (в определенной дозе) может оказывать негативное влияние на здоровье человека. Проведение большинства современных методов рентгенологического обследования подразумевает облучение обследуемого ничтожно малыми дозами радиации, которые совершенно безопасны для здоровья человека.

Основная часть.

Медицинские исследования рентгеновскими лучами (рентгенологические исследования) во многих случаях предоставляют важную информацию о состоянии здоровья обследуемого человека и помогают врачу поставить точный диагноз в случае целого ряда сложных заболеваний.

Большая проникающая способность и энергия рентгеновских лучей делают их довольно опасными для организма человека. Рентгеновское излучение является одним из наиболее распространенных видов радиации. Во время прохождения через организм человека рентгеновские лучи взаимодействуют с его молекулами и ионизируют их. Говоря проще, рентгеновские лучи способны «разбивать» сложные молекулы и атомы организма человека на заряженные частицы и активные молекулы. Как и в случае других видов радиации, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени. Подавляющее большинство медицинских обследований в рамках которых применяется рентгенологическое излучение, используют рентгеновские лучи с низкой энергией и облучают тело человека очень малые промежутки времени в связи с чем, даже при их многократном повторении они считаются практически безвредными для человека.

Дозы рентгеновского излучения, которые используются в обычном рентгене грудной клетки или костей конечностей не могут вызвать никаких немедленных побочных эффектов и лишь очень незначительно (не более чем на 0,001%) повышают риск развития рака в будущем.

Измерение дозы облучения при рентгенологических обследованиях

Как уже было сказано выше, влияние рентгеновских лучей на организм человека зависит от их интенсивности и времени облучения. Произведение интенсивности излучения и его продолжительности представляет дозу облучения.

Единица измерения дозы общего облучения человеческого тела это мили-Зиверт (мЗв). Также, для измерения дозы рентгеновского излучения используются и другие единицы измерения, включая внесистемную единицу «Рентген (Р)».

Разные ткани и органы организма человека обладают различной чувствительностью к облучению, в связи с чем, риск облучения различных частей тела в ходе рентгенологического обследования значительно варьирует.
Термин эффективная доза используется в отношении риска облучения всего тела человека.

Например, при рентгенологическом обследовании области головы, другие части тела практически не подвергаются прямому воздействию рентгеновских лучей. Однако, для оценки риска, представленного здоровью пациента, рассчитывается не доза прямого облучения обследуемой зоны, а определяется доза общего облучения организма – то есть, эффективная доза облучения. Определение эффективной дозы осуществляется с учетом относительной чувствительности разных тканей, подверженных облучению. Так же, эффективная доза позволяет провести сравнение риска рентгенологических исследований с более привычными источниками облучения, такими как, например, радиационный фон, космические лучи и пр.

Расчет дозы облучения и оценка риска рентгенологического облучения.

Необходимо отметить, что указанные в таблице дозы являются ориентировочными и могут варьироваться в зависимости от используемых рентгеновских аппаратов и методов проведения обследования.

Процедура

Эффективная доза облучения

Сопоставимо с природным облучением, полученным за указанный промежуток времени

Источник

Мощность дозы рентгеновского излучения

какое излучение у рентгеновского аппарата

Содержание

В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?

Системные и внесистемные единицы измерения

В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.

В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.

За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.

Области применения Рентгена и Зиверта

Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.

Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.

Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.

Тысячные и миллионные доли Зиверта/Рентгена

Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.

Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.

Допустимый объём накопленного в организме облучения

Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.

Для коренных жителей высокогорных районов данные показатели могут быть немного выше.

Основные источники накопления в организме радионуклидных соединений

Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.

Природные ионизирующие излучения

К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:

Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).

В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.

Источники накопления дозы естественного излучения в организме

Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:

Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.

Искусственные ионизирующие излучения

К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.

Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.

Размер доз облучения при рентгенодиагностике

Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:

При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.

Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).

При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:

Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.

Источник

Какое излучение у рентгеновского аппарата

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

какое излучение у рентгеновского аппарата

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

Подпишитесь на нашу рассылку и получайте новости о последних проектах, мероприятиях и материалах ПостНауки

Источник

Рентген — опасен? Мифы о рентгене

какое излучение у рентгеновского аппарата

Рентгеновские лучи были открыты 130 лет назад профессором Вюрцбургского университета Вильгельмом Конрадом Рентгеном, причем, произошло это случайно. Ученый отказался патентовать свое открытие, решив сделать «подарок человечеству».

Нам, современным людям, которые каждый год проходят флюорографию, теперь уже сложно представить, какое удивление испытал Рентген, когда поднес к экрану из бариевой соли свою руку и увидел на нем тени своих костей. Открытие радиации было еще впереди, и никто не догадывался, что подобные излучения могут быть вредны для организма.

Сегодня рентгеновское излучение изучено очень хорошо. Его широко применяют в медицине, не только для диагностики, но и в качестве метода лучевой терапии. Но и в настоящее время вокруг «волшебных лучей» продолжает витать немало мифов.

Миф№ 1. Во всех аппаратах для сканирования внутренних органов используются рентгеновские лучи или другие вредные излучения

На самом деле рентгеновское излучение применяется только во время рентгенографии, компьютерной томографии, флюорографии. Существует еще ультразвуковое исследование (УЗИ) — во время него используются ультразвуковые волны, которые безвредны даже для беременной женщины и плода. Во время магнитно-резонансной томографии (МРТ) применяют магнитное поле.

Миф№ 2. Рентген влияет на грудное молоко. Исследование нельзя проходить кормящим женщинам

Кормящим мамам нередко приходится проходить флюорографию, маммографию (исследование молочных желез), рентген зубов в стоматологических клиниках. Для ребенка это не опасно. А вот беременным женщинам рентген, действительно, делать не стоит — это может привести к порокам развития у плода. Иногда такая необходимость все же возникает (например, при тяжелых травмах). В этом случае во время исследования на женщину надевают специальный защитный фартук, который прикрывает живот.

Миф№ 3. В больнице могут дать слишком большую дозу излучения

Понятие «большая доза» в данном случае — относительное. Конечно, рентгеновское излучение далеко не полезно для организма, поэтому, если в исследовании нет необходимости, его лучше не проводить. Но зачастую польза значительно превышает риски. Например, больным, перенесшим тяжелые травмы, приходится делать снимки достаточно часто — врач должен контролировать, не сместились ли кости, правильно ли срастаются переломы.

Миф№ 4. Рентгеновские лучи могут сделать из человека мутанта и привести к серьезным осложнениям

Руки ученых Марии и Пьера Кюри, исследователей радиоактивности, были покрыты страшными ранами, а всё из-за того, что через эти самые руки прошло около 8 тонн уранита. Конечно, ученые позапрошлого и прошлого столетия не думали ни о какой защите — они даже не надевали перчатки. После рентгенографии с вашей кожей не случится ничего подобного. У вас не возникнет сыпи, зуда, покраснения, боли. Но частые большие дозы рентгеновского излучения, действительно, повышают риск рака и приводят к порокам развития у детей, если действуют на беременную женщину.

В современных моделях аппаратов для рентгенографии применяются небольшие дозы излучения. Назначая очередное исследование, врач обязательно учитывает все предыдущие и оценивает риски.

Миф№ 5. Рентген зубов особенно опасен — ведь излучение подают прямо на голову!

Во-первых, в стоматологии используют еще более низкие дозы излучения, чем во время обычной рентгенографии. Во-вторых, современные аппараты «умеют» фокусировать лучи так, чтобы они были направлены преимущественно в одно место. Другие части тела получают минимальные безопасные дозы.

Миф№ 6. Рентген — почти то же самое, что радиация

Более того, не только рентген! Электромагнитные волны, тепло, видимый свет, ультрафиолет, радиация — всё это разновидности электромагнитных излучений. По длине волны рентген находится между ультрафиолетовым и гамма-излучением. Рентгеновские волны могут вызывать повреждения клеток. Но на это способны и ультрафиолетовые волны — те самые, которые обеспечивают загар в солярии. Если вы обгорели на солнце — это намного опаснее, чем ежегодная флюорография. Солнечные ожоги сильно повышают риск меланомы — одного из самых агрессивных видов рака кожи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *