какое азотистое основание входит в состав молекулы атф
Молекула АТФ в биологии: состав, функции и роль в организме
Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.
Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины — Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.
Строение АТФ
Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина — производного аденина и рибозы. Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1-углеродом рибозы при помощи β-N-гликозидной связи. К 5-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.
Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ — это особое соединение, содержащее связи, при гидролизе которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.
Вот как записываются эти химические реакции:
Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.
Роль АТФ в живом организме. Её функции
Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.
Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ, таких, как:
Как образуется АТФ в организме?
Синтез аденозинтрифосфорной кислоты идёт постоянно, т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества — примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.
В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.
Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата). Эта химическая реакция выглядит следующим образом:
АДФ + фосфорная кислота + энергия→АТФ + вода.
Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:
Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.
Вывод
Аденозинтрифосфорная кислота — это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!
Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.
§ 8. Строение и функции РНК. АТФ
1. Какие слова пропущены в предложении и заменены буквами (а—г)? В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты.
а – аденин
б – рибоза
в – три
г – фосфорной
2. Выявите сходство и различия в строении аденилового нуклеотида и молекулы АТФ.
Сходство: в состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза.
Различия: в составе аденилового нуклеотида (как и в составе любого другого нуклеотида) есть только один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула же АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи.
3. Какие связи называются макроэргическими? Что представляет собой процесс гидролиза АТФ? Синтеза АТФ? В чем заключается биологическая роль АТФ?
Макроэргическими (высокоэнергетическими) называются ковалентные связи между остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии — около 40 кДж/моль (для сравнения: при разрыве обычных ковалентных связей высвобождается примерно 12 кДж/моль).
На первом этапе гидролиза от АТФ отщепляется остаток фосфорной кислоты. При этом выделяется 40 кДж/моль энергии и АТФ превращается в АДФ — аденозиндифосфорную кислоту:
Второй этап гидролитического расщепления наблюдается сравнительно редко. При этом происходит отщепление еще одной фосфатной группы, высвобождение второй «порции» энергии и превращение АДФ в АМФ — аденозинмонофосфорную кислоту:
Наряду с гидролизом АТФ необходим ее непрерывный синтез. Для того чтобы присоединить остаток фосфорной кислоты к АДФ, нужно затратить не менее 40 кДж энергии:
Биологическая роль АТФ в том, что в живых организмах она выполняет функцию аккумулятора и переносчика энергии.
4. Сравните по различным признакам ДНК и РНК. Выявите черты их сходства и различия.
● Это органические вещества, биополимеры, относятся к нуклеиновым кислотам.
● Построены из нуклеотидов, в состав каждого из них входит азотистое основание, пентоза и остаток фосфорной кислоты. Азотистые основания (аденин (А), гуанин (Г) и цитозин (Ц)) входят как в состав нуклеотидов ДНК, так и в состав нуклеотидов РНК.
● Молекулы образованы атомами углерода (С), водорода (Н), кислорода (О), азота (N) и фосфора (Р).
● Содержатся в клетках всех живых организмов.
● Являются носителями генетической (наследственной) информации.
● В состав нуклеотидов ДНК входит остаток пятиуглеродного сахара дезоксирибозы, а в состав нуклеотидов РНК — остаток рибозы.
● Азотистое основание тимин (Т) может входить только в состав нуклеотидов ДНК, а урацил (У) — только в состав нуклеотидов РНК.
● Молекула ДНК двухцепочечная, имеет вид двойной спирали. Молекулы РНК обычно одноцепочечные, могут иметь различную пространственную конфигурацию.
● Полинуклеотидные цепи РНК значительно короче цепей ДНК.
● В клетках эукариот основная часть ДНК содержится в ядре. Молекулы РНК находятся не только в ядре, но и в цитоплазме клеток.
● ДНК обеспечивает хранение наследственной информации и её передачу дочерним клеткам в процессе деления. РНК обеспечивает реализацию наследственной информации, участвуя в процессе биосинтеза белков на рибосомах.
5. Какие виды РНК содержатся в клетке? Сравните их по выполняемым функциям, особенностям строения и процентному содержанию от общего количества РНК в клетке.
В клетке содержатся три вида РНК: рибосомные (рРНК), транспортные (тРНК) и матричные, или информационные (мРНК, иРНК).
Молекулы рРНК выполняют структурную функцию. В комплексе с особыми белками они приобретают определённую пространственную конфигурацию и образуют рибосомы (а точнее, субъединицы рибосом), на которых происходит синтез белков из аминокислот. Рибосомные РНК составляют около 80% всех РНК клетки.
Транспортные РНК осуществляют перенос аминокислот к рибосомам и участвуют в процессе синтеза белка. Молекулы тРНК сравнительно небольшие (в среднем состоят из 80 нуклеотидов), благодаря внутримолекулярным водородным связям они имеют специфическую пространственную структуру, напоминающую лист клевера. Транспортные РНК составляют около 15% всех РНК клетки.
Матричные, или информационные, РНК (мРНК, иРНК) наиболее разнородны по размерам и структуре. Они содержат информацию о структуре определённых белков и служат матрицами в ходе синтеза этих белков на рибосомах. Информационные РНК составляют около 3-5% всех РНК клетки.
6. В одну клетку ввели молекулы АТФ, меченные радиоактивным фосфором 32Р по последнему (третьему) остатку фосфорной кислоты, а в другую — молекулы АТФ, меченные 32Р по первому (ближайшему к рибозе) остатку. Через 5 мин в обеих клетках измерили содержание неорганического фосфат-иона, меченного 32Р. Где оно оказалось выше и почему?
Последний (третий) остаток фосфорной кислоты легко отщепляется в процессе гидролиза АТФ, а первый (ближайший к рибозе) – не отщепляется даже при двухступенчатом гидролизе АТФ до АМФ. Поэтому содержание неорганического фосфат-иона, меченного 32 Р, будет выше в той клетке, в которую ввели АТФ, меченную по последнему (третьему) остатку фосфорной кислоты.
Строение и биологическая роль АТФ.
Аденозинтрифосфат или сокращенно АТФ – это универсальное энергетическое вещество организма. АТФ – нуклеотид, в состав молекулы которого входят азотистое основание – аденин, углевод – рибоза и три остатка фосфорной кислоты.
Особенностью молекулы АТФ является то, что второй и третий остатки фосфорной кислоты присоединяются связью, богатой энергией, иначе называемой макроэргической связью. Часто соединения, имеющие макроэргическую связь (а мы столкнемся с ними в процессе изучения предмета) обозначатся термином «макроэрги» или макроэргические вещества.
Строение АТФ можно отразить схемой
Аденин – рибоза – Ф.К. – Ф.К. – Ф.К.
аденозин
При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфорной кислоты.
АТФ + Н 2О → АДФ + Н 3РО 4 + энергия
Главными потребителями энергии АТФ в организме являются
· транспорт молекул и ионов через мембраны.
Таким образом биологическая роль АТФ заключается в том, что это вещество в организме является своего родом эквивалентом ЕВРО или доллара в экономике. Основным поставщиком АТФ в клетке является тканевое дыхание – завершающий этап катаболизма, протекающий в митохондриях большинства клеток организма.
Тканевое дыхание.
Тканевое дыхание – это основной способ получения АТФ используемый абсолютным большинством клеток организма.
В процессе тканевого дыхания от окисляемого вещества отнимаются два атомов водорода и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный кислород, доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов кислорода и водорода образуется вода. За счет энергии, выделяющееся при движении электронов, по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно синтез трех молекул АТФ сопровождается образованием одной молекулы воды.
В качестве субстрата окисления в тканевом дыхании используются разнообразные промежуточные продукты распада углеводов, жиров и белков. Однако наиболее часто подвергаются окислению промежуточные продукты цикла лимонной кислоты, называемого иначе циклом трикарбоновых кислот или циклом Кребса (изолимонная, альфа-кетоглутаровая, янтарная, яблочная кислоты – это субстраты цикла трикарбоновых кислот). Цикл лимонной кислоты – это завершающий этап катаболизма, в ходе которого происходит окисление остатка уксусной кислоты, входящей а ацетилкофермент А до углекислого газа и воды. В свою очередь ацетилкофермент А – универсальное вещество организма, в которое при своем распаде превращаются главные органические вещества – белки, жиры и углеводы. Тканевое дыхание – это сложный ферментативный процесс. Ферменты тканевого дыхания делятся на три группы: никотинамидные дегидрогеназы, флавиновые дегидрогеназы и цитохромы. Эти ферменты и составляют дыхательную цепь.
Никотинамидные дегидрогеназы отнимают два атома водорода у окисляемого субстрата и присоединяют его к молекуле кофермента НАД (никотинамидадениндинуклеотид) При этом НАД переходит в свою восстановленную форму НАД.Н2.
Флавиновые дегидрогеназы отщепляют два атома водорода от НАД.Н2 и временно присоединяют к ФМН (флавинмононуклеотид). Это кофермент в состав которого входит витамин В2. Затем происходит передача двух атомов водорода флавину, который в свою очередь передает эти атомы на цитохромы.
При движении по дыхательной цепи выделяется энергия, которая аккумулируется виде молекул АТФ. Этот процесс называется окислительным или дыхательным фосфорилированием. В сутки в организме образуется не менее 40 кг АТФ. Особенно интенсивно эти процессы идут в мышцах при физической работе.
Синтез АТФ – процесс, направленный на поддержание жизнедеятельности клетки, сопровождаемый образованием энергии. Образование АТФ происходит на внутренней мембране митохондрий, которые являются энергетическим аккумулятором клетки.
Расшифровка АТФ
Аденозинтрифосфорная кислота или АТФ – необходимое условие для существования 9 из 10 клеток с аэробным дыханием. Получение энергии происходит при фосфорилировании, присоединении остатка фосфорной кислоты. На одну молекулу АТФ приходится около 7,3 килокалории энергии.
Какие соединения входят в состав АТФ
Строение АТФ и биологическая роль тесно связаны. В состав АТФ входят аденозин, три остатка фосфорной кислоты. Связи, существующие между аминокислотой и фосфатом, подвергаются гидролизу в присутствии воды, в результате образуется АДФ (аденозиндифосфат), фосфорная кислота. Этот процесс происходит с высвобождением энергии.
Образование энергии
Процесс переноса электронов осуществляется посредством дыхательной цепи. Основную роль здесь играет восстановленный НАДН (Никотинамидадениндинуклеотид). Данное вещество окисляется, отдавая водород. Также на дыхательной цепи синтезируется АТФ. Фосфорилирование происходит на внутренней стороне мембраны митохондрии при помощи АТФ-синтазы.
Последняя выступает переносчиком ионов водорода, что необходимо в связи с существованием градиента на внутренней и внешней мембранах. Перенос водорода через мембрану – хемиосмос, ведет к возникновению связи между АДФ и остатком фосфорной кислоты, иначе говоря, к окислительному фосфорилированию.
Пути синтеза АТФ и его роль
Образование АТФ возможно в ходе гликолиза, цикла трикарбоновых кислот или цикла Кребса. Такие процессы носят название субстратного фосфорилирования.
В ходе первого получают четыре молекулы АТФ, две молекулы пирувата или пировиноградной кислоты из глюкозы. Это бескислородное расщепление. На обеспечение данного процесса затрачивается 2 АТФ, протекает он в цитоплазме или цитозоле. Цикл лимонной кислоты происходит на кристах (складки внутренней оболочки) митохондрий в ходе окисления пирувата. При этом происходит отщепление одного атома углерода с образованием ацетилкоэнзима А и восстановление НАДН.
Далее синтезируется лимонная кислота при участии щавелевоуксусной кислоты. Цитрат превращается в цис-аконитат, который переходит в изоцитрат. К последнему присоединяется окисленный НАДН, который восстанавливается. Отщепление водорода приводит к синтезу кетоглутарата, с ним снова соединяется окисленный НАДН и ацетилкоэнзим А. На этой стадии синтезируется сукцинил-коэнзим А, к которому присоединяется ГДФ (гуанозиндифосфат).
Данная молекула восстанавливается в ГТФ (гуанозинтрифосфат) плюс образуется сукцинат. Он превращается в фумарат, затем малат. В этой реакции синтезируется оксалоацетат и восстановленный НАДН. Так, цикл Кребса возвращается к цитрату. На каждый цикл затрачиваются 2 молекулы АТФ, синтезируется 6 НАДН в цикле и 4 на подготовительных этапах. Последняя энергетически приравнивается к трем молекулам АТФ.
В синтезе цитрата задействованы также два ФАДН2 (флавинадениндинуклеотид), на каждую приходится по две АТФ. Таким образом, синтезируемое количество АТФ соответствует 38 молекулам с позиций биологии и биохимии. Однако следует помнить, что это теоретическое число, необходимое для дыхания клетки. Все реакции цикла Кребса катализируются ферментами.
Главная роль – поддержание клеточного дыхания, направленного на рост клетки, синтез новых веществ.
Функции АТФ
Важнейшая функция – участие в энергетическом обмене. Энергия, выделяемая в ходе данных превращений, вновь идет на синтез АТФ. При этом 40% рассеивается в виде тепла.
Поскольку для поддержания любых процессов жизнедеятельности необходимы энергозатраты АТФ – аккумулятор клетки, универсальный источник запасов энергии. Гликолиз активно протекает при физической нагрузке, в мышцах. Субстратное фосфорилирование также осуществляется из креатинфосфата других органических веществ.
Важно подчеркнуть, что цикл Кребса протекает при расщеплении как углеводов, так и белков и жиров. Если в качестве «топлива» клетка использует не углевод, гликолиз не протекает (отсюда не происходит затрата двух молекул АТФ с образованием четырех). Но цикл трикарбоновых кислот протекает одинаково, так как главную роль там играет ацетил-коэнзим А. При кислородном голодании клетка перестраивается на гликолитический путь.
Заключение
Урок Бесплатно Нуклеиновые кислоты. АТФ. Витамины
Введение
Долгое время функция нуклеиновых кислот в клетке была неясна, считалось что эти вещества являются всего лишь запасником фосфора в организме.
Хотя Ф. Мишер писал, что это вещество явно связано с процессом оплодотворения, но до середины XX века биологи так и не могли разгадать загадку нуклеиновых веществ.
По мнению ученых того времени, строение молекул нуклеиновых кислот было слишком однообразным и не могло рассматриваться в качестве носителя генетической информации.
Постепенно было доказано, что именно нуклеиновые кислоты являются носителем наследственной информации, благодаря им дочерние клетки наследуют свойства и признаки материнской клетки.
Нуклеиновые кислоты- природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации в живых организмах.
Нуклеиновые кислоты. Общая характеристика
Нуклеиновые кислоты— биологические полимеры, мономерами которых являются нуклеотиды.
К нуклеиновым кислотам относят:
ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
ДНК у прокариот находится в цитоплазме в составе нуклеоида.
ДНК у эукариотических организмов содержится исключительно в ядре клетки.
РНК содержится и в ядре, и в ядрышке, и в цитоплазме эукариотических клеток.
Нуклеотид (мономер) нуклеиновых кислот состоит из:
Связи между нуклеотидами легко подвергаются распаду при реакции с водой (гидролиз).
Азотистые основания- это ароматические гетероциклические соединения, производные пиримидина или пурина.
Пять соединений этого класса являются основными структурными компонентами нуклеиновых кислот, общими для всей живой материи.
Пуриновые основания являются производными пурина, молекула которого состоит из двух гетероциклов. К пуриновым основаниям относятся:
Пиримидиновые основания наиболее просто устроены и к ним относят:
Для сокращения названий нуклеотидов в биологии принято обозначать одной буквой- первой буквой их названия:
У меня есть дополнительная информация к этой части урока!
Почему ДНК- это кислота?
Вначале ДНК называли нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, оно получило название нуклеиновая кислота.
РНК и ДНК содержат в своём составе фосфатную группу.
Она присутствует в составе многих биомолекул. Именно в ДНК фосфаты осуществляют связь между нуклеотидами, поэтому из-за них ДНК и РНК и проявляют кислотные свойства.
ДНК- дезоксирибонуклеиновая кислота
Нуклеиновую кислоту, содержащую дезоксирибозу, называют дезоксирибонуклеиновой кислотой или ДНК.
ДНК- это вещество, которое отличается необычным молекулярным строением и не похоже ни на одно химическое соединение.
Функции ДНК:
Молекула ДНК представляет собой две спирально закрученные друг вокруг друга цепи:
У меня есть дополнительная информация к этой части урока!
У человека молекулы ДНК находятся в особых структурах ядра- хромосомах.
В каждой соматической клетке тела человека находится 46 хромосом.
Длина всех 46 молекул ДНК в одной клетке тела человека равна почти 2 метрам.
Тело взрослого человека состоит примерно из 30-40 триллионов клеток. Получается, что общая длина молекул ДНК в организме достигает 80 трлн. км, что в тысячи раз превышает расстояние от Земли до Солнца, которое составляет 150 млн км.
Во всех молекулах ДНК одной клетки человека содержится 3,2 млрд пар нуклеотидов, что соответствует 800 мегабайтам информации.
Используя все имеющиеся данные о нуклеиновых кислотах, в 1953 году в США учеными Ф.Криком и Д.Уотсоном была смоделирована пространственная модель ДНК, где четко видно, что ДНК- это полимер, а его мономерами являются нуклеотиды.
Нуклеотид ДНК состоит из 3-х компонентов:
Нуклеотиды соединены в одной цепи через углевод одного нуклеотида и остаток фосфорной кислоты соседнего нуклеотида прочной ковалентной связью.
В двойную цепь нуклеотиды соединены комплементарно через азотистые основания водородными связями:
Нуклеотидный состав ДНК в 1905 г. впервые количественно проанализировал американский биолог Эрвин Чаргафф.
Он обнаружил, что в молекуле ДНК число пуриновых оснований всегда равно числу пиримидиновых.
Молекулярное количество аденина равно количеству тимина, а количество гуанина равно цитозину- это правило Чаргаффа или принцип комплементарности (дополнительности).
Согласно принципу комплементарности можно восстановить недостающую цепь ДНК.
Задача:
Первая цепочка ДНК имеет следующую последовательность нуклеотидов:
А- Г- Ц- Т- Т- Ц- Г- Г- А- Г
достойте вторую цепочку ДНК, используя принцип комлементарности.
Решение:
Мы видим, что первый нуклеотид в первой цепи ДНК- аденин (А), смотрим правило комплементарности:
значит, аденину (А) соответствует тимин (Т).
Далее второй нуклеотид в первой цепи гуанин (Г). Опять обращаемся к принципу комплементарности, гуанин (Г) соответствует цитозину (Ц).
И таким образом, мы можем достроить всю вторую цепь ДНК.
Первая цепь ДНК: А- Г- Ц- Т- Т- Ц- Г- Г- А- Г
Вторая цепь ДНК: Т- Ц- Г- А- А- Г- Ц- Ц- Т- Ц
Кроме достраивания цепей ДНК в ЕГЭ присутствуют задачи на определение количества (%) нуклеотидов в гене и определение длины гена.
Для решения таких задач тоже используют правило Чаргаффа: молекулярное количество аденина равно количеству тимина, а количество гуанина равно цитозину.
Нуклеотиды расположены на расстоянии друг от друга 0,34 нм и молекулярная масса одного нуклеотида равна 345. Эти величины постоянные, они также используются для решения задач по ДНК.
Примеры задач:
Задача
В молекуле ДНК доля тиминовых нуклеотидов составляет 15% от общего количества нуклеотидов.
Определите количество других видов нуклеотидов в данной молекуле ДНК.
Решение:
1. По правилу Чаргаффа количество Тимина (Т) в ДНК равно аденину (А), следовательно, если доля Т = 15%, значит, и А будет = 15%.
2. В сумме А + Т = 30%
3. Всего всех нуклеотидов ДНК = 100%, из них на долю А + Т приходится 30%
Ответ: А = (15%), Т = (15%), Г = (35%), Ц = (35%)
Задача
Участок цепи ДНК содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет во второй цепи ДНК?
Решение:
По правилу Чаргаффа в ДНК количество гуанина (Г) равно цитозину (Ц), количество тимина (Т) равно аденину (А). Если А в первой цепочке 150 нуклеотидов, значит и Т во второй цепи будет тоже 150, следовательно, получается:
А = 150 Т = 150
Т = 200 А = 200
Г = 250 Ц = 250
Ц =1 50 Г = 150
Ответ: Во второй цепи ДНК: Т=150; А=200; Ц=250; Г=150
Задача
В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22% от общего количества нуклеотидов этой ДНК. Сколько каждого нуклеотида содержится в этой молекуле ДНК? Какова длина этой молекулы ДНК?
Решение:
1) Исходя из принципа комплементарности (А + Т) + (Г+ Ц) = 100%
Тогда количество цитидиловых нуклеотидов равно: Г = Ц = 880, или 22%, то есть Г = 22% и Ц = 22%
3) Необходимо посчитать количество нуклеотидов, исходя из процентных данных. Составляем пропорцию:
Х = (880*56) : 22 = 2400 нуклеотидов, приходится в сумме на А+Т
Так как А = Т, то 2400 : 2=1120 нуклеотидов, то есть 1120 = А и 1120 нуклеотидов Т
3) Всего в этой молекуле ДНК содержится (880 х 2) + (1120 х 2) = 4000 нуклеотидов.
4) Для определения длины ДНК узнаем, сколько нуклеотидов содержится в одной цепи:
Мы знаем, что нуклеотиды расположены на расстоянии друг от друга 0,34 нм и вычисляем длину ДНК в одной цепи:
0,34 нм х 2000 нуклеотидов= 680 нм.
Ответ: в молекуле ДНК Г = Ц = 880 и А = Т = 1120 нуклеотидов; длина этой молекулы 680 нм.
Синтез ДНК
Каждая молекула ДНК способна к самоудвоению, в основе которого лежит тот же принцип комлементарности (дополнительности). Этот принцип поможет понять, как строится новая молекула ДНК в новой клетке.
Перед каждым делением клетки (в интерфазе) происходит образование новой молекулы ДНК под действием фермента дезоксирибонуклеазы.
Фермент разрывает двойную цепь ДНК и спираль раскручивается.
Каждая отдельная цепь собирает новую молекулу ДНК по принципу комплементарности, в результате образуется две молекулы ДНК.
Этот процесс называется редупликация ДНК— копирование молекулы ДНК.
Нуклеиновую кислоту, содержащую рибозу, называют рибонуклеиновой кислотой или РНК.
РНК— это полимер, мономерами которого являются нуклеотиды.
В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой, и эта цепь очень похожа на одну из цепей ДНК.
РНК участвует в реализации генетической информации.
У меня есть дополнительная информация к этой части урока!
Оказывается РНК тоже может состоять из двух цепочек, как и ДНК.
Двухцепочечные РНК были обнаружены у вирусов группы реовирусы, у плесневелых грибов, высших растений, насекомых и некоторых позвоночных животных.
Вирус гриппа с молекулами РНК:
По своей структуре нуклеотиды РНК очень близки, но не тождественны нуклеотидам ДНК, они также образуют между собой водородные связи.
Цепи РНК значительно короче и их вес меньше цепей ДНК.
Состав мономера (нуклеотида) РНК:
Виды РНК
Все виды РНК представляют собой неразветвленные полимеры. Все они принимают участие в процессах образования белка.
Информация о строении всех видов РНК хранится в ДНК.
Процесс синтеза РНК на матрице ДНК называется транскрипцией, этот процесс подробно раскрыт в теме биосинтез белка.
Выделяют три вида РНК:
Информационная РНК содержит информацию о первичной структуре (аминокислотной последовательности) белков.
Длина зрелой мРНК составляет от нескольких сотен до нескольких тысяч нуклеотидов.
На долю иРНК приходится до 5% от общего содержания РНК в клетке.
У меня есть дополнительная информация к этой части урока!
Различные мРНК имеют различную продолжительность жизни (стабильность).
В клетках бактерий молекула мРНК может существовать от нескольких секунд до более часа, а в клетках млекопитающих от нескольких минут до нескольких дней.
Чем больше стабильность мРНК, тем больше белка может быть синтезировано.
Ограниченное время жизни мРНК клетки позволяет быстро изменять синтез белка в ответ на изменяющиеся потребности клетки
Функции иРНК:
Транспортные РНК (тРНК) содержат обычно от 73 до 93 нуклеотидов.
По структуре тРНК напоминают лист клевера.
В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов.
На долю тРНК приходится около 10% от общего содержания РНК в клетке.
В строении тРНК можно выделить участок, который состоит из трех нуклеотидов-антикодон.
Антикодоны специфически связываются с тройкой нуклеотидов (кодон) на матричной РНК при синтезе белка.
Конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону.
Рибосомные РНК (рРНК) содержат от 3000 до 5000 нуклеотидов.
На долю рРНК приходится 80- 85% от общего содержания РНК в клетке.
В комплексе с рибосомными белками рРНК образует рибосомы- органоиды, осуществляющие синтез белка.
В эукариотических клетках синтез рРНК происходит в ядрышках.
Функции рРНК:
У меня есть дополнительная информация к этой части урока!
В клетках кроме мРНК, тРНК, рРНК еще есть и малые ядерные РНК (мяРНК)- компонент ядра клеток.
Ядерные РНК состоят примерно из ста нуклеотидов.
Долгое время их роль в клетке была неясна.
По последним данным мяРНК необходимы для регуляции факторов транскрипции при биосинтезе белка и для нормального процесса сплайсинга (процесса вырезания определённых нуклеотидных последовательностей из молекул РНК) для правильного соединения последовательностей РНК
Все виды РНК синтезируются в клеточном ядре на матрице ДНК под действием ферментов полимераз.
Таблица сравнения ДНК и РНК
Нуклеиновая кислота
Особенности строения
Двойная спираль, способность к репликации (самоудвоению)
Одинарная цепочка нуклеотидов.
Строение нуклеотида
Азотистое основание- углевод- остаток фосфорной кислоты
Локализация в клетке
Ядро, митохондрии, хлоропласты
Ядро, ядрышко, цитоплазма, рибосомы, митохондрии, хлоропласты
Локализация в ядре
Азотистые основания
Тимин (Т)
Урацил (У)
Углевод нуклеотида
Пятиуглеродный моносахарид дезоксирибоза
Пятиуглеродный моносахарид рибоза
Функции
Хранение и передача наследственной информации
Биосинтез белка (реализация наследственной информации)
Пройти тест и получить оценку можно после входа или регистрации
АТФ— аденозинтрифосфат или аденозинтрифосфорная кислота.
Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии.
Энергия требуется для движения, биохимических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.
Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ).
АТФ был открыт в 1929 г. Карлом Ломанном, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.
АТФ содержится в каждой клетке животного или растительного организма, в клетках бактерий и вирусах, хотя запас АТФ в клетках не велик.
За счет обменных процессов в организме происходит пополнение истраченных запасов этого богатого энергией вещества.
При усиленной, но кратковременной работе (например, при беге на короткую дистанцию) мышцы работают за счет распада собственного АТФ. После окончания бега спортсмен усиленно дышит, в этот период происходит интенсивное окисление углеводов и других веществ для восполнения израсходованной АТФ.
При длительной напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.
Итак, АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки.
В организме возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок.
Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться в другом месте и в другое время.
Наиболее большое количество молекул АТФ можно обнаружить в скелетных мышцах.
АТФ- единый и универсальный источник энергообеспечения клетки.
По химическому строению АТФ является нуклеотидом.
Состав нуклеотида АТФ:
АТФ – очень неустойчивая структура. Самопроизвольно или под влиянием фермента в АТФ разрывается связь между фосфором (Р) и кислородом (О). К освободившимся связям легко присоединяются одна или две молекулы воды и отщепляются одна или две молекулы фосфорной кислоты.
Если отщепляется одна молекула фосфорной кислоты, то АТФ переходит в АДФ (аденозиндифосфорную кислоту). Если отщепляются две молекулы фосфорной кислоты, то образуется АМФ (аденозинмонофосфорная кислота).
И теперь самое важное: при реакции отщепления одного остатка фосфорной кислоты выделяется большое количество энергии (40 кДж).
Чтобы подчеркнуть такую высокую энергетическую эффективность фосфорно-кислородной связи в АТФ ее называют «связью, богатой энергией» или макроэргической и обозначают знаком «
В АТФ имеются две макроэргические связи.
АТФ играет центральную роль в энергетическом обмене клетки:
Синтез АТФ
Два исследователя Пол Д. Бойер (США) и Джон Э. Уолкер (Великобритания) в 1997 году получили Нобелевскую премию за объяснение ферментативного механизма, лежащего в основе синтеза АТФ.
АТФ синтезируется в митохондриях в несколько этапов при реакции специального фермента АТФ-синтазы с фосфатами во время дыхания клетки (окисление глюкозы в присутствии кислорода) и во время фотосинтеза (за счет солнечной энергии).
Синтез молекул АТФ происходит в ходе кислородного этапа энергетического обмена, во время которого в клетке образуется 36 молекул АТФ.
Пройти тест и получить оценку можно после входа или регистрации
Витамины
Витамины (лат. vita «жизнь»)- группа низкомолекулярных органических соединений простого строения и разнообразной химической природы, они необходимы для нормального функционирования организма.
Витамины являются составной частью ферментов, ускоряющих обменные процессы в организме.
История открытия витаминов
До XIX века о существовании витаминов ничего не было известно, хотя болезни от нехватки этих веществ у людей активно проявлялись и обычно причины болезненного состояния списывались на инфекцию.
Особенно страдали от нехватки витаминов мореплаватели, которые при длительных путешествиях погибали от цинги- болезни, вызываемой острым недостатком витамина C.
Витамины по большей части содержатся в овощах и фруктах, которые моряки не брали с собой, так как они быстро портились.
При цинге из-за недостатка витамина С нарушается биосинтез коллагена, входящего в состав соединительной ткани. В результате становятся слабыми сосуды, появляются кровотечения, поражаются кости, выпадают зубы, понижается иммунитет.
В 1747 году шотландский врач Джеймс Линд, пребывая в длительном плавании, провел своего рода эксперимент на матросах, больных цингой, дополнительно вводя в их рацион различные продукты.
В ходе этой работы было обнаружено, что у матросов, в рацион которых врач Линд добавлял фрукты, а в частности, цитрусовые лимоны и апельсины, болезнь проходила после 6 дней употребления этих фруктов.
Однако в то время его открытие признания в научном мире не заслужило.
Джеймс Линд и его работа:
В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков.
Вторая половина XIX века была периодом бурного развития химии и физиологии.
К тому времени были получены основные сведения о химической природе главных составных частей пищи: белков, жиров, углеводов.
В 1880 году русский врач Николай Иванович Лунин в 26 лет экспериментально доказал, что в молоке содержатся некие вещества, незаменимые для питания.
Опыт Лунина Н.И. состоял в следующем:
Исследователь взял две группы мышей.
Первую группу мышей кормил натуральным коровьим молоком, а вторую группу смесью белков, жиров, углеводов и минеральных солей, по составу и в соотношениях полностью соответствовавших коровьему молоку.
Опыт длился 70 дней.
Животные первой группы, питавшиеся натуральным молоком, оставались здоровыми на всем протяжении опыта.
Мыши из второй группы, питавшиеся смесью, погибали в срок от 11 до 21 дня.
Н.И.Лунин писал в своей диссертации: «В молоке, кроме казеина, жира, молочного сахара и солей, должны содержаться другие вещества, которые совершенно необходимы для питания. Обнаружить эти вещества и изучить их значение представляет большой интерес».
Именно исследование Н.И.Лунина можно считать первыми доказательствами существования витаминов, а самого Лунина российским первооткрывателем витаминов.
У меня есть дополнительная информация к этой части урока!
Бери-бери переводится с сингальского как «большая слабость».
Широкое распространение заболевание получило в конце XIX века в странах, где основным продуктом питания людей был очищенный рис.
Люди не знали, что витамин В1 содержится именно в чешуйках и верхних слоях рисовых зерен.
Витамин В1 играет важную роль в углеводном и жировом обмене.
Его недостаточность провоцирует биохимические сдвиги с накоплением пировиноградной кислоты в тканях (что является причиной повреждения нервных волокон), происходит потеря аппетита, нарушение пищеварения, уменьшение силы сердечных сокращений, слабость скелетной мускулатуры.
Истоки заболевания были найдены спустя годы.
В 1897 году ирландский врач Христиан Эйкман пришел к выводу, что, шлифуя рис, люди лишают себя необходимых полезных веществ, которые входят в состав верхних слоев неочищенных зерен.
В 1911 году польский учёный Казимир Функ, выделил кристаллический препарат из рисовых отрубей, небольшое количество которого излечивало бери-бери. Функ назвал это вещество «витамин»: от латинских слов «vita» (жизнь) и «amine» (азот).
С развитием биологической химии ученные постепенно установили химические формулы витаминов и научились получать их в чистом виде.
Благодаря применению витаминов исчезли такие массовые болезни, как рахит, цинга, пеллагра и другие авитаминозы.
Краткая история открытия жирорастворимых витаминов:
Витамин
Когда и какими учеными был открыт витамин
Витамин А
В 1917 г. был обнаружен независимо Элмером Макколом и Лайфайеттом VHS Менделем и Томасом Бурром Осборном.
Витамин Д
В 1937 г. Виндаус сумел выделить активный витамин Д3.
Витамин Е
В 1936 г. получены первые препараты витамина Е путем экстракции из масел ростков зерен.
Синтез витамина Е осуществлен в 1938г. Каррером.
Краткая история открытия водорастворимых витаминов:
Витамин
Когда и какими учеными был открыт витамин
Витамин В1 (тиамин)
В 1911г. польским учёным Казимиром Функом.
В чистом виде впервые выделен Б. Янсеном в 1926г.
Витамин В2 (рибофлавин)
В 1879 г. ученый Блисc открыл это вещество.
Как рибофлавин описан в 1932г.
Витамин В3
В качестве витамина был открыт в 1933 г. Р.Уильямсом
Витамин С
В 1923 г. доктором Гленом Кингом было установлено химическое строение витамина С.
В 1928 г. доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С.
В 1933 г. швейцарские исследователи синтезировали аскорбиновую кислоту (аналог витамина С)
Витамин К
В 1929 г. датский биохимик Хенрик Дам выделил жирорастворимый витамин, который в 1935 г. назвали витамином К. Участвует в свертываемости крови.
Витамин РР (никотиновая кислота)
С 1915 г. американский врач Гольдберг исследовал этот витамин, и постепенно был получен кристаллический препарат никотиновой кислоты
Классификация и роль витаминов в организме человека
Большую часть витаминов организм не способен синтезировать сам, поэтому витамины должны попадать в наш организм вместе с пищей.
Источниками витаминов для человека являются пищевые продукты растительного и животного происхождения.
Некоторые витамины образуются микрофлорой кишечника.
При недостатке или переизбытке в организме какого-либо витамина наступает болезненное состояние, характеризуемое определенным набором симптомов.
Гиповитаминоз- патологическое состояние, связанное с недостатком в организме определенного витамина.
Авитаминоз— тяжелое патологическое состояние, связанное с отсутствием в организме определенного витамина.
Гипервитаминоз— патологическое состояние, связанное с избытком в организме определенного витамина.
Авитаминозы и гиповитаминозы могут возникать не только в случае отсутствия витаминов в пище, но и при нарушении их всасывания при заболеваниях желудочно-кишечного тракта.
Жирорастворимые витамины накапливаются в жировой ткани и печени, поэтому гиповитаминозы и авитаминозы этих витаминов наблюдаются реже, чем у водорастворимых, которые не могут накапливаться в организме.
Таким образом, чаще наблюдаются гиповитаминозы водорастворимых витаминов и гипервитаминозы жирорастворимых витаминов.
Витаминология— медико-биологическая наука, изучающая структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях.
Водорастворимые витамины:
Жирорастворимые витамины:
Различные факторы: кипячение, замораживание, высушивание, освещение могут оказать негативное влияние на витамины и разрушать их.
Наименее стойким из всех витаминов является витамин С, который начинает разрушаться при нагревании всего лишь до 60°С, а также при доступе воздуха, солнечного света, повышении влажности.
Витамин А более устойчив к действию высокой температуры, но легко окисляется при доступе воздуха.
Витамин D выдерживает продолжительное кипячение в кислой среде, а в щелочной быстро разрушается.
Витамины группы В более устойчивы и меньше разрушаются при кулинарной обработке. Наименее стоек из них витамин В1, который распадается при длительном кипячении и повышении температуры до 120°С.
Витамин Е выдерживает кипячение любой длительности.
Длительное хранение и высушивание губительно действуют на витамины А, С, но не разрушают витамины В1, B2, D, Е.
Витамин
Функции
Симптомы авитаминоза и гиповитаминоза
Источники витамина для организма
Для роста и развития, нормального функционирования слизистых оболочек, восприятия света,
иммунитет (синтез интерферонов, иммуноглобулина, лизоцима); антиоксидант
Печень, сливочное масло, сыр, в виде каротина- в моркови, красном перце, тыкве, и в других овощах и фруктах красного цвета
Необходим для нормальной деятельности нервной системы
Заболевание под названием Бери-бери – повышенная возбудимость, нарушение сна, снижение памяти, судороги, паралич
В оболочках зерен злаковых растений, гречневой и овсяной крупах, зеленом горошке, ржаной хлеб
Влияет на состояние эпителия слизистой оболочки ротовой полости и других пищеварительных органов
Воспаление слизистой оболочки в ротовой полости, трещинки в углах рта, Катаракта – помутнение хрусталиков глаз
Молоко, сыр, и другие молочные продукты, печень почки, гречневая крупа
Участвует в белковом обмене, уменьшает отложения в сосудах холестерина, который ведёт к развитию атеросклероза, ожирению печени и отложению камней в желчном пузыре
Ожирение печени, нарушение функции нервной системы, вызывает потерю аппетита, тошноту, воспаление языка, образование трещин в углах рта, воспаление красной каймы губ
Дрожжи пекарские и пивные, печень животных и рыб, яичный желток, сельдь, треска, зеленый горошек, стручковая фасоль, куриное мясо. Частично синтезируется микробами
Участвует в синтезе ферментов, ответственных за созревание клеток крови в костном мозге
Ухудшение аппетита, слабость, снижение массы тела. Злокачественная анемия (малокровие)
Печень, яичные желтки, кисломолочные продукты
Участвует в синтезе белков соединительной ткани, повышает иммунитет
Быстрая утомляемость слабеет устойчивость к инфекциям, сонливость. Цинга – стенки кровеносных сосудов становятся хрупкими, кровоточат десна, расшатываются и выпадают зубы
Овощи, фрукты, ягоды, много в шиповнике, черной смородине, лимоне и капусте
Регулирует содержание кальция и фосфора в крови, минерализация костей и зубов
Рахит – кости теряют прочность, у детей искривляются ноги деформируется грудная клетка, замедляется рост. Нарушение усвоения кальция и фосфора, снижается тонус мышц и устойчивость к инфекционным болезням
Яичный желток, печень, рыбий жир, молоко, образуется в коже под влиянием УФ лучей
Обеспечивает нормальное протекание окислительно-восстановительных процессов, участвует в образовании гормонов надпочечников
Нарушение деятельности пищеварительной системы, потемнение кожи, покрытие её язвочками
Дрожжи, неочищенный рис, печень, яичный желток, молоко. Образуется в организме из продуктов питания
Н (биотин)
Участвует в энергетическом обмене
У маленьких детей недостаток витамина Н проявляется дерматитом.
У взрослых мелкое шелушение кожи,
Ананас, свекла, гречка, фасоль, мясо и субпродукты, грибы; синтезируется бактериальными симбионтами в толстом кишечнике
Пройти тест и получить оценку можно после входа или регистрации
Заключительный тест
Пройти тест и получить оценку можно после входа или регистрации