Ферритовые сердечники что это
О минерале, который притягивается к стальным изделиям, человечеству стало известно еще в 3 веке до нашей эры. Люди были поражены, но дальнейшего развития способов его применения не последовало. Второе рождение феррита произошло после открытия компаса. Кусок минерала, закрепленный на плавающей доске, всегда указывал в одну сторону, облегчая морякам поиск нужного направления.
Окончательное признание феррит получил после опубликования теории взаимодействия электрических и магнитных полей Фарадеем. Это позволило миру взглянуть по-новому на свойства и применение феррита. Так что же это за материал и почему он так интересен радиоэлектроникам.
Общая характеристика и химический состав
Ферриты представляют собой сплав оксида железа с оксидом другого ферромагнитного металла: медь, цинк, кобальт, никель и т. д. В промышленном применении наибольшее распространение получили следующие типы ферритов:
Свойства и особенности
Главным достоинством ферритовых сплавов является наличие повышенного удельного электросопротивления с сочетанием высоких магнитных свойств. Наиболее выгодным будет применение феррита при таких эксплуатационных характеристиках как малое значение индукции и высокие частоты.
При низких значениях частот повышается относительная диэлектрическая проницаемость феррита. При одновременном наличии высокой магнитной проницаемости это может привести к наложению волн друг на друга. Как результат возникает объемный резонанс, при котором вихревые токи увеличиваются в разы, а, следовательно, потери.
Ухудшение магнитных свойств в ферритах происходит по следующим причинам:
Феррит обладает незначительными механическими свойствами. Не отличаются ни прочностью, ни пластичностью.
Модуль упругости составляет в среднем 45 000 МПа. Модуль сдвига ферритовых сплавов 5500 МПа. Предел прочности на растяжение равен 120 МПа. На сжатие 900 МПа. Значение коэффициента Пуансона колеблется в пределах 0,25-0,45.
Виды применения
В силу вышеперечисленных свойств главным потребителем ферритов является радиоэлектроника. Применение определенного сплава феррита ограничивается значением критических частот, выход за пределы которых увеличивает потери и снижает эксплуатационные свойства, в частности магнитную проницаемость. Ферритовые сплавы по свойствам и применению делят на:
Ценообразование
Стоимость феррита определяется следующими свойствами:
Так вот зачем это утолщение на проводе!
Замечал ли ты когда-нибудь небольшой цилиндр на питающем кабеле своего ноутбука? Если нет, присмотрись внимательнее к зарядке любого портативного компьютера. На шнуре возле самого разъема, который вставляется в ноутбук, есть небольшой пластиковый бочонок.
Нет,я конечно знал, что там не какое то сложнейшее устройство и не просто кусок пластмассы, но все никак не доходили руки узнать все точно и подробнее.
Оказывается, этот малозаметный цилиндр выполняет очень важную функцию! Он играет роль высокочастотного фильтра и нейтрализует помехи, которые могут поступать от питающего кабеля. Это устройство называется ферритовым кольцом, или ферритовым фильтром.
Этот цилиндр выполнен из феррита — химического соединения оксида железа с окислами других металлов, который по сути является магнитным изолятором. В этом веществе не возникают вихревые токи, поэтому ферриты очень быстро перемагничиваются в такт с частотой электромагнитного поля.
Не секрет, что любой неэкранированный кабель питания является источником электромагнитных помех, которые могут искажать информационные сигналы внутри компьютера. А ферритовое кольцо играет роль фильтра и препятствует распространению этих помех.
Ранее для этой цели применялось экранирование всего кабеля медной оплеткой, но ферритовые кольца значительно дешевле, поэтому именно они получили широкое распространение в современной электротехнике.
Кстати, ферритовые кольца не только препятствуют образованию нежелательных электромагнитных полей, но и защищают сигнал внутри кабеля от внешних помех. Поэтому такие цилиндры, кроме питающих кабелей, можно также встретить и на шнурах подключения мониторов, камер или фотоаппаратов.
Как увеличить эффективность шумоподавления кабельного феррита
1. Увеличить длину охватываемой ферритовым сердечником части кабеля.
2. Увеличить поперечное сечение ферритового сердечника.
3. Внутренний диаметр кабельного феррита должен быть наиболее близок (в идеале – равен) к внешнему диаметру кабеля.
4. Если позволяют конструктивные особенности пары кабель – феррит, можно сделать несколько витков (как правило, один – два) кабеля вокруг ферритового сердечника. Обобщая вышесказанное, можно сказать, что наилучший ферритовый сердечник – самый длинный и толстый из тех, что могут быть размещены на конкретном кабеле. При этом внутренний диаметр кабельного феррита должен по возможности совпадать с внешним диаметром кабеля.
Да, точно, мне же иногда попадались к оборудованию отдельно приложенные такие бочоночки:
Иногда в продаже можно встретить разъёмные кабельные ферриты в пластиковой оболочке (термоусадочной трубке) с двумя защёлками. Как ими пользоваться? Раскрытый ферритовый цилиндр надевается на кабель, который необходимо защитить от электромагнитных помех и наводок, примерно в 3 см от наконечника кабеля. Делается петля вокруг оболочки цилиндра. После этого оболочка защелкивается. Для надёжности можно оснастить ферритовым цилиндром и другой конец кабеля.
Тогда, почему на всех кабелях нет ферритовых колец? Потому, что ферритовые кольца это не единственный способ оградить провод от воздействия помех. Не менее эффективно и экранирование провода. Либо же кабель просто дешевый и не качественный.
Ферритовые сердечники что это
ФЕРРИТОВЫЕ СЕРДЕЧНИКИ ДЛЯ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ
ТИП | A | B | C | D | H | h | 30кГц | 50кГц | КАРКАС | ЦЕНА/КОЛ-ВО | ПРОДАВЕЦ | ||||
ГАБАР | ПЕРВ | ВТОР | ГАБАР | ПЕРВ | ВТОР | ||||||||||
EE13 | 13 | 10,2 | 6,1 | 2,7 | 6 | 4,6 | 7,3 | 317 | 25+25 | 9,3 | 238 | 20+20 | 5+5 | 6,8$ / 20 | ТУТ |
EE19 | 19 | 14 | 4,9 | 4,8 | 7,9 | 5,6 | 15,2 | 227 | 18+18 | 19 | 170 | 15+15 | 5+5 | 6,4$ / 20 | |
EE25 | 25,4 | 18,5 | 6,3 | 6,3 | 14,8 | 10,8 | 66 | 132 | 11+11 | 85 | 99 | 9+9 | 5+5 | 6,7$ / 10 | |
EE28 | 28 | 19,3 | 11,2 | 7,7 | 10,5 | 5,7 | 71,6 | 61 | 5+5 | 91 | 46 | 4+4 | 5+5 | 8$ / 10 | |
EE33 | 33 | 23,5 | 12,7 | 9,7 | 13,7 | 9,2 | 193 | 43 | 4+4 | 249 | 32 | 3+3 | 6+6 | 8,6$ / 5 | |
EE40 | 40 | 26,8 | 11,6 | 11,6 | 17,3 | 10,3 | 260 | 39 | 4+4 | 327 | 30 | 3+3 | 6+6 | 5,1$ / 2 | |
EE42 20 | 42 | 29,5 | 19,6 | 12 | 21 | 15,2 | 716 | 23 | 2+2 | 957 | 17 | 2+2 | 6+6 | 7,5$ / 2 | |
EE55 21 | 55 | 37,5 | 21 | 17,2 | 27,8 | 18,5 | 1500 | 15 | 2+2 | 1900 | 11 | 1+1 | 11+11 | 8,5$ / 1 | |
EE65 | 65 | 45 | 27 | 19,6 | 32,5 | 23 | 2400 | 11 | 1+1 | 4200 | 8 | 1+1 | — | — | |
EE85 | 85 | 55 | 31,1 | 27 | 44 | 29 | 6400 | 7 | 1+1 | 7500 | 5 | 1+1 | — | — |
Силовые ферритовые материалы для низких и средних частот, ΔF = 10…300 кГц, до 500 кГц.
1500 ≤ μi ≤ 2000
Наименование материала | N92 | TP4E | 3C92 | CF122 (-) | 3C93 | CF292 ( +) | N27 | CF196 | TP4S | 3C96 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Начальная магнитная проницаемость при 25°C | μi | 1500 | 1500 | 1500 | 1700 | 1800 | 1800 | 2000 | 2000 | 2000 | 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Индукция насыщения при 25°C | BSAT мТл | 500 | 510 | 520 | 510 | 500 | 500 | 500 | 500 | 520 | 500 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Уровень напряжённости магнитного поля | H кА/м | 1,2 | 1,194 | 1,2 | 1 | 1,2 | 1 | 1,2 | 1 | 1,194 | 1,2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мощность потерь, при 100°C, 100мТл, 100кГц | PV кВт/м 3 | 80 | 45 | 50 | 90 | 100 | 100 | 200 | 150 | 60 | 40 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мощность потерь, при 100 °C, 200мТл, FTEST | PV кВт/м 3 | 410 | 480 | 350 | 500 | 500 | 500 | 920 | 200 | 300 | 300 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тестовая частота измерения | FTEST кГц | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 32 | 100 | 100 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Рекомендуемый диапазон рабочих частот | ΔF кГц |
Наименование материала | CF297 ( +) | N97 | TP4A | PC44 | CF124 | N72 ( +) | PC47 | TP4D | TP4B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Начальная магнитная проницаемость при 25°C | μi | 2300 | 2300 | 2400 | 2400 | 2500 | 2500 | 2500 | 2500 | 2500 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Индукция насыщения при 25°C | BSAT мТл | 510 | 510 | 510 | 510 | 490 | 480 | 530 | 520 | 530 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Уровень напряжённости магнитного поля | H кА/м | 1 | 1,2 | 1,194 | 1,194 | 1 | 1,2 | 1,194 | 1,194 | 1,194 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мощность потерь, при 100°C, 100мТл, 100кГц | PV кВт/м 3 | 50 | 45 | 40 | 30 | — | 70 | 40 | 30 | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мощность потерь, при 100°C, 200мТл, FTEST | PV кВт/м 3 | 350 | 300 | 300 | 300 | 130 | 540 | 250 | 250 | 460 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тестовая частота измерения | FTEST кГц | 100 | 100 | 100 | 100 | 25 | 100 | 100 | 100 | 100 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Рекомендуемый диапазон рабочих частот | ΔF кГц |
Наименование материала | TP4F | 3F3 | TP4G | TPB22 | TPW33 | |||||||||||||||||||||||||||||
Начальная магнитная проницаемость при 25°C | μi | 1800 | 2000 | 2000 | 2200 | 3300 | ||||||||||||||||||||||||||||
Индукция насыщения при 25°C | BSAT мТл | 520 | 440 | 530 | 540 | 530 | ||||||||||||||||||||||||||||
Уровень напряжённости магнитного поля | H кА/м | 1,194 | 1,2 | 1,194 | 1,194 | 1,194 | ||||||||||||||||||||||||||||
Мощность потерь, при 100°C, 100мТл, 100кГц | PV кВт/м 3 | 35 | 80 | 40 | 40 | 40(80°C) | ||||||||||||||||||||||||||||
Мощность потерь, при 100°C, 50мТл, FTEST | PV кВт/м 3 | 210 | 150 | 210 | 190 | 220(80°C) | ||||||||||||||||||||||||||||
Тестовая частота измерения | FTEST кГц | 500 | 400 | 500 | 500 | 500 | ||||||||||||||||||||||||||||
Рекомендуемый диапазон рабочих частот | ΔF кГц |
Наименование материала | 3R1 | |
Начальная магнитная проницаемость при 25°C | μi | 800 |
Индукция насыщения при 25°C | BSAT мТл | 410 |
Уровень напряжённости магнитного поля | H кА/м | 1,2 |
Мощность потерь, при 100°C, 100мТл, 100кГц | PV кВт/м 3 | 550 |
Мощность потерь, при 100°C, 200мТл, FTEST | PV кВт/м 3 | 450 |
Тестовая частота измерения | FTEST кГц | 30 |
Рекомендуемый диапазон рабочих частот | ΔF кГц | 100 |
Температура Кюри | TC °C | 230 |
Удельное сопротивление при 25°C | ρ Ωм | 1000 |
Производитель | FXC |
Символом (+) отмечены новые материалы.
Символом (-) отмечены материалы, которые снимаются с производства.
Подробные технические характеристики материалов и ассортимент предлагаемых изделий можно изучить в каталогах продукции производителей:
CF (Cosmoferrites, Ltd), EPC (EPCOS A.G.), FXC (Ferroxcube International Holding B.V.), TDK (TDK Corporation), TDG (TDG Holding Co., Ltd).
- Феромоны для мужчин что это
- какое дерево хуже всего горит