Ферментация хлеба на закваске что это

О магии ферментации хлеба

Старинный метод приготовления хлеба

До конца XIX века человечество не знало о существовании дрожжей. Тем не менее люди как-то обходились без них в быту. И в то время пивовары варили пиво, а пекари пекли разные булки-бублики-хлеба. Всё это было возможно благодаря активно применявшимся в те времена процессам естественной ферментации, запускаемым без участия других организмов.

Получение хлебной закваски, состоящей из натуральных дрожжей и молочной кислоты, — первый и обязательный этап в приготовлении хлеба по традиционному старинному способу. В ходе естественного процесса ферментации муки образуется углекислый газ, благодаря которому хлебное тесто приобретает способность подниматься без добавления культивированных дрожжей.

Ферментация хлеба на закваске что это

Самовыращенные в закваске дрожжи производят ферменты, способные катализировать процесс гидролиза в глютене муки, иными словами способствуют разрушению сложных белковых связей проблемного глютена. Гидролиз в этом случае представляет собой разрыв длинно-цепочечных связей на более короткие — пептиды и аминокислоты.

У хлеба на закваске есть и другие бонусы. Подобно другим процессам ферментации, бактерии, присутствующие в закваске (лактобациллы), «поедают» крахмал (углеводы) из муки. В результате получается продукт с пониженным содержанием крахмала (углеводов), что благоприятно сказывается на уровне сахара в крови. Таким образом лактобациллы закваски, с использованием которых приготовлен хлеб, не только придают ему особый вкус и желаемую текстуру, но и превращают его в своего рода «лекарство», к тому же способствующее заживлению повреждённых стенок кишечника. А присутствие молочной кислоты защищает испеченный на хлебной закваске продукт от преждевременной порчи (развития плесени).

Взращивание бактерий в количестве, необходимом для подъёма буханки хлеба, — процесс весьма продолжительный и может занимать от 3-х до 10-ти дней. Впоследствии готовая закваска добавляется к муке вместе с другими ингредиентами для теста.

Долгое время такой метод приготовления хлеба оставался единственным, способным заставить хлебное тесто подниматься. К сожалению, с развитием крупных промышленных пекарных производств этот ценный метод был вытеснен более доходными скоростными приёмами изготовления хлеба и получил титул «устаревшего». Однако «хорошо забытое старое» в последнее время становится всё более востребованным, в том числе и среди людей, имеющих не простые отношения с глютеном.

Зерновые, так же как и бобовые, содержат фитиновую кислоту в целом зерне, но больше всего в его оболочках. Эта кислота соединяется с некоторыми минералами, присутствующими в кишечнике, образуя нерастворимые фитаты. Это препятствует всасыванию минералов в нашем организме, таких как цинк, железо, магний, медь и фосфор (процесс деминерализации). К счастью, под действием фитазы (фермента, который активируется в закваске) фитиновая кислота разрушается. Чем выше процент очистки муки, тем больше содержание фитиновой кислоты. Чем больше тесто ферментируется, тем больше у фитазы закваски времени для высвобождения минералов из связи с фитиновой кислотой. Кроме того, процесс брожения теста представляет собой как бы процесс пищеварения, который начинается за пределами желудка. (Материалы Википидии).

Результаты проведённых исследований дают основания предположить, что в таком виде аминокислоты из глютена не представляют одинаково большой опасности для людей с непереносимостью или чувствительностью к нему. Бактерии в процессе приготовления хлеба как бы берут на себя задачу по расщеплению глютена пшеницы (или других зерновых культур) на более мелкие фрагменты, частично выполняют работу, обычно отводимую пищеварительному тракту.

В 2011 году был проведён клинический эксперимент по выявлению влияния процесса заквашивания на расщепление глютена в пшеничной муке и его воздействия на организм больных целиакией. В эксперименте принимали участие 16 человек с диагнозом глютеновая энтеропатия. Всех участников распределили на 3 группы. Эксперимент продолжался в течение 60 дней. Контроль осуществлялся по маркерам аутоиммунной реакции (анализу крови в промежутке 30 дней и 60 дней и биопсии тонкого кишечника по окончании эксперимента). Четыре участника из первой группы были «сняты с дистанции», поскольку по ходу эксперимента у них были зафиксированы симптомы ухудшения болезни.

Ферментация хлеба на закваске что это

Результаты эксперимента оказались таковы:

Таким образом было показано положительное действие хлебной закваски на снижение токсичности глютена.

На основании полученных экспериментальных данных всё ещё рано судить о том, насколько опасно (или безопасно) для людей с целиакией или повышенной чувствительностью к глютену включать в рацион пшеничный хлеб, приготовленный по старинному методу заквашивания. Предлагаю оставить решать эту задачу для учёных-экспериментаторов и не ставить опыты на себе. Но многих из нас описанные выше факты могут заинтересовать или даже вдохновить на опробование нового, хорошо забытого старого способа приготовления хлеба на закваске из безглютеновых злаков.

Напомню, что называем мы их безглютеновыми условно, потому как любое зерно содержит в себе белок глютена. В одних зерновых его может находиться больше («глютеновые» – пшеница, рожь, ячмень), а в других («безглютеновые» пшено, рис и т.д., а также незлаковые гречка и кинва) — меньше (не столь опасное количество). Понятие глютен включает в себя более 400 видов аминокислот, разных по строению и степени агрессивного воздействия на ЖКТ и иммунную систему человека.

По сравнению с обычным способом, старинный метод приготовления хлеба, основанный на процессе гидролиза — длительной ферментации зерновых культур, куда более полезен. Такой хлеб не только вкусен, но позволяет облегчить пищеварительные процессы и укрепить иммунную систему организма, отчасти благодаря естественным пре- и пробиотикам. опубликовано econet.ru

Автор: Ирина Блинкова-Бэйкер

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Источник

Почему хлеб на закваске — самый полезный хлеб

Хлеб на закваске (опаре) имеет давнюю историю, которая частично была забыта. Но в последние годы популярность этого продукта длительной ферментации растёт.

Многие считают, что хлеб на закваске полезнее и вкуснее обычного хлеба из магазина. Ещё говорят, что заквасочный хлеб легче переваривается и нормализует уровень сахара в крови.

Но есть ли правда в этих утверждениях?

Содержание

Что такое хлеб на закваске

Заквасочный метод — древнейший способ ферментации зерна. В классической истории считается, что хлеб появился в Древнем Египте около 1500 г до н.э., распространился по другим странам и до прошлого столетия выпекался только с использованием диких дрожжей (закваски). Но в начале 20 века с развитием науки, люди стали применять пекарские дрожжи, произведённые промышленным способом.

Тесто на закваске поднимается под действием ферментов и образования углекислого газа.

В традиции разных стран ферментация теста всегда происходила на основе «диких дрожжей» и молочнокислых бактерий. И те и другие в достаточном количестве присутствуют в зерновой муке.

Дикие дрожжи более устойчивы к кислой среде, чем их аналог — хлебопекарные дрожжи. Это свойство позволяет им работать в гармонии с молочнокислыми бактериями и помогать тесту подняться.

Ферментация хлеба на закваске что это

Молочнокислые бактерии также хорошо работают в таких продуктах, как йогурт, кефир, сыр, квашеная капуста, кимчи, соевые бобы натто.

Итак, смесь диких дрожжей, молочнокислых бактерий, муки и воды при правильной обработке даёт закваску. Она ферментирует сахара в тесте, помогая хлебу подняться и обрести характерный вкус.

Заквашивание хлеба занимает гораздо больше времени, чем брожение и подъём теста для выпечки других видов хлеба. Такой длительный процесс помогает обрести мякиш своеобразной текстуры. Например, у чисто пшеничного хлеба он получается узорчатым и дырявым.

По сей день изготовление хлеба опарным способом остаётся популярным в странах Балтии, Средиземноморья и Ближнего Востока. В России мода на него тоже возвращается.

Большинство видов хлеба в магазине, даже с пометкой «на закваске», выпекают с использованием закваски и коммерческих хлебопекарных дрожжей, сокращая время ферментации и брожения. Это снижает их пользу для здоровья, но всё же по сравнению с хлебом исключительно на дрожжах, это более предпочтительный вариант. Покупка хлеба в ремесленных пекарнях и у частных пекарей увеличивает вероятность того, что вы получите настоящий заквасочный хлеб.

Питательная ценность хлеба на закваске

Питательный состав заквасочного хлеба зависит от вида муки, используемой для его приготовления, будь то цельнозерновая или рафинированная.

Примерная питательная ценность 56 граммов хлеба на закваске из цельносмолотой муки:

Кроме того, закваска обладает некими особыми свойствами, поэтому хлеб на ней превосходит по питательной ценности многие другие виды хлеба.

Ферментация хлеба на закваске что это

Особые свойства хлеба на закваске

Хотя опарный хлеб производят из той же муки, что и обычный, процесс брожения (ферментации) улучшает его питательную ценность.

Любой цельнозерновой хлеб содержит достаточное количество минеральных веществ, включая калий, фосфор, магний и цинк. К сожалению, фитиновая кислота активно препятствует их усвоению. Фитаты в её составе считаются «антинутриентами», так как связываются с минералами, уменьшая способность организма поглощать их.

Интересно, что молочнокислые бактерии в закваске снижают pH хлеба, что способствует деградации фитатов. Соответственно, хлеб длительной ферментации имеет гораздо меньшее содержание фитиновой кислоты — по данным некоторых исследований на 24-50% меньше по сравнению с быстрым дрожжевым брожением. Низкие уровни фитатов повышают усваиваемость минералов, это один из аргументов в пользу большей питательной ценности хлеба на закваске.

Кроме того, исследования показали, что молочнокислые бактерии обладают способностью высвобождать антиоксиданты во время брожения закваски.

Более длительное брожение помогает улучшить вкус и текстуру цельнозернового хлеба. Эти свойства заставляют людей делать выбор в пользу ремесленного хлеба и, тем самым, потреблять больше клетчатки и питательных веществ.

Хлеб на закваске легче переваривается

Опарный хлеб легче переваривается, чем хлеб на дрожжах. Исследователи полагают, что это отчасти может быть связано с содержанием пребиотиков и пробиотическими свойствами.

Пребиотики — это неперевариваемые волокна, которые питают полезные бактерии в вашем кишечнике, в то время как пробиотики — это и есть те самые бактерии, что содержатся в определённых пищевых продуктах и добавках. Регулярное потребление пре- и пробиотиков поможет улучшить здоровье кишечника и облегчить пищеварение.

Процесс ферментации сильнее влияет на клейковину, чем хлебопекарные дрожжи. Клейковина (глютен)— это тип белка, содержащийся в определённых злаках. Люди, чувствительные к глютену или страдающие аллергией на глютен, могут испытывать проблемы с пищеварением — боль, вздутие, диарею, запоры. Под действием заквасочных культур глютен расщепляется и становится практически безопасным для людей с его непереносимостью.

Однако, следует учесть, что процесс ферментации приводит к разрушению глютена, но не на 100%. Поэтому те, кто страдает тяжёлой формой непереносимости глютена — целиакией, — не должны употреблять этот продукт.

Ферментация хлеба на закваске что это

Хлеб на закваске помогает контролировать уровень сахара в крови

Причина, по которой хлеб длительной ферментации благотворно влияет на уровень сахара в крови, ещё не полностью изучена. Учёные полагают, что брожение может менять структуру молекул углеводов. Это снижает гликемический индекс хлеба (ГИ) и замедляет скорость поступления сахаров в кровоток.

ГИ — это мера того, как пища влияет на уровень сахара в крови. Продукты с более низким гликемическим индексом с наименьшей вероятностью вызовут резкий всплеск этого уровня.

Также кисломолочные бактерии во время брожения теста производят органические кислоты. Некоторые исследователи считают, что эти кислоты могут помочь замедлить желудок и предотвратить всплеск сахара точно также, как это делает уксусная кислота.

Ферментация хлеба на закваске что это

Рожь имеет более низкий процент клейковины в составе, поэтому также рекомендуется тем, кто контролирует уровень сахара в крови.

Существуют исследования, доказывающие, что те, кто употребляет хлеб на закваске, имеющие более низкий уровень глюкозы, по сравнению с теми, кто есть обычный хлеб.

Как испечь хлеб на закваске

Свежий заквасочный хлеб можно приготовить дома из 3 простых ингредиентов — муки, воды и соли.

Краткая инструкция по выпечке пшеничного хлеба на закваске

*Получите полную бесплатную инструкцию по выпечке хлеба!

Имейте в виду, что изготовление закваски займёт 5-7 дней. Не торопите этот процесс, так как зрелая закваска — это качественный ингредиент, который придаст вашему тесту отличный вкус и поможет ему подняться.

Каждый раз вы будете использовать только часть закваски, чтобы испечь хлеб. Остальную часть вы будете подкармливать минимум 1 раз в неделю и хранить в холодильнике, либо вести её на столе и кормить ежедневно. Второй вариант — вести закваску в тепле, и кормить её раз в сутки.

Источник

Закваска и ферментация зерновых продуктов с точки зрения питания

[ ПЕРЕВОД СТАТЬИ ] Кайса Поутанен, Лаура Фландер, Кати Катина

VTT Технический исследовательский центр Финляндии, Финляндия

Университет Куопио, Исследовательский центр продовольствия и здоровья, Отдел клинического питания, Куопио, Финляндия

Ферментация хлеба на закваске что это

Микробиология хлеба на закваске

Использование закваски для улучшения вкуса, структуры и стабильности хлебобулочных изделий обретает все больший интерес. Ферментация зерна также демонстрирует значительный потенциал в улучшении и создании питательных качеств и влиянии пищевых продуктов и ингредиентов на здоровье.

Помимо улучшения органолептических характеристик цельнозерновых, богатых клетчаткой или безглютеновых продуктов, закваска может также активно замелять усвояемость крахмала, что приводит к снижению гипогликемического индекса, изменяет уровень и биодоступность биологически активных соединений и улучшает биодоступность минералов. Ферментация зерна может образовывать неусвояемые полисахариды, или изменять доступность волокон зерна для кишечной микрофлоры. Было также высказано мнение о том, что деградация глютена делает хлеб пригодным для употребления больными целиакией.

Изменения в матрице зерновых, потенциально приводящие к улучшению качества питания, многочисленны. Они включают образование кислоты, что вероятно замедляет усвояемость крахмала, а также изменяют уровень рН до значений, которые благоприятствуют действию некоторых эндогенных ферментов, тем самым изменяя биодоступность минералов и фитохимических элементов. Это особенно полезно в продуктах, богатых отрубями для доставки минералов и потенциально защитных соединений в кровеносную систему. Действие ферментов во время ферментации также вызывает гидролиз и солюбилизацию зерновых макромолекул, таких как белки и полисахариды клеточной стенки. Это изменяет текстуру продукта, которая может влиять на всасывание питательных и непитательных веществ. Новые биоактивные соединения, такие как пребиотические олигосахариды или другие метаболиты, могут также образовываться при ферментации зерновых.

Ферментация зерна является одним из старейших биотехнологических процессов и уходит корнями во времена Древнего Египта, где и пиво, и хлеб изготавливались при помощи дрожжей и молочнокислых бактерий. Спонтанная ферментация вероятно использовалась в самые первые дни и просто активировала натуральные микробы в измельченном зерне. В недавнем прошлом использование закваски стало более систематическим, и микробные культуры были разработаны и поддерживались сохранением части фермента для дальнейшего использования.

Первыми причинами использования ферментации в выпечке были заквашивание, образование аромата и улучшение стабильности. Постепенно с развитием промышленной выпечки тенденция использования белой пшеничной муки и пекарских дрожжей стала основной практикой по всему миру. Искусство закваски и ферментации в наши дни снова обретает признание, и сейчас распространенной практикой становится создание специальных культур и контроль процесса ферментации. Их использование в выпечке (Брюммер и Лоренц, 2003; Кларк и Арендт, 2005) и влияние на текстуру хлеба (Арендт и др., 2007) и аромат (Ур-Рехман и др., 2006) недавно были исследованы. В то же время осведомленность и знания о действиях питательных веществ ферментации зерна стали обширнее, как ранее указывалось Катиной и др. (2005).

В ходе ферментации зерна длящейся, как правило, до 24 ч при умеренной температуре, метаболическая активность присутствующих микроорганизмов вступает во взаимодействие с компонентами зерна. Молочнокислые бактерии вырабатывают молочные и уксусные кислоты, делая значение рН, как правило, ниже рН 5. Дрожжи производят углекислый газ и этанол. Взаимодействие между дрожжами и лакто бактериями важно для метаболической активности закваски. Изменяющиеся условия в ходе ферментации способствуют активации присутствующих ферментов, а изменение pH выборочно повышает производительность некоторых ферментов, таких как амилаза, протеаза, гемицеллюлаза и фитаза. Спровоцированные ферментами изменения вместе с микробными метаболитами вызывают появление технологических и питательных эффектов ферментированных зерновых продуктов.

Ферментация закваски может влиять на качество питания, уменьшая или увеличивая уровни соединений, а также повышая или замедляя биодоступность питательных веществ (рис. 1).

2. Улучшение органолептических качеств цельнозернового и богатого клетчаткой хлеба

Появляется все больше доказательств того, что употребление цельнозерновых продуктови зерновых волокон защищает от хронических заболеваний, таких как диабет 2 типа и сердечно-сосудистые заболевания (Меллен и др., 2008; де Мунтер и др., 2007). Поскольку потребительский спрос на здоровую пищу растет, нужно работать над развитием зерновых продуктов с высоким содержанием клетчатки и цельного зерна. Обработка этих сырьевых материалов сталкивается с задачами в отношении органолептических качеств получаемых продуктов. С другой стороны, в древние времена закваска, как правило, использовалась в обработке нерафинированной муки. Внешние слои зерна богаты пищевыми волокнами, фитохимическими элементами, витаминами, минералами, а также эндогенными ферментами. Поэтому фракция отрубей предлагает множество возможностей для модификации ферментацией закваски (рис. 3).

Закваска является ключевым элементом в традиционной выпечке ржаного хлеба, где она в значительной степени обеспечивает технологические характеристики, вкус и текстуру. Цельнозерновой ржаной хлеб не может быть изготовлен без помощи процесса ферментации. Многие из наблюдаемых изменений, например, в деградации пищевых волокон (Босков Хансен и др., 2002) или солюбилизации (Катина и др., 2007а), могут быть объяснены деятельностью эндогенных ферментов, особенно ксиланазы. Во время ферментации ржаной закваски эндогенные ржаные протеазы, особенно аспарагиновые протеазы, гидролизуют ржаные белки, особенно секалины. Они генерирует аминокислоты и малые пептиды, которые выступают в качестве прекурсоров ароматизаторов (Туукканен и др, 2005).

Ферментация отрубей пшеницы (Хассан и др., 2008; Салменкаллио-Марттила et al., 2001) и ржи (Катина и др., 2007a) проявила себя эффективным методом предварительной обработки отрубей как с целью улучшения органолептических качеств хлеба, содержащего отруби, так и с целью снижения антипитательных факторов, таких как фитиновая кислота, для того, чтобы улучшить биодоступность минералов (Хассан и др., 2008; Лиожер и др., 2007). Предварительная ферментация отрубей с дрожжами и молочнокислыми бактериями увеличила объем буханок хлеба (рис. 2) и мягкость мякиша во время хранения (Салменкаллио-Мартила и др., 2001; Катина и др., 2006) (рис. 3).

3. Биодоступность минералов

Цельнозерновые продукты являются хорошим источником минералов в рационе, в том числе кальция, калия, магния, железа, цинка и фосфора. Считается, что магний особенно способствует защитному эффекту цельнозерновых продуктов на организм от диабета 2 типа. Однако биодоступность минералов может быть ограничена в связи с наличием фитата, мио-инозитол гексафосфата. Содержание 3 – 22 мг/г фитиновой кислоты было обнаружено в зернах (Гарсия-Эстепа и др., 1999). Фитиновая кислота сконцентрирована в алейроновом слое зерна и обладает сильной хелатообразующей способностью. Формируя нерастворимые комплексы с пищевыми катионами, она ухудшает усвоение минералов организмом человека. Фитаза способна дефосфорилировать фитат, образуя свободный неорганический фосфат и эфиры инозитол фосфата, которые имеют меньшую способность влиять на растворимость и биодоступность минералов.

С другой стороны, промышленные пекарские дрожжи продемонстрировали активность фитазы (Турк и др., 2000), и большое разнообразие активности фитазы было обнаружено в традиционных заквасочных стартерах, содержащих дрожжи и молочнокислые бактерии (Чауи и др., 2003; Реале и др., 2004). Также было предположено, что штаммы дрожжей с высоким содержанием фитазы обладают потенциалом носителей фитазы в желудочно-кишечном тракте (Харальдссон и др., 2005).

Ферментативная деградация фитата зависит от многих параметров ферментации: присутствующей активности фитазы, размера частиц муки, кислотности, температуры, времени и содержания воды (Хариндер и др., 1998; Де Ангелис и др., 2003). Ферментация закваски оказалась эффективной в солюбилизирующих минералах и в цельнозерновой пшеничной муке, но менее эффективной с отрубями. Солюбилизация кальция и железа была эффективной в мелко измельченных частицах отрубей, в то время как солюбилизация не была обнаружена в грубых отрубях (Лиожер и др., 2007)

Лопес и др. (2001) показали, что предварительная ферментация отрубей с молочнокислыми бактериями увеличила разрушение фитата до 90%) и увеличила растворимость магния и фосфора. Усвоения цинка, магния и железа было также выше у крыс, которых кормили хлебом на закваске (Лопес и др., 2003).

4. Уровень и стабильность витаминов и биологически активных соединений

Давно известно, что зерновые продукты являются важным источником витаминов, таких как тиамин, витамин Е и фолиевая кислота. В последнее время знания о других биологически активных соединениях в зерне существенно расширились, так как люди предположили, что они являются одним из факторов, способствующих защитным свойствам цельнозерновых продуктов (Славин, 2003). Внешние слои зерна содержат гораздо более высокие уровни фитохимических соединений, таких как феноловые кислоты, алкилрезорцинолы, лигнин, фитостерол, токол и фолиевая кислота, чем его внутренние части (Лиукконен и др., 2003; Маттила и др., 2005). Различия в разновидностях этих соединений в европейских пшенице, ржи, овсе и ячмене были недавно проанализированы, и результаты показывают хорошую перспективу для развития сортов с оптимизированными уровнями (Ward и др., 2008). Обработка может уменьшать или увеличивать уровни, а также изменять биодоступность этих соединений, как указывает Славин и др. (2000), и феноловых соединений ржи, описанных совсем недавно Бондиа Понс и др. (2009).

Результаты исследований влияния ферментации закваски и зерновых до сих пор немногочисленные, но они в значительной степени показывают, что этот тип биообработки повышает доступность этих соединений в кровообращении человека. Ферментация дрожжей неоднократно показывала увеличение содержания фолиевой кислоты в процессе выпечки пшеницы (Карилуото и др., 2004) и ржи (Лиукконен и др., 2003; Карилуото и др., 2004, 2006; Катина и др., 2007а). В ферментации ржи уровень фолиевой кислоты увеличивался более чем в 2 раза (Лиукконен и др., 2003). Карилуото и др. (2006) сравнили способность различных дрожжей и молочнокислых бактерий влиять на содержание фолиевой кислоты в ржаной закваске и пришли к выводу, что влияние бактерий закваски минимально, однако синтез фолиевой кислоты дрожжами может увеличить содержание более чем в три раза в лучшем случае.

Сообщалось также, что содержание тиамина снижалось в процессе выпечки больше в пшеничных продуктах, чем в ржаной выпечке (Мартинес-Вилалуега и др., 2009), но увеличивалось во время ферментации дрожжей, особенно после длительной ферментации (Тернс и Фреунд, 1988; Батифаулиер и др., 2005). Таким образом, этап ферментации может повлиять на общее сохранение витаминов в процессе выпечки. Быстрый процесс выпечки также показал уменьшение содержания витамина B1 в цельнозерновой выпечке, однако длительная ферментация дрожжей или закваски сохраняла его. Выпечка цельнозернового хлеба с дрожжами (от замешивания до готового хлеба) с длительной ферментацией, привели к 30% обогащению рибофлавином. Использование смешанных условий ферментации (дрожжи плюс закваска) не имело синергетического эффекта на уровень витамина B (Батифаулиер и др., 2005). Наблюдались потери витамина Е во время приготовления закваски и замешивания теста (Веннермарк и Джагерстад, 1992), а также Лиукконен и др. (2003) обнаружили снижение содержание токоферола и токотриенола. Это может быть связано с чувствительностью к контакту с воздухом.

Ферментация демонстрировала усиление антиокислительного эффекта (активность захвата свободных радикалов фенилпикрилгидразила) в извлеченной метанолом фракции ржаной закваски одновременно с увеличением уровней легко извлекаемых феноловых соединений (Лиукконен и др., 2003, табл. 1). Ферментация ржаных отрубей с дрожжами увеличивает уровень свободной феруловой кислоты (Катина и др., 2007а). Антиоксидантная способность традиционного ржаного хлеба, выпекаемого с закваской, оказалась намного выше, чем у обычного хлеба из белой пшеницы, самые высокие значения были обнаружены у хлеба, приготовленного из цельнозерновой муки (Мичалскаи др, 2007; Мартинес-Виллалуенга и др., 2009). Недавно было обнаружено, что пшеничные отруби, подвергнутые биообработке с ферментацией дрожжей, в совокупности с гидролитическими ферментами клеточной стенки увеличили биодоступность феноловых соединений, а также кишечного 3-фенилпропилонового метаболита в хлебе (Матео Ансон и др.).

5. Влияние закваски на усвояемость крахмала

Пищевые углеводы представляют собой основной источник глюкозы плазмы. Увеличение количества быстро усваиваемых углеводов в рационе повышает уровень глюкозы в крови, особенно после приема пищи. Основные источники углеводов в западном рационе содержат быстро усваиваемый крахмал. Следовательно, многие распространённые продукты, содержащие крахмал, например, хлебобулочные изделия, сухие завтраки, картофельные продукты и закуски, вызывают сильные гликемические реакции. Существуют весомые признаки того, что большое количество быстро доступной глюкозы, полученной из крахмала и свободных сахаров в современном рационе (продукты с высоким гликемическим индексом, GI и высокий индексом инсулина, II), ведет к периодически повышенным концентрациям глюкозы и инсулина в плазме крови, которые наносят ущерб здоровью (Баркли и др., 2008).

Макро-и микроструктура зерновых продуктов имеют сильное влияние на усвояемость крахмала. Особенности характеристики крахмала как такового имеют решающее значение для реакции глюкозы. Крахмалы, богатые амилозой, более устойчивы к амилолизу, чем восковые или нормальные крахмалы. В пробирке нативные крахмалы гидролизуются очень медленно, и в ограниченной степени амилазой (Бьорк и др., 1994). В результате желатинизации во время обработки скорость амилолиза значительно возрастает (Лауро и др., 2000). Таким образом, чем больше желатизирован крахмал, тем быстрее он будет усваивается (Остман, 2003). Во многих распространенных крахмальных продуктах, в таких как обычный пшеничный хлеб, крахмал очень желатизирован, и структура продукта очень пористая, что приводит к быстрой деградации крахмала в тонком кишечнике и очень быстрому скачку уровня глюкозы в крови (высокий GI).

Средства для замедления усвояемости крахмала в продуктах, изготовленных на основе пшеничной муки, таких как хлеб, печенье и хлопья для завтрака малочисленны, если исключить добавление высокого количества ядер в натуральном виде из-за получения продукта плохого качества и несоответствия предпочтениям потребителей. Для пшеничного хлеба использование технологии предварительной ферментации (закваски) или добавление растворимых волокон в недавнем исследовании предлагаются в качестве единственного средства снижения GI (Фардет и др., 2006).

Ферментация матрицы пшеничной и ржаной муки с молочнокислыми бактериями (процесс закваски), как показали наблюдения, снижала GI цельнозернового ячменного хлеба (Лильеберг и др., 1995; Остман, 2003) и пшеничного хлеба (Де Ангелис и др., 2006; Маиоли и др., 2008) и индекс инсулина (II) ржаного хлеба с различным содержанием клетчатки (Юнтунен и др., 2003). Было предложено несколько механизмов обработки закваски для снижения усвояемости крахмала. Эффект преимущественно возникает из-за образования органических кислот, особенно молочной кислоты во время ферментации. Физиологические механизмы мгновенного воздействия кислот различаются; в то время как молочная кислота понижает скорость усвоения крахмала в хлебе (Лильеберг и др., 1995), уксусная и пропионовая кислоты в свою очередь увеличивают скорость опорожнения желудка (Лильеберг и Бьорк, 1998). Было установлено, что химические изменения, происходящие во время ферментации закваски, уменьшали степень желатинизации крахмала (Oстман, 2003), что частично объясняло снижение усвояемости ферментированных зерновых продуктов на закваске.

На уровне продукта целостность тканей, пористость и структура крахмала являются важными характеристиками, влияющими на гликемические реакции. Ржаной хлеб, изготовленный из цельнозерновой или белой ржаной муки с разным содержанием клетчатки, вызывал более низкую инсулиновую реакцию, чем белый пшеничный хлеб, когда размер порции пищи был стандартизирован для обеспечения 50 г крахмала (Юнтунен и др, 2003). Оба типа ржаного хлеба были запечены с процессом заквашивания, 40% общего количества ржаной муки предварительно ферментировалось перед добавлением в тесто. Результаты позволили предположить, что со всеми видами ржаного хлеба независимо от их содержания отрубей, требовалось меньше инсулина, чтобы регулировать уровень сахара в крови с тем же количеством крахмала по сравнению с обычным пшеничным хлебом. Влияние, вероятно, связано с более твердой и менее пористой структурой ржаного хлеба и с наличием органической кислоты, сформированной во время ферментации закваски (Аутио и др., 2003).

Могут существовать и другие механизмы закваски для регулирования GI/II продуктов. Например, pH-зависимый протеолиз обычно происходит во время ферментации закваски (Ганзл и др., 2008) и образует значительное количество пептидов и аминокислот в закваске. Полученная в результате повышенная концентрация аминокислот и пептидов в ферментированных зерновых может играть роль в регулировании метаболизма глюкозы (Нильссон и др., 2007). Кроме того, недавние результаты показывают, что ферментация закваски увеличивает количество свободных фенольных соединений (Катина и др., 2007а), которые могут также иметь влияние на снижение GI/II (Соломон и Бланнин, 2007).

Использование закваски, однако, является сложной технологией для снижения GI/II из-за требуемого низкого рН (рН 4,1 – 4,5). Что касается продуктов на основе пшеницы, этот рН, как правило, слишком низок, чтобы быть приемлемым для потребителей, поэтому требуются средства для повышения эффективности ферментации с сохранением более высоких уровней рН.

6. Закваска и целиакия

Целиакия является хроническим воспалительным заболеванием и хаактеризуется повреждением слизистой оболочки тонкого кишечника, вызванным фракциями глиадина глютена пшеницы и аналогичными спирторастворимыми белками (проламинами) ячменя и ржи у генетически восприимчивых субъектов (Маки и Коллин, 1997; Фазано и Катасси, 2001). Болезнь, все чаще диагностируемая во всем мире, может контролироваться лишь путем поддержания полностью безглютеновой диеты. Рис, кукуруза, сорго, просо, тефф, гречка, амарант и киноа пригодны для употребления больными целиакией, которые зачастую страдают также от недостатка пищевых волокон и недостаточного усвоения минералов. Овес имеет немного другие проламины (авенины), и недавно был одобрен в качестве ингредиента в безглютеновых продуктах с маркировкой EC (если возможно избежать перекрестной контаминации от пшеницы, ячменя и ржи, и содержание глютена овсяного продукта остается 7. Закваска и здоровье кишечника

Микрофлора кишечника является частью человеческого метаболизма питательных веществ, и вносит значительный вклад в поддержание функционирования обширной и активной иммунной системы. Последние данные показывают, что микробные расстройства играют важную роль в развитии метаболических заболеваний. Ферментация закваски может влиять на здоровье кишечника несколькими способами: 1) модуляция комплекса пищевого волокна и его последующая модель ферментации, 2) производство экзополисахаридов с пребиотическими свойствами и 3) потенциальное предоставление метаболитов из ферментации молочнокислых бактерий, влияющих на микрофлору кишечника.

Взаимодействие между факторами питания, микрофлорой кишечника и метаболизмом организма все чаще демонстрирует свою важность в поддержании гомеостаза и здоровья (Кани и Делзенне, 2007), однако исследование роли волоконной структуры и фитохимических элементов в кишечной микрофлоре находятся на ранних этапах. Физиологические эффекты пищевых волокон зависят от их физико-химических свойств, на которые в основном влияют размеры частиц, архитектура клеточной стенки, растворимость, степень полимеризации и замещения, распределение боковых цепей и

образование поперечных связей полимеров. Недавние исследования демонстрируют эффективность ферментации в увеличении биодоступности соединений, связанных с волокнами, таких как свободная феруловая кислота. В пшеничных отрубях феруловая кислота – самое обильное феноловое соединение. Феруловая кислота является структурным компонентом клеточных стенок, перекрестносшивающих полисахаридов клеточной стенки. Так как большая часть феруловой кислоты ковалентно связана со структурами клеточных стен, ее биодоступность в физиологических условиях, вероятно, низка. Результаты недавних исследований (Матео и др.; Наполитано и др., 2009) показали, что биодоступность феруловой кислоты может быть увеличена обработкой зерновых отрубей и волокон с ферментацией и ферментами. Мы также показали, что высвобождение лигнанов и феноловых кислот, связанных с пищевыми волокнами, а также других фитохимических элементов алейронового слоя ржаного зерна может регулироваться ферментацией (Катина и др., 2007а,b).

EPS заквасочного происхождения также дают возможность улучшить здоровье кишечника. Определенные молочнокислые бактерии производят EPS, такие как глюкан, фруктаны, глюкозо-и фруктоолигосахариды, которые имеют потенциально полезные свойства для кишечника, способствующие укреплению его здоровья. Кишечные микробы метаболизируют декстран в пропионовую кислоту, которая имеет несколько полезных эффектов (Джан и др., 2006), такие как снижение уровня холестерина и триглицерида, повышенная чувствительность к инсулину. Леван, образуемый Lactobacillus sanfranciscensis, обладает пребиотическими свойствами (Коракли и др., 2002). Глюкозоолигосахариды (Сео и др., 2007) и фруктоолигосахариды являются EPS заквасок, имеющими предбиотические свойства (Тикин и Ганзл, 2005). Образование олиго-и полисахаридов с пребиотическим потенциалом также было продемонстрировано видами Lactobacillus reuteri LTH5448 и Weissella cibaria 10М в закваске из сорго ( Шваб и др., 2008).

Заявленные преимущества для здоровья большинства пробиотических ферментированных продуктов выражаются либо непосредственно через взаимодействие поглощенных живых микроорганизмов, бактерий или дрожжей с хозяином (пробиотический эффект), или косвенно в результате поглощения микробных метаболитов, образованных в процессе ферментации (биогенный эффект) (Стэнтон и др., 2005). Было предложено несколько пробиотических механизмов действия, хотя люди все еще далекие от их полного понимания, в т.ч. конкурентное вытеснение, конкуренция за питательные вещества и/или стимуляция иммунного ответа. Биогенные свойства ферментированных функциональных продуктов появляются благодаря микробному производству биологически активных метаболитов, таких как некоторые витамины, биологически активные пептиды, органические кислоты или жирные кислоты во время ферментации, которые продемонстрировали противогипертонические, противомикробные и иммуномодулирующие свойства в ферментации молочных продуктов (Стэнтон и др., 2005). Более того, недавние исследования позволили предположить, что элементы клеточной стенки Lactobacillus Plantarum (штамм также присутствует в заквасках) стимулируют иммунный ответ в кишечнике, а бактериальная клетка необязательно должна быть живой, чтобы создавать такой эффект (Ван Баарлен и др., 2009). Таким образом, брожение зерновых имеет хороший потенциал для стимулирования здоровья кишечника в будущем, однако исследования в этой области по-прежнему находятся на очень ранних стадиях своего равития.

8. Будущие перспективы

Закваска – технология для улучшения и диверсификации органолептических качеств хлеба, которой находят хорошее использование особенно в цельнозерновой выпечке. Понятие ферментации отрубей было введено для получения большего количества отрубей в приемлемых формах для хлебобулочных изделий с высоким содержанием клетчатки. Ферментация и производство кислоты регулярно демонстрировали биодоступность минералов. Ферментация закваски и дрожжей может также увеличить уровни биоактивных соединений, но в этом вопросе необходимо больше подтверждённых исследований. Выпечка с закваской стабильно обеспечивает получение хлеба с медленной усвояемостью крахмала и, следовательно, низкими гликемическими реакциями, и имеет потенциал улучшать текстуру безглютенового хлеба для больных целиакией.

Можно предположить, что в будущем закваска будет использована для разработки продуктов с конкретным влиянием на здоровье кишечника, например, изменения в составе или деятельности кишечной микрофлоры. Межклеточные полисахариды, образованные молочнокислыми бактериями, могут выступать в качестве селективных или функциональных субстратов для микрофлоры кишечника. Стартовые культуры сами по себе, возможно, также способствуют наличию пробиотических свойств в зерновых продуктах, особенно в продуктах без термической обработки. Новые биологически активные метаболиты могут производиться при ферментации из прекурсоров, присутствующих в сырьевых материалах. Модификация матрицы зерновых в ходе ферментации может быть использована для увеличения биодоступности биологически активных соединений. Производство биоактивных пептидов сохраняет достаточно неисследованного потенциала, который может быть выявлен использованием протеолитической деятельности окисленной зерновой системы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *