big data история появления

Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce

big data история появления

Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.

Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.

История вопроса и определение термина

Термин Big Data появился сравнительно недавно. Google Trends показывает начало активного роста употребления словосочетания начиная с 2011 года (ссылка):

big data история появления

При этом уже сейчас термин не использует только ленивый. Особенно часто не по делу термин используют маркетологи. Так что же такое Big Data на самом деле? Раз уж я решил системно изложить и осветить вопрос – необходимо определиться с понятием.

В своей практике я встречался с разными определениями:

· Big Data – это когда данных больше, чем 100Гб (500Гб, 1ТБ, кому что нравится)

· Big Data – это такие данные, которые невозможно обрабатывать в Excel

· Big Data – это такие данные, которые невозможно обработать на одном компьютере

· Вig Data – это вообще любые данные.

· Big Data не существует, ее придумали маркетологи.

В этом цикле статей я буду придерживаться определения с wikipedia:

Большие данные (англ. big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.

Таким образом под Big Data я буду понимать не какой-то конкретный объём данных и даже не сами данные, а методы их обработки, которые позволяют распредёлено обрабатывать информацию. Эти методы можно применить как к огромным массивам данных (таким как содержание всех страниц в интернете), так и к маленьким (таким как содержимое этой статьи).

Приведу несколько примеров того, что может быть источником данных, для которых необходимы методы работы с большими данными:

· Логи поведения пользователей в интернете

· GPS-сигналы от автомобилей для транспортной компании

· Данные, снимаемые с датчиков в большом адронном коллайдере

· Оцифрованные книги в Российской Государственной Библиотеке

· Информация о транзакциях всех клиентов банка

· Информация о всех покупках в крупной ритейл сети и т.д.

Количество источников данных стремительно растёт, а значит технологии их обработки становятся всё более востребованными.

Принципы работы с большими данными

Исходя из определения Big Data, можно сформулировать основные принципы работы с такими данными:

1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много – любая система, которая подразумевает обработку больших данных, должна быть расширяемой. В 2 раза вырос объём данных – в 2 раза увеличили количество железа в кластере и всё продолжило работать.

2. Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Hadoop-кластер Yahoo имеет более 42000 машин (по этой ссылке можно посмотреть размеры кластера в разных организациях). Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.

3. Локальность данных. В больших распределённых системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом – расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных – по возможности обрабатываем данные на той же машине, на которой их храним.

Все современные средства работы с большими данными так или иначе следуют этим трём принципам. Для того, чтобы им следовать – необходимо придумывать какие-то методы, способы и парадигмы разработки средств разработки данных. Один из самых классических методов я разберу в сегодняшней статье.

MapReduce

Про MapReduce на хабре уже писали (раз, два, три), но раз уж цикл статей претендует на системное изложение вопросов Big Data – без MapReduce в первой статье не обойтись J

MapReduce – это модель распределенной обработки данных, предложенная компанией Google для обработки больших объёмов данных на компьютерных кластерах. MapReduce неплохо иллюстрируется следующей картинкой (взято по ссылке):

big data история появления

MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии:

1. Стадия Map. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования – пользовательская функция применяется к каждой входной записи.

Функция map() примененная к одной входной записи и выдаёт множество пар ключ-значение. Множество – т.е. может выдать только одну запись, может не выдать ничего, а может выдать несколько пар ключ-значение. Что будет находится в ключе и в значении – решать пользователю, но ключ – очень важная вещь, так как данные с одним ключом в будущем попадут в один экземпляр функции reduce.

2. Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» – каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.

3. Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().

Функция reduce задаётся пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращённых функцией reduce(), является финальным результатом MapReduce-задачи.

Несколько дополнительных фактов про MapReduce:

1) Все запуски функции map работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

2) Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

3) Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.

4) Функция map, как правило, применяется на той же машине, на которой хранятся данные – это позволяет снизить передачу данных по сети (принцип локальности данных).

5) MapReduce – это всегда полное сканирование данных, никаких индексов нет. Это означает, что MapReduce плохо применим, когда ответ требуется очень быстро.

Примеры задач, эффективно решаемых при помощи MapReduce

Word Count

Начнём с классической задачи – Word Count. Задача формулируется следующим образом: имеется большой корпус документов. Задача – для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.

Раз имеем большой корпус документов – пусть один документ будет одной входной записью для MapRreduce–задачи. В MapReduce мы можем только задавать пользовательские функции, что мы и сделаем (будем использовать python-like псевдокод):

Функция map превращает входной документ в набор пар (слово, 1), shuffle прозрачно для нас превращает это в пары (слово, [1,1,1,1,1,1]), reduce суммирует эти единички, возвращая финальный ответ для слова.

Обработка логов рекламной системы

Второй пример взят из реальной практики Data-Centric Alliance.

Задача: имеется csv-лог рекламной системы вида:

Необходимо рассчитать среднюю стоимость показа рекламы по городам России.

Функция map проверяет, нужна ли нам данная запись – и если нужна, оставляет только нужную информацию (город и размер платежа). Функция reduce вычисляет финальный ответ по городу, имея список всех платежей в этом городе.

Резюме

В статье мы рассмотрели несколько вводных моментов про большие данные:

· Что такое Big Data и откуда берётся;

· Каким основным принципам следуют все средства и парадигмы работы с большими данными;

· Рассмотрели парадигму MapReduce и разобрали несколько задач, в которой она может быть применена.

Первая статья была больше теоретической, во второй статье мы перейдем к практике, рассмотрим Hadoop – одну из самых известных технологий для работы с большими данными и покажем, как запускать MapReduce-задачи на Hadoop.

В последующих статьях цикла мы рассмотрим более сложные задачи, решаемые при помощи MapReduce, расскажем об ограничениях MapReduce и о том, какими инструментами и техниками можно обходить эти ограничения.

Спасибо за внимание, готовы ответить на ваши вопросы.

Источник

Что такое «Big Data»?

Термин «большие данные» или «big data» начал набирать популярность с 2011 года. Сегодня его хотя бы раз слышал каждый. Проблема в том, что часто понятие используют не по определению. Поэтому давайте подробно разберемся, что это такое.

С развитием технологий количество данных стало увеличиваться в геометрической прогрессии. Традиционные инструменты перестали покрывать потребность в обработке и хранении информации. Для обработки данных, объем которых превышает сотни терабайт и постоянно увеличивается, были созданы специальные алгоритмы. Их принято называть «big data».

Сегодня информация собирается огромными объемами из разных источников: интернет, контакт-центры, мобильные устройства и т.д. Чаще всего такие данные не имеют четкой структуры и упорядоченности, поэтому человек не может использовать их для какой-либо деятельности. Для автоматизации анализа применяют технологии «big data».

Большие данные появились в 60-70 годах прошлого столетия вместе с первыми ЦОД (центры обработки данных). В 2005 году компании начали понимать масштабы создаваемого контента пользователями интернет-сервисов (Facebook, YouTube и др.). Тогда же начала работу первая платформа, предназначенная для взаимодействия с большими наборами данных, — Hadoop. Сегодня она представляет собой большой стек технологий для обработки информации. Чуть позже популярность начала набирать NoSQL — совокупность методов для создания систем управления большими данными.

Объем генерируемой информации стал увеличиваться с появлением крупных интернет-сервисов. Пользователи загружают фотографии, просматривают контент, ставят «лайки» и т.п. Вся эта информация собирается в больших объемах для дальнейшего анализа, после которого можно вносить улучшения в работу сервисов. Например, социальные сети используют большие данные для показа пользователям релевантной рекламы (то есть той, которая соответствует их потребностям и интересам) в таргете. Это позволяет соцсетям продавать бизнесу возможность проведения точных рекламных кампаний.

В самом начале статьи мы определили три основных свойства больших данных из общепринятого определения. Давайте раскроем их более подробно:

За последние несколько лет популярность больших данных увеличилась, в результате чего они получили два дополнительных свойства (характеристики): ценность и достоверность. Ценность определяется каждой компанией по-своему. Специалисты оценивают, принесет ли полученная информация пользу бизнесу. А достоверность показывает, можно ли используемым данным доверять (насколько они правдивы), ведь неточная информация может навредить компании и ее деятельности.

Большие данные несут в себе много полезной информации, на основе которой компании создают новые возможности и формируют бизнес-модели. Работа с большими данными делится на 3 этапа: интеграция, управление и анализ.

На этом этапе компания интегрирует в свою работу технологии и системы, позволяющие собирать большие объемы информации из разных источников. Внедряются механизмы обработки и форматирования данных для упрощения работы аналитиков с «big data».

Полученные данные нужно где-то хранить, этот вопрос решается до начала работы с ними. Решение принимается на основе множества критериев, главными из которых считаются предпочтения по формату и технологии обработки. Как правило, для хранения компании используют локальные хранилища, публичные или частные облачные сервисы.

Большие данные начинают приносить пользу после анализа. Это заключительный этап взаимодействия с ними. Для этого применяют машинное обучение, ассоциацию правил обучения, генетические алгоритмы и другие технологии. После анализа данных остается только самое ценное для бизнеса.

В общих чертах с «big data» разобрались. Но остался важный вопрос — где их можно применять практически? Ответ: в любой сфере деятельности, которая оперирует необходимыми для анализа данными. Давайте рассмотрим несколько реальных примеров. Это позволит лучше понять, для чего нужны большие данные и как от них можно получить пользу.

В российской банковской сфере большие данные первым начал использовать «Сбербанк». На основе «big data» и биометрической системы в 2014 году они разработали систему идентификации личности клиента по фотографии. Принцип работы очень простой: сравнение текущего снимка с фотографией из базы, которую делают сотрудники при выдаче банковской карты. Новая система сократила случаи мошенничества в 10 раз.

Сегодня «Сбербанк» продолжает использовать большие данные в работе: сбор и анализ информации позволяет управлять рисками, бороться с мошенничеством, оценивать кредитоспособность клиентов, управлять очередями в отделениях и многое другое.

Еще один пример из российского банковского сектора — ВТБ. Внедрять «big data» компания начала чуть позже «Сбербанка». Сегодня они используют большие данные для сегментации и управления оттоком клиентов, формирования финансовой отчетности, анализа отзывов в интернете и многого другого.

«Альфа-Банку» большие данные помогают контролировать репутацию бренда в интернете, оценивать кредитоспособность новых клиентов, персонализировать контент, управлять рисками и т.п.

Большие данные в бизнесе

Многие ошибочно полагают, что работа с большими данными актуальна только для банковского сектора и ИТ-компаний. Это опровергает пример «Магнитогорского металлургического комбината», который разработал сервис «Снайпер» для снижения расходов сырья в производстве. Технология собирает большие объемы информации, анализирует их и дает рекомендации по оптимизации расходов материалов.

«Сургутнефтегаз» использует специальную систему для отслеживания основных бизнес-процессов в режиме реального времени. Это помогает в автоматизации учета продукции, ценообразовании, обеспечении персонала нужными данными и т.п.

Big Data в маркетинге

Маркетологи используют большие данные для прогнозирования результатов рекламных кампаний. Также анализ помогает в определении наиболее заинтересованной аудитории. Яркий пример «big data» в маркетинге — Google Trends. В систему поступает огромное количество данных, а после анализа пользователь может оценить сезонность того или иного товара (работы, услуги).

Где есть большие возможности, там поджидают и большие трудности. Это правило не обошло стороной big data.

Первая сложность, с которой сталкиваются компании, — большие данные занимают много места. Да, технологии хранения постоянно улучшаются, но при этом и объем данных неуклонно растет (в среднем в два раза каждые два года).

Приобретение огромного хранилища не решает всех проблем. От простого хранения данных толку не будет, с ними нужно работать для получения выгоды. Отсюда вытекает другая сложность — налаживание обработки получаемых больших данных.

Сейчас аналитики тратят 50-80% рабочего времени для приведения информации в приемлемый для клиента вид. Компаниям приходится нанимать больше специалистов, что увеличивает расходы.

И еще одна проблема — стремительное развитие больших данных. Регулярно появляются новые инструменты и сервисы для работы (например, Hbase). Бизнесу приходится тратить много времени и средств, чтобы «быть в тренде» и не отставать от развития.

Таким образом, big data — это совокупность технологий обработки больших объемов информации (сотни терабайтов и более) и сегодня мало кто отрицает их важность в будущем. Их популярность будет расти и распространение в бизнесе увеличиваться. Впоследствии разработают технологии по автоматизации анализа и с big data будут работать не только крупные компании, но и средние с маленькими.

Источник

Что такое «Big Data»?

Термин «большие данные» или «big data» начал набирать популярность с 2011 года. Сегодня его хотя бы раз слышал каждый. Проблема в том, что часто понятие используют не по определению. Поэтому давайте подробно разберемся, что это такое.

big data история появления

С развитием технологий количество данных стало увеличиваться в геометрической прогрессии. Традиционные инструменты перестали покрывать потребность в обработке и хранении информации. Для обработки данных, объем которых превышает сотни терабайт и постоянно увеличивается, были созданы специальные алгоритмы. Их принято называть «big data».

Сегодня информация собирается огромными объемами из разных источников: интернет, контакт-центры, мобильные устройства и т.д. Чаще всего такие данные не имеют четкой структуры и упорядоченности, поэтому человек не может использовать их для какой-либо деятельности. Для автоматизации анализа применяют технологии «big data».

Когда появились первые большие данные?

Большие данные появились в 60-70 годах прошлого столетия вместе с первыми ЦОД (центры обработки данных). В 2005 году компании начали понимать масштабы создаваемого контента пользователями интернет-сервисов (Facebook, YouTube и др.). Тогда же начала работу первая платформа, предназначенная для взаимодействия с большими наборами данных, — Hadoop. Сегодня она представляет собой большой стек технологий для обработки информации. Чуть позже популярность начала набирать NoSQL — совокупность методов для создания систем управления большими данными.

Объем генерируемой информации стал увеличиваться с появлением крупных интернет-сервисов. Пользователи загружают фотографии, просматривают контент, ставят «лайки» и т.п. Вся эта информация собирается в больших объемах для дальнейшего анализа, после которого можно вносить улучшения в работу сервисов. Например, социальные сети используют большие данные для показа пользователям релевантной рекламы (то есть той, которая соответствует их потребностям и интересам) в таргете. Это позволяет соцсетям продавать бизнесу возможность проведения точных рекламных кампаний.

Основные свойства больших данных

В самом начале статьи мы определили три основных свойства больших данных из общепринятого определения. Давайте раскроем их более подробно:

Как с ними работают?

Большие данные несут в себе много полезной информации, на основе которой компании создают новые возможности и формируют бизнес-модели. Работа с большими данными делится на 3 этапа: интеграция, управление и анализ.

На этом этапе компания интегрирует в свою работу технологии и системы, позволяющие собирать большие объемы информации из разных источников. Внедряются механизмы обработки и форматирования данных для упрощения работы аналитиков с «big data».

Полученные данные нужно где-то хранить, этот вопрос решается до начала работы с ними. Решение принимается на основе множества критериев, главными из которых считаются предпочтения по формату и технологии обработки. Как правило, для хранения компании используют локальные хранилища, публичные или частные облачные сервисы.

Большие данные начинают приносить пользу после анализа. Это заключительный этап взаимодействия с ними. Для этого применяют машинное обучение, ассоциацию правил обучения, генетические алгоритмы и другие технологии. После анализа данных остается только самое ценное для бизнеса.

Примеры использования больших данных

В общих чертах с «big data» разобрались. Но остался важный вопрос — где их можно применять практически? Ответ: в любой сфере деятельности, которая оперирует необходимыми для анализа данными. Давайте рассмотрим несколько реальных примеров. Это позволит лучше понять, для чего нужны большие данные и как от них можно получить пользу.

В российской банковской сфере большие данные первым начал использовать «Сбербанк». На основе «big data» и биометрической системы в 2014 году они разработали систему идентификации личности клиента по фотографии. Принцип работы очень простой: сравнение текущего снимка с фотографией из базы, которую делают сотрудники при выдаче банковской карты. Новая система сократила случаи мошенничества в 10 раз.

Сегодня «Сбербанк» продолжает использовать большие данные в работе: сбор и анализ информации позволяет управлять рисками, бороться с мошенничеством, оценивать кредитоспособность клиентов, управлять очередями в отделениях и многое другое.

Еще один пример из российского банковского сектора — ВТБ24. Внедрять «big data» компания начала чуть позже «Сбербанка». Сегодня они используют большие данные для сегментации и управления оттоком клиентов, формирования финансовой отчетности, анализа отзывов в интернете и многого другого.

«Альфа-Банку» большие данные помогают контролировать репутацию бренда в интернете, оценивать кредитоспособность новых клиентов, персонализировать контент, управлять рисками и т.п.

Большие данные в бизнесе

Многие ошибочно полагают, что работа с большими данными актуальна только для банковского сектора и ИТ-компаний. Это опровергает пример «Магнитогорского металлургического комбината», который разработал сервис «Снайпер» для снижения расходов сырья в производстве. Технология собирает большие объемы информации, анализирует их и дает рекомендации по оптимизации расходов материалов.

«Сургутнефтегаз» использует специальную систему для отслеживания основных бизнес-процессов в режиме реального времени. Это помогает в автоматизации учета продукции, ценообразовании, обеспечении персонала нужными данными и т.п.

Big Data в маркетинге

Маркетологи используют большие данные для прогнозирования результатов рекламных кампаний. Также анализ помогает в определении наиболее заинтересованной аудитории. Яркий пример «big data» в маркетинге — Google Trends. В систему поступает огромное количество данных, а после анализа пользователь может оценить сезонность того или иного товара (работы, услуги).

Сложности при использовании

Где есть большие возможности, там поджидают и большие трудности. Это правило не обошло стороной big data.

Первая сложность, с которой сталкиваются компании, — большие данные занимают много места. Да, технологии хранения постоянно улучшаются, но при этом и объем данных неуклонно растет (в среднем в два раза каждые два года).

Приобретение огромного хранилища не решает всех проблем. От простого хранения данных толку не будет, с ними нужно работать для получения выгоды. Отсюда вытекает другая сложность — налаживание обработки получаемых больших данных.

Сейчас аналитики тратят 50-80% рабочего времени для приведения информации в приемлемый для клиента вид. Компаниям приходится нанимать больше специалистов, что увеличивает расходы.

И еще одна проблема — стремительное развитие больших данных. Регулярно появляются новые инструменты и сервисы для работы (например, Hbase). Бизнесу приходится тратить много времени и средств, чтобы «быть в тренде» и не отставать от развития.

Таким образом, big data — это совокупность технологий обработки больших объемов информации (сотни терабайтов и более) и сегодня мало кто отрицает их важность в будущем. Их популярность будет расти и распространение в бизнесе увеличиваться. Впоследствии разработают технологии по автоматизации анализа и с big data будут работать не только крупные компании, но и средние с маленькими.

Источник

Как зарождалась эра Big Data

big data история появления

Редактор «Истории» RB.RU.

Rusbase публикует перевод статьи TechCrunch об эре становления big data, которая формировалась в три этапа.

80-е годы были радостными, прекрасными и стимулировали развитие экономики. Они подарили нам Майкла Джексона, кассетные плееры Sony Walkman, Star Wars, Pac-Man, с которых началась эра аналитики. Toyota вовремя запустила своё производство, продавцы, наконец, ввели сканеры для считывания штрих-кодов, банковские терминалы обрели повсеместную популярность. Мир оцифровался.

Доступ к информации позволил предприятиям оптимизировать расположение товаров и сервисов, сегментировать клиентов и лучше управлять финансовыми делами. На протяжении следующих 20 лет в Аналитика 1.0. формировалась и предназначалась для этих целей:

Данных много, а пользы нет? Только проверенные компании, которые специализируются на Big Data Тем не менее, Аналитика 1.0 изначально задумывалась как средство хранения и загрузки информации (например, база данных), для составления отчётов, и предназначалась для нескольких ключевых пользователей, а именно руководителей высшего звена. Для составления отчётов требовались армии консультантов и миллионы долларов. Было слишком затратно внедрять аналитическое программное обеспечение в действующие бизнес-направления компании и демократизировать информацию. Программное обеспечение пока оставалось чем-то из области фантастики.

Этот рынок укреплялся по мере становления. Business Objects приобрели Crystal Dynamics, которую затем поглотила SAP ($6,8 млрд). Затем SAP приобрела Sybase ($1,1 млрд). IBM выкупил Cognos ($4,9 млрд), SPSS ($1,2 млрд) и Ascential ($1,1 млрд). Oracle купила Hyperion ($3,3 млрд). И так продолжалось дальше, пока не осталась лишь горстка крупных игроков.

Забегая вперёд в 2007 год, вышел iPhone, Google представила MapReduce, Hadoop стал открытым. Время было выбрано самое подходящее: на мир обрушился поток данных, технологии удешевили и упростили процесс анализа петабайтов доступной информации.

Зародилась эра «больших данных», или Аналитики 2.0, в которой заново изменилась аналитическая структура. В большой степени преобразования выразились в новой волне замены технологий, где аналитическая структура оставалось той же, но каждый технологический компонент заменился новой, более дешёвой и быстрой версией прежних аналогов.

Аналитике 2.0 посчастливилось «оседлать» волну консюмеризации IT, мобильных технологий, и радикально снизить стоимость инфраструктуры («облачные технологии»).

Большинство венчурных фондов, которые инвестировали в этот рынок, пришли к созданию платформы следующего поколения и позволили развернуться технологиям вроде сервисов распространения Hadoop (Cloudera, Hortonworks, MapR) и базам данных типа NoSQL (MongoDB, Cassandra, Couchbase, Neo4J, Greenplum, Asterdata, Netezza).

Раньше на этом рынке мы видели активность M&A, когда крупные поставщики приобретали технологии для того, чтобы помочь вывести cуществующие структуры Аналитики 1.0 на новый уровень. По мере этого её позиции упрочнялись, а крупные игроки собирались создать свою собственную структуру данных 2.0. По той же схеме укреплялись позиции Аналитики 1.0.

После того как улеглась волна Аналитики 2.0, крупные и известные поставщики обзаводились технологиями, которые были в тренде и соответствовали новым структурам.

Аналитика 3.0. или операционная аналитика, способная считывать информацию и реагировать на события, которые влияют на пользователя, машины и девайсы в режиме реального времени.

В результате эта волна реализовала на всё, чего всегда не доставало аналитике, и восполнила эти пробелы в операционной аналитике. Она анализировала данные, которые помогали людям и машинам принимать решения в режиме реального времени в соответствующем контексте.

Сегодня данные содержатся во всём: в телефонах, телевизорах, датчиках мотоциклов, светофорах, а также в таблетках, которые мы принимаем. Однако огромный плюс заключается в том, что разрозненные источники информации можно синтезировать и соотносить друг с другом, чтобы принимать автоматические решения на основе полученных данных.

Вот один из таких примеров: историю ваших болезней сопоставляют с результатами генетических анализов и диагностической таблеткой, которая делает фотографии внутренних органов. На основе полученных результатов доктор выписывает вам коктейль лекарств, которые обычно нельзя смешивать с другими, но в результате это приносит значительные улучшения в вашу жизнь. В число компаний, которые работают в этой области, входят Foundation Medicine, Cellworks и 23andMe.

Появляются и другие прекрасные примеры. Большинство из них сопоставляют ваши персональные данные, полученные с датчиков, из Сети и т.п., с вашим местоположением или с определённым контекстом. Прежде чем вы обратитесь в техподдержку, агент на основе ваших данных выдаст вам инструкции (Guavus). Вы можете защитить себя от мошеннических сделок в eCommerce (Feedzai). Точная сельскохозяственная технология способна наблюдать, измерять и следить за внутрипромысловым и междупромысловым разнообразием урожая (AgSmarts, The Climate Corp., Farmeron).

Мой любимый пример, наверное, появится лишь в далёком будущем. Он сочетает в себе сложный искусственный интеллект с Аналитикой 3.0. Благодаря им автономная машина анализирует расписание вашей семьи, забирает вовремя детей из школы и находит в супермаркете продукты, которые вы обычно покупаете себе на ужин по средам.

Следующие пять лет обещают быть интересными для бизнес-аналитики, поскольку автоматический ИИ и действия на основе разрозненных данных, наконец, станут обычным делом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *