Уторный уголок резервуара что это такое

Уторный уголок резервуара что это такое

Г.Г. Васильев, А.А. Катанов, Е.Е. Семин

(Научно-технический и производственный «Журнал нефтегазового строительства»)

В Российской Федерации создана мощная система магистрального трубопроводного транспорта нефти, включающая в себя более 1 тыс. вертикальных стальных резервуаров. Большая их часть построена в 1980-е годы и к настоящему времени исчерпала свой проектный ресурс, составляющий 30 лет.

Эксплуатирующие организации регулярно проводят диагностику и ремонт резервуаров, и для них чрезвычайно актуальными являются продление срока эксплуатации и снижение объемов ремонта.

При диагностике наибольшее внимание уделяется элементам конструкций резервуара, работающим в условиях сложного напряженно-деформированного состояния при высоком уровне напряжений. Одним из наиболее ответственных элементов резервуара является соединение между стенкой и днищем – уторный узел.

Известно, что наибольшую концентрацию напряжений вызывают дефекты сварных соединений – подрезы, которые можно рассматривать как трещиноподобные дефекты. Они являются определяющими при прогнозировании сроков безопасной эксплуатации резервуаров. Это также подтверждается результатами диагностики, при которой обнаруживаются трещины, развившиеся от подрезов в зоне сопряжения уторного шва и окрайки.

Учитывая современную практику применения высококачественных антикоррозионных покрытий на основе эпоксидных смол для защиты внутренней поверхности резервуаров, долговечность уторных узлов может определяться по критерию начала роста трещины или по критерию разрушения в процессе циклического нагружения.

Оценка долговечности уторных узлов выполняется в следующей последовательности:

Для определения НДС в уторном узле реальной геометрической формы был выбран метод конечных элементов. Для построения моделей и решения задачи использовался вычислительный комплекс ANSYS. В целях сокращения времени расчета были разработаны два типа конечно-элементных моделей.

Первая модель выбиралась из условия, что действие краевого эффекта от днища затухает в пределах первого пояса и включает первый пояс стенки резервуара, окрайку днища, уторный шов без дефектов и упругое основание резервуара. Нагрузки задаются от гидростатического давления и веса конструкций.

По результатам расчета установлено, что 95 % максимального значения напряжений составляет нагрузка от изгиба, возникающая в результате стесненности деформаций.

Вторая модель включает участки первого пояса стенки и окрайки длиной по 200 мм и уторный сварной шов с различными значениями выпуклости и вогнутости. Нагрузка задавалась в виде двух сил, приложенных к концам модели таким образом, что напряжения в зоне уторного шва отличались от первой модели не более чем на 2 %. Сгущение сетки производилось к пересечению сварного шва и окрайки. Все конструкции резервуара моделировались с использованием плоскостных элементов типа shell. Вычисление напряжений и деформаций производилось в предположении упругопластического тела. Модель использовалась для определения фактических напряжений в образце без дефектов сварного соединения и в образце с подрезами разной глубины. Было выполнено более 250 расчетов.

Напряжения в зоне подреза в окрайке, выполненной из стали 09Г2С варьируются от 285 МПа для соединения с вогнутостью 3–4 мм до 500 МПа для сварных соединений с подрезом глубиной 3 мм. Для стали 16Г2АФ аналогичные напряжения составляют от 346 МПа до 560 МПа соответственно.

По результатам расчетов второй модели установлено, что оптимальной формой сварного соединения является шов, вогнутый вовнутрь. Величина вогнутости уторного шва должна составлять 3–4 мм, в этом случае гарантируется отсутствие развивающихся пластических деформаций в зоне уторного сварного соединения в процессе эксплуатации.

Поэтому при проектировании и строительстве с целью снижения напряжений рекомендуется выполнять внутренний шов вогнутым на 3–4 мм.

Исследование долговечности уторных узлов выполнено по двум предельным состояниям: начало роста трещины и начало разрушения соединения.

Расчет ресурса по критерию начала роста трещины выполнялся по формуле Нейберга.

Анализ результатов расчета показывает, что инкубационный период роста трещин для уторных сварных швов с вогнутостью от 0,5 мм до 5 мм составляет 17 500 и более циклов, что соответствует сроку эксплуатации 50 лет при цикличности 350 циклов в год. Безопасная работа уторного узла резервуара с подрезами до 0,3 мм обеспечена на весь период эксплуатации для швов с оптимальными параметрами вогнутости, составляющей 3–4 мм.

Поэтому при проектировании и строительстве с целью безопасной эксплуатации уторного соединения без появления трещин рекомендуется устанавливать критерий отбраковки по глубине подреза 0,3 мм.

Исследование ресурса уторного узла по критерию начала разрушения выполнено по методике, использованной в нормативных документах «Транснефти» и «Газпрома». Для выполнения расчета разработана программа, позволяющая моделировать рост трещины до наступления разрушения уторного сварного соединения путем ее подращивания в цикле.

Алгоритм программы включает:

Анализ результатов расчетов показывает, что с увеличением вогнутости до
4 мм и уменьшением глубины дефекта увеличивается срок эксплуатации уторных узлов резервуаров. При равной глубине подреза срок эксплуатации уторных узлов различной формы отличается в 8–12 раз. Максимально допустимый подрез для эксплуатации уторного узла в течение 10 лет составляет 2 мм.

Для подтверждения результатов, полученных расчетным путем, выполнено экспериментальное определение долговечности уторных узлов с подрезом, выполненных из сталей 09Г2С и 16Г2АФ. Форма и условия нагружения образцов соответствуют второй расчетной модели.

Определение числа циклов до разрушения образцов производилось по результатам испытаний 18 образцов с подрезами различной глубины на испытательной машине Instron. Пропилы в образцах, имитирующие подрезы, располагались в околошовной зоне. Максимальное число циклов нагружения составляет 35 000. Для создания расчетных напряжений образцы закреплялись с использованием торцевых планок в зажимах машины и растягивались с постоянным усилием.

Анализ результатов экспериментов показывает, что для уторных соединений из стали 09Г2С сходимость результатов эксперимента и расчета с учетом остаточных сварочных напряжений укладывается в 14–18 %, для стали 16Г2АФ сходимость результатов эксперимента и расчета укладывается в 7–8%.

Выводы

1. На основании исследований НДС разработаны рекомендации по оптимизации формы уторного узла по критерию минимальных эксплуатационных напряжений. Установлено, что минимальные значения напряжений возникают в уторном шве с величиной вогнутости 3–4 мм.

2. Исследования ресурса уторных соединений показали, что при строительстве резервуаров глубина максимально допустимого подреза может составлять 0,3 мм, а при диагностировании резервуара могут допускаться для дальнейшей эксплуатации уторные узлы с подрезами глубиной до 2 мм.

3. Предложена комплексная методика расчета ресурса уторных соединений, основанная на полученных функциональных зависимостях НДС в вершине дефекта и применении апробированных методик, определяющих процесс развития трещины. Данная методика использована при разработке РД «Руководство по оценке технического состояния резервуаров».

4. Экспериментальными исследованиями натурных образцов подтверждены полученные расчетные зависимости.

Источник

Большая Энциклопедия Нефти и Газа

Уторная уголка

Уторные уголки к стенкам, днищу и крыше привариваются сплошными швами. [1]

В процессе эксплуатации ежедневному визуальному осмотру подлежат уторные уголки ( участки приварки нижнего пояса к днищу), вертикальные сварные швы нижнего пояса, штуцера, дыхательные и предохранительные клапаны, другое наружное оборудование. При обнаружении пропусков следует немедленно принять надлежащие меры в соответствии с утвержденной инструкцией. [2]

Опыт эксплуатации показал, что сегментные кольца, уторные уголки и внутренние накладки являются слабым местом в сварных листовых конструкциях и источником концентрации напряжений. При низких температурах в сварных швах и в околошовной зоне возникают трещины, которые распространяются в зону основного металла. [3]

Первоначально днище выполнялось с сегментным кольцом, к которому при помощи уторного уголка приваривался нижний пояс, а вертикальные швы для соединения листов поясов выполнялись в стык с накладками. Опыт эксплуатации и исследования показали, что сегментные кольца, уторные уголки и внутренние накладки являются источником концентрации напряжений. При низких температурах в сварных швах и возле них возникают трещины, распространяющиеся в зону основного металла. В связи с этим днища стали изготовлять без сегментных колец, а вертикальные швы выполнять встык без накладок и подваривать со стороны корня шва, что существенно улучшило качество швов. [9]

В настоящее время еще находится в эксплуатации много ро-зервуаров объемом до 10000 м3, имеющих в уторном узле кольцевые уголки. Поэтому в дальнейшем уторные уголки были заменены двусторонним швом между стенкой и днищем. [10]

Резервуары в процессе эксплуатации подвергают осмотру, текущему и капитальному ремонтам, периодичность которых устанавливается в зависимости от свойств содержащегося в резервуаре нефтепродукта, размеров и конструктивных особенностей резервуара. С увеличением емкости резервуара повышаются требования к его обслуживанию и осмотру. Ежедневному визуальному осмотру подлежат уторные уголки ( участки приварки нижнего пояса к днищу), вертикальные сварные швы нижнего пояса, штуцера, дыхательные и предохранительные клапаны, другое наружное оборудование. При обнаружении пропусков следует немедленно принять надлежащие меры в соответствии с утвержденной инструкцией. [11]

Источник

3. Термины и определения

Уторный уголок резервуара что это такое

В настоящем Стандарте применены следующие термины с соответствующими определениями.

Временные нагрузки подразделяются на:

а) длительные, расчетные значения которых в течение срока службы резервуара наблюдаются длительное время;

б) кратковременные, расчетные значения которых в течение срока службы резервуара наблюдаются в течение короткого отрезка времени;

— оптимальных габаритов резервуара (диаметра и высоты стенки);

— компоновки и вместимости резервуарных парков;

— количества установок пожаротушения и охлаждения резервуара;

— прочности и устойчивости конструкций резервуара (в соответствии с назначенным классом опасности резервуара).

В состав проекта КМ входят:

— общие данные и указания по применяемым материалам, изготовлению, монтажу и испытаниям резервуара, рекомендации по антикоррозионной защите;

— чертежи общих видов, планов и разрезов;

— чертежи узлов и элементов конструкций, с указанием профилей, толщин, сварных швов;

— расчеты конструкций резервуаров 1 и 2 классов опасности и резервуаров с защитной стенкой;

— нагрузки для проектирования основания и фундаментов.

В состав комплекта чертежей КМД входят:

— ведомости чертежей и отправочных марок;

— монтажные схемы с указанием отправочных марок;

— комплектовочная ведомость с указанием отгрузочных мест;

— чертежи отправочных марок, с указанием профилей, толщин, формы и размеров деталей и элементов, количеств и масс деталей и отправочных марок;

— отгрузочные чертежи (при отправке конструкций железнодорожным транспортом).

Уторный уголок резервуара что это такое

© 2007–2021 «ГК «Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Источник

Методы ремонта резервуаров РВС

При ремонте основания резервуаров подбивают края песчаной подушки, заполняют пустоты под днищем в местах хлопунов и исправляют просевшие участки и отмостки.

Для ремонта основания применяют гидроизолирующий состав (черный или гидрофобный грунт), состоящий из смеси вяжущего вещества и песка. Песок должен быть крупностью 0,1-2 мм. Содержание в песке глинистых и песчаных частиц крупностью менее 0,1 мм должно быть не более 30-40%. В качестве вяжущего вещества применяют жидкие битумы марок А-6 и Б-6 или малосернистый мазут. Содержание кислот и свободной серы в вяжущем веществе не допускается. Количество вяжущего вещества в готовом изолирующем слое принимают в пределах 8-10% по объему смеси.

Ремонт основания выполняют с подъемом резервуара. Для этого к стенке резервуара приваривают прерывистым швом ребра жесткости из швеллера или двутавра, подводят под них домкраты необходимой грузоподъемности и поднимают резервуар на высоту, превышающую величину осадки на 15-20 см. Затем подбивают просевшую часть основания изолирующим материалом до проектной отметки. Резервуар можно поднимать также домкратами, установив их в приямки под днищем резервуаров.

После опускания резервуара нивелируют окрайки днища.

Если под днищем выявлены пустоты или выпучины (рис. 1) размерами, превышающими допустимые, в днище вырезают отверстие диаметром 20-25 см, засыпают в пустоты изолирующую смесь и уплотняют ее. После этого на вырезанное отверстие устанавливают и приваривают накладку из листа толщиной 5 мм. Размеры накладки выбирают так, чтобы обеспечивался нахлест 30-40 мм.

Уторный уголок резервуара что это такое

Рис. 1. Методы ремонта пустот под днищем и выпучин в днище.

а — местная просадка основания; б — выпучина в днище; в — участок, отремонтированный методом установки наладки

Днища резервуаров подвержены коррозионному и механическому разрушению. Наиболее часто встречаются трещины в сварных швах и основном металле сегментов и окраек днища, вызванные концентрацией напряжений в нижнем узле резервуара. Для устранения таких трещин срезают уторный уголок (если он есть) длиной 250 мм в каждую сторону от трещины и выявляют границу трещины путем травления дефектного шва 10%-ным раствором азотной кислоты. Концы трещины засверливают сверлом диаметром 6-8 мм, после чего разделывают трещину под сварку.

В случае отсутствия технологической подкладки под шов устанавливают подкладку шириной 150-200 мм, толщиной 5-6 мм

Уторный уголок резервуара что это такое

Рис. 2. Трещины в сварных швах сегментов и их устранение.

1 — подкладка; 2 — место трещины; 3 — шов, прикрепляющий сегмент к корпусу; 4 — уторный уголок.

В случае отсутствия технологической подкладки под шов устанавливают подкладку шириной 150-200 мм, толщиной 5-6 мм и длиной, несколько превышающей длину трещины. Заварив трещину, приваривают корпус в месте вырезки уторного уголка и торцы последнего к сегменту (рис. 2).

Аналогично устраняют трещины, распространившиеся из сварного шва на основной металл, а также мелкие трещины в основном металле окраек длиной до 100 мм.

Для устранения трещин длиной 200-300 мм в сегменте окрайки срезают уторный уголок на длину 1500 мм и участок сегмента (окрайки) шириной 500 мм с трещиной по середине. На это место подгоняют вставку встык с зазором 3-4 мм, устанавливают подкладки и приваривают вставку к сегментам окрайки днища и к стенке (рис. 3).

Уторный уголок резервуара что это такое

Рис. 3. Замена участка сегмента с трещиной.

а — технологические подкладки.

Уторный уголок резервуара что это такое

Рис. 4. Устранение больших выпучин в днище.

Выпуклости высотой до 200 мм устраняют путем заполнения пространств под ними гидроизоляционным материалом, а высотой более 200 мм удаляют. Для этого все сварные швы на участке выпуклости распускают газорезкой. Сильно деформированные листы удаляют и на их место подгоняют новые внахлестку. Сварку осуществляют в последовательности, указанной на рис. 4.

Если требуется замена днища полностью, резервуар поднимают на высоту 150-200 мм и вырезают днище. На отремонтированном основании собирают, сваривают и испытывают новое днище, затем опускают на него резервуар и соединяют днище с корпусом.

В корпусах резервуаров наблюдаются трещины в сварных швах и основном металле. Часто встречаются трещины в местах пересечений швов, вдоль и поперек швов. Продольные трещины в сварных швах, а также поперечные, не распространившиеся на основной металл, устраняют путем засверливания их концов, разделки дефектного места под сварку (под углом 60-70°) и двухсторонней заварки дефектных мест электродами диаметром 3 мм.

Для устранения продольных трещин длиной более 150 мм, начинающихся с любого горизонтального шва, а также поперечных трещин, выходящих на основной металл, вырезают дефектный участок (с трещиной посередине) шириной 1000 мм на всю высоту листа, разделывают кромки листов пояса резервуара и подогнанной вставки (рис. 5). Затем распускают горизонтальные швы в обе стороны от вставки по 500 мм, подгоняют вставку в стык или внахлестку и приваривают. Порядок производства сварочных работ при удалении листов с трещиной показан на рис. 6. Трещины в основном листе корпуса устраняют аналогично.

Уторный уголок резервуара что это такое

Рис. 5. Удаление горизонтальных и вертикальных сварных швов с трещиной

(цифры показывают последовательность сварки, стрелки — направление сварки).

Уторный уголок резервуара что это такое

Рис. 6. Технология производства сварочных работ при удалении листов с трещиной в основном металле.

Обозначения те же, что на рис. 5

Чтобы удалить пересекающиеся трещины в сварных швах (рис. 7), вырезают отверстие диаметром 500 мм с центром в точке пересечения сварных швов и устанавливают изнутри заплату диаметром 1000 мм. Толщина заплаты равна толщине листов этого пояса. Сначала сварку производят снаружи, затем внутри резервуара обратноступенчатым методом, длина ступени 200-250 мм.

Сравнительно часто встречается трещина по основному металлу I пояса, начинающаяся от места приварки резервуарного оборудования (рис. 8). В таких случаях лист удаляют полностью; иногда вырезают участок шириной не менее 2000 мм на всю высоту пояса. Новый лист монтируют, как описано выше.

При сборке листов в стык зазор между стыкуемыми элементами должен быть не менее 2 мм и не более 4 мм. При зазорах более 4 мм сварку ведут на подкладке толщиной, равной толщине листа. Свариваемые листы должны иметь скос кромок под углом 30-35°. При сварке необходимо следить, чтобы расстояние между пересекающимися сварными швами в днище и кровле было не менее 200 мм, а в корпусе резервуара не менее 250 мм.

Уторный уголок резервуара что это такое

Рис. 7. Устранение трещин, образовавшихся в месте пересечения швов.

Уторный уголок резервуара что это такое

Рис. 8. Трещина, начинающаяся от места вварки резервуарного оборудования.

1 — лист первого пояса; 2 — лист второго пояса, 3 — воротниковый фланец лазового люка, 4 — днище.

При сварке внахлестку размер ступени возрастает до 300- 500 мм. При капитальном ремонте резервуаров проверяют отклонение корпуса от цилиндрической формы при помощи отвеса. Эти отклонения могут быть в виде выпуклостей и вмятин. Они появляются при строительстве и в процессе эксплуатации резервуара и в основном в средних и верхних поясах, которые имеют меньшую жесткость; если стрела прогиба вмятин или выпуклостей превышает допустимую величину, их исправляют.

Допустимые величины отклонений поверхности (стрела прогиба) от вертикальной образующей цилиндра, соединяющей нижний и верхний края дефектного места, зависят от размеров дефекта и не должны превышать: 15 мм при длине дефекта по вертикали 1500 мм, 30 мм- при длине дефекта 3000 мм и 45 мм-при длине дефекта до 45000 мм.

При наличии в корпусе горизонтальных гофр с размерами, превышающими приведенные в табл. 1, их исправляют.

Для исправления вмятины в ее центр приваривают прерывистым швом круглую накладку из листовой стали толщиной 5-6 мм и диаметром 120-150 мм. К накладке приваривают серьгу. Правку производят при помощи трактора (ручной лебедки), трос от которого прикрепляют к серьге.

Источник

8. Конструкции резервуаров, часть 1

Уторный уголок резервуара что это такое

8.1. Сварные соединения и швы

8.1.1. Основные типы сварных соединений и швов

Для изготовления резервуарных конструкций применяются стыковые, угловые, тавровые и нахлесточные сварные соединения.

В зависимости от протяженности сварных швов по линии соединения деталей различают следующие типы сварных швов:

— сплошные швы, выполняемые на всю длину сварного соединения;

— прерывистые швы, выполняемые чередующимися участками длиной не менее 50 мм;

— временные (прихваточные) швы, поперечное сечение которых определяется технологией сборки, а протяженность свариваемых участков составляет не более 50 мм.

Конструктивные элементы сварных соединений и швов должны, как правило, соответствовать требованиям стандартов на применяемый вид сварки:

Изображения сварных соединений и условные обозначения сварных швов на чертежах должны однозначно определять размеры конструктивных элементов подготовленных кромок свариваемых деталей, необходимые для выполнения швов с применением конкретного вида сварки.

Основные типы и рекомендуемые обозначения сварных соединений и швов приведены в справочном Приложении П.3.

8.1.2. Ограничения на сварные соединения и швы

Наличие прихваточных швов в законченной конструкции не допускается.

Минимальные катеты угловых швов (без припуска на коррозию) должны приниматься в соответствии с таблицей 38 СНиП II-23-81* «Стальные конструкции».

Максимальные катеты угловых швов не должны превышать 1,2 толщины более тонкой детали в соединении.

Нахлесточное соединение, сваренное сплошным швом с одной стороны, допустимо только для соединений элементов днища или крыши (согласно п. 8.1.5 и п. 8.1.8), при этом величина нахлеста должна быть не менее 60 мм для соединений полотнищ днища или полотнищ крыши и не менее 30 мм для соединений листов днища или листов крыши при полистовой сборке, но не менее 5-ти толщин наиболее тонкого листа в соединении.

8.1.3. Вертикальные соединения стенки

Вертикальные соединения листов стенки должны выполняться двусторонними стыковыми швами с полным проплавлением.

Вертикальные заводские и монтажные швы стенок резервуаров 4 класса опасности, сооружаемых методом рулонирования, допускается располагать на одной линии.

8.1.4. Горизонтальные соединения стенки

Горизонтальные соединения листов стенки должны выполняться двусторонними стыковыми швами с полным проплавлением.

Для резервуаров полистовой сборки пояса стенки должны совмещаться в одну вертикальную линию по внутренней поверхности.

Для стенок резервуаров, изготовляемых методом рулонирования, общая вертикальная линия может совмещаться с внутренней или внешней поверхностью поясов.

8.1.5. Нахлесточные соединения днища

Нахлесточные соединения днища применяются для соединения между собой рулонируемых полотнищ днищ, листов центральной части днищ при их монтаже полистовой сборкой, а также для соединения центральной части днищ (рулонируемой или полистовой) с кольцевыми окрайками.

Нахлесточные соединения днищ свариваются сплошным односторонним угловым швом только с верхней стороны. В зоне пересечения нахлесточных соединений днища с нижним поясом стенки должна быть образована ровная поверхность днища, как это показано на рис. 8.1а.

8.1.6. Стыковые соединения днища

Двусторонние стыковые соединения применяются для сварки рулонируемых полотнищ днищ.

Для стыковых соединений кольцевых окраек должен быть предусмотрен переменный зазор клиновидной формы, изменяющийся от 4. 6 мм по наружному контуру окраек до 8. 12 мм по внутреннему контуру, учитывающий усадку кольца окраек в процессе сварки.

Для подкладок должны применяться материалы, соответствующие материалу стыкуемых деталей.

8.1.7. Соединение днища со стенкой

Для соединения днища со стенкой должно применяться двустороннее тавровое соединение без скоса кромок или с двумя симметричными скосами нижней кромки листа стенки. Катет углового шва таврового соединения должен быть не более 12 мм.

Если толщины нижнего пояса стенки и листа днища не превышают 12 мм, то применяется соединение без скосов кромок с катетом углового шва, равным толщине более тонкого из соединяемых листов (рис. 8.1б).

Если толщина нижнего пояса стенки или листа днища превышают 12 мм, то применяется соединение со скосами кромок, при этом сумма глубины скоса и катета углового шва равняется толщине более тонкого из соединяемых листов (рис. 8.1в).

Узел соединения днища со стенкой должен быть доступен для осмотра в процессе эксплуатации резервуара. При наличии на стенке резервуара теплоизоляции, она должна не доходить до днища на расстояние около 100 мм с целью снижения возможности коррозии данного узла и обеспечения наблюдения за его состоянием.

8.1.8. Соединения листов крыши

Настил крыши может выполняться из отдельных листов, укрупненных карт или полотнищ заводского изготовления.

Монтажные соединения настила должны выполняться, как правило, внахлест со сваркой сплошного углового шва только с верхней стороны.

Нахлест листов в направлении по уклону крыши должен выполняться таким образом, чтобы верхняя кромка нижнего листа накладывалась поверх нижней кромки верхнего листа с целью снижения возможности проникновения конденсата внутрь нахлеста.

По требованию Заказчика монтажные соединения настила бескаркасных конических или сферических крыш могут выполняться двусторонними стыковыми или нахлесточными швами.

Заводские сварные швы настила должны быть двусторонними стыковыми.

Для соединения настила с каркасом крыши допускается применение прерывистых угловых швов при малоагрессивной степени воздействия внутренней среды резервуара. Для средне и сильноагрессивной среды указанное соединение должно выполняться сплошными угловыми швами минимального сечения с добавлением припуска на коррозию.

При выполнении крыши во взрывозащищенном исполнении (легко сбрасываемой) настил крыши должен привариваться только к верхнему кольцевому элементу стенки угловым швом катетом не более 5 мм, приварка настила к каркасу крыши не допускается. Указанный «ослабленный узел» соединения настила крыши со стенкой должен обеспечить частичный или полный отрыв настила крыши от стенки резервуара и быстрый сброс избыточного давления, предотвратив разрушение стенки и узла крепления стенки к днищу и разлив продукта.

Рис. 8.1. Соединение днища со стенкой

Уторный уголок резервуара что это такое

Уторный уголок резервуара что это такое

Уторный уголок резервуара что это такое

8.2. Стенки

8.2.1. Толщины листов стенки резервуара должны превышать расчетные значения по условиям прочности и устойчивости с учетом припусков на коррозию и минусового допуска на прокат. Минимальные конструктивные толщины листов стенки приведены в таблице 8.1. Максимальная толщина листов должна быть не более 40 мм.

Таблица 8.1

8.2.2. Минимальная ширина листов стенки, кроме листов верхнего пояса, должна составлять:

8.2.3. Местные сосредоточенные нагрузки на стенку резервуара должны быть распределены при помощи листовых накладок или ребер жесткости, располагаемых, предпочтительно, в кольцевом направлении.

8.2.4. Постоянные конструктивные элементы не должны препятствовать перемещению стенки, в том числе в зоне нижних поясов стенки при гидростатической нагрузке.

8.2.5. Присоединение конструктивных элементов к стенке должно удовлетворять следующим требованиям:

а) приварка конструктивных элементов должна производиться через листовые накладки со скругленными углами с обваркой по замкнутому контуру;

б) катет угловых швов крепления конструктивных элементов не должен превышать 12 мм;

в) постоянные конструктивные элементы должны располагаться не ближе 100 мм от оси горизонтальных швов стенки и днища резервуара, и не ближе 150 мм от оси вертикальных швов стенки, а также от края любого другого постоянного конструктивного элемента на стенке;

г) временные конструктивные элементы (технологические приспособления) должны привариваться на расстоянии не менее 50 мм от сварных швов;

д) технологические приспособления должны быть удалены до гидравлических испытаний, а возникающие при этом повреждения или неровности поверхности должны быть устранены с зачисткой абразивным инструментом на глубину, не выводящую толщину проката за пределы минусового допуска на прокат.

8.3. Днища

8.3.1. Днища резервуаров могут быть плоскими (для резервуаров объемом до 1000 м 3 ) или коническими с уклоном от центра к периферии (рекомендуемая величина уклона 1:100), при этом наличие незначительного уклона компенсирует возможную неравномерность осадок основания, а также облегчает очистку резервуара и удаление подтоварной воды.

По требованию Заказчика уклон днища может быть выполнен к центру резервуара при условии специальной проработки в проекте вопросов осадок основания и прочности днища.

8.3.2. Днища резервуаров объемом до 1000 м 3 включительно могут изготавливаться из листов одной толщины (без окраек), при этом выступ листов днища за внешнюю поверхность стенки следует принимать 25. 50 мм. Днища резервуаров объемом более 1000 м 3 должны иметь центральную часть и кольцевые окрайки, при этом выступ окраек за внешнюю поверхность стенки следует принимать 50. 100 мм. Наличие в рулонируемом полотнище днища листов различной толщины не допускается.

8.3.3. Минимальная толщина всех листов днища (без припуска на коррозию) должна составлять 4 мм для днищ, полученных сваркой встык, 5 мм для днищ, имеющих нахлесточные соединения.

8.3.4. Размеры окраечного кольца днища назначаются из условия прочности узла соединения стенки с днищем с учетом деформативности листа окрайки днища. При этом учитывается, что днище имеет сплошное опирание по всей поверхности, включая окраечное кольцо, если Заказчиком не предусмотрено выполнение днища особого типа в соответствии с Приложением П.19.

8.3.5. Номинальная толщина кольцевых окраек должна быть не менее величины, определяемой по формуле:

Уторный уголок резервуара что это такое

Если по согласованию с Заказчиком в листе окрайки днища допускаются пластические деформации, то следует принять k1 = 0,58.

Номинальную толщину окрайки следует назначать с учетом ограничений:

(0,006 + Δtcb) ≤ tb ≤ (0,016 + Δtcb).

8.3.6. Кольцевые окрайки должны иметь ширину в радиальном направлении, обеспечивающую расстояние между внутренней поверхностью стенки и швом приварки центральной части днища к окрайкам не менее:

— 300 мм для резервуаров объемом до 5000 м 3 ;

— величины, назначаемой в п. 9.6.6.4 (при наличии сейсмического воздействия), и не менее величины (мм), определяемой соотношением:

Уторный уголок резервуара что это такое

Если по согласованию с Заказчиком в листе окрайки днища допускаются пластические деформации, то следует принять k2 = 0,76.

8.3.7. Расстояние от сварных соединений днища, расположенных под нижней кромкой стенки, до вертикальных швов нижнего пояса стенки должны быть не менее чем:

— 100 мм для резервуаров 3 и 4 классов опасности;

— 200 мм для резервуаров 1 и 2 классов опасности.

8.3.8. Стыковые или нахлесточные соединения трех элементов днища (листов или полотнищ) должны располагаться на расстоянии не менее 300 мм друг от друга, от стенки резервуара и от монтажного соединения кольцевых окраек.

8.3.9. Присоединение конструктивных элементов к днищу должно удовлетворять требованиям пунктов 8.2.5а, 8.2.5б, 8.2.5г, 8.2.5д.

8.3.10. Днища должны иметь круговую форму кромки по внешнему контуру.

8.3.11. По внутреннему периметру кольцевых окраек форма центральной части днища может быть круговой или многогранной, с учетом обеспечения нахлестки центральной части днища на окрайки не менее 60 мм.

8.4. Кольца жесткости на стенке

8.4.1 Для обеспечения прочности и устойчивости резервуаров при эксплуатации, а также для получения требуемой геометрической формы в процессе монтажа, на стенках резервуаров могут устанавливаться следующие типы колец жесткости:

— верхнее ветровое кольцо для резервуаров без стационарной крыши или для резервуаров со стационарными крышами специальных типов, имеющих повышенную деформативность в плоскости основания крыши;

— верхнее опорное кольцо для резервуаров со стационарными крышами;

— промежуточные для обеспечения устойчивости при воздействии ветровых и сейсмических нагрузок;

— промежуточные формообразующие кольца для резервуаров, сооружаемых методом рулонирования.

8.4.2. Верхнее ветровое кольцо устанавливается снаружи резервуара на верхнем поясе стенки резервуаров с плавающими крышами или резервуаров со стационарными крышами, конструкция которых не может рассматриваться в качестве жесткого диска в плоскости верхней кромки стенки. Это относится, например, к конструкциям купольных алюминиевых крыш, крышам оболочечного типа переменной кривизны с участками сжатых и растянутых поверхностей (двускатные, многоскатные, складчатые и т.п. крыши).

Для резервуаров указанного типа минимальное сечение верхнего ветрового кольца жесткости определяется в п. 9.2.4, а ширина кольца должна быть не менее 800 мм.

Рекомендуемая высота установки верхнего ветрового кольца составляет 1,10. 1,25 м от верха стенки, при этом по верху стенки резервуаров с плавающей крышей должен быть установлен кольцевой уголок сечением не менее 75 × 6 мм.

При использовании верхнего ветрового кольца в качестве обслуживающей площадки конструктивные требования к элементам кольца (ширина и состояние ходовой поверхности, ограждение кольца по внешней от резервуара стороне и пр.) должны соответствовать требованиям раздела 8.8.

8.4.3. Верхнее опорное кольцо стационарных крыш устанавливается на верхней кромке стенки резервуаров для восприятия опорных реакций сжатия, растяжения или изгиба при воздействии на крышу внешних и внутренних нагрузок. Минимальное сечение опорного кольца бескаркасных крыш определяется в п. 9.3.3.

В том случае, если монтаж стационарной крыши осуществляется после окончания монтажа стенки резервуара, то сечение опорного кольца должно быть проверено на соответствия п. 9.2.4, как для резервуара без стационарной крыши.

8.4.4. Промежуточные ветровые кольца жесткости устанавливаются в тех случаях, когда толщины поясов стенки не обеспечивают устойчивость стенки опорожненного резервуара, а увеличение толщин поясов стенки является технически и экономически нецелесообразным.

Минимальное сечение промежуточных колец жесткости должно определяться по п. 9.2.3.2.3.

8.4.5. Промежуточные формообразующие кольца жесткости устанавливаются на стенках рулонируемых резервуаров с целью обеспечения правильной геометрической формы, особенно в зоне монтажных стыков.

Для резервуаров объемом до 5000 м 3 необходимость установки формообразующих колец определяется монтажной организацией по согласованию с Заказчиком и автором проекта КМ.

Для резервуаров объемом свыше 5000 м 3 необходимо устанавливать не менее двух формообразующих колец.

Рекомендуемые сечения формообразующих колец указаны в таблице 8.2.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *