Устройства cuda что это
CUDA: с места в карьер
NB: Статья — краткое введение, покрыть все ньюансы программирования под CUDA в одной статье вряд ли возможно 🙂
О железе
CUDA работает на видеокартых начиная с 8400GS и выше. Разные видеокарты имеют разые возможности. В целом, если вы видите что в видеокарте например 128 SP(Streaming Processor) — это значит что там 8 SIMD MP (multiprocessor), каждый из которых делает одновременно 16 операций. На один MP есть 16кб shared memory, 8192 штуки 4-хбайтных регистров (В картах серии GTX2xx значения больше). Также есть 64кб констант общие для всех MP, они кешируются, при непопадании в кеш — достаточно большая задержка (400-600 тактов). Есть глобальная память видеокарты, доступ туда не кешируется, и текстуры (кешируется, кеш оптимизирован для 2D выборок). Для использования нескольких видеокарт нужно во первый отключать SLI в дровах, а во вторых — на каждую видеокарту запускать по потоку, и вызывать cudaSetDevice().
С чего начать?
Его вы можете использовать во всех своих проектах, только вместо «../../common/inc » можно указать абсолютный путь (или переменную окружения).
nvcc — это и есть великий и ужасный компилатор CUDA. На выходе он генерирует объектный файл, в котором уже включена откомпилированная программа для видеокарты.
Обратите внимение на описание интерфейса в Mandelbrot_kernel.h — тут руками приходится описывать kernel-ы которые мы собираемся вызывать из основной С++ программы (впрочем их обычно не много, так что это не страшно).
После того как вам удалось запустить пример SDK, можно рассмотреть, чем же CUDA программа отличается от обычной.
Определение функций
Определение данных
__constant__ — задает переменную в константной памяти. Следует обратить внимание, что значения для констант нужно загружать функцией cudaMemcpyToSymbol. Константы доступны из всех тредов, скорость работы сравнима с регистрами(когда в кеш попадает).
__shared__ — задает переменную в общей памяти блока тредов (т.е. и значение будет общее на всех). Тут нужно подходить с осторожностью — компилятор агрессивно оптимизирует доступ сюда(можно придушить модификатором volatile), можно получать race condition, нужно использовать __syncthreads(); чтобы данные гарантированно записались. Shared memory разделена на банки, и когда 2 потока одновременно пытаются обратиться к одному банку, возникает bank conflict и падает скорость.
Все локальные переменные которые вы определеили в ядре (__device__) — в регистрах, самая высокая скорость доступа.
Как поток узнает над чем ему работать
Основая идея CUDA в том, что для решения вашей задачи вы запускаете тысячи и тысячи потоков, поэтому не стоит пугаться того что тут будет дальше написано 🙂
Допустим, надо сделать какую-то операцию над картинкой 200×200. Картинка разбивается на куски 10×10, и на каждый пиксел такого кусочка запускаем по потоку. Выглядить это будет так:
dim3 threads(10, 10);//размер квардатика, 10*10
dim3 grid(20, 20);//сколько квадратиков нужно чтобы покрыть все изображение
your_kernel >>(image, 200,200);//Эта строка запустит 40’000 потоков (не одновременно, одновременно работать будет 200-2000 потоков примерно).
В отличии от Brook+ от AMD, где мы сразу определяем какому потоку над какими данными работать, в CUDA все не так: передаваеиые kernel-у параметры одинаковые для всех потоков, и поток должен сам получить данные для себя, чтобы сделать это, потоку нужно вычислить, в каком месте изображения он находится. В этом помогают магические переменные blockDim, blockIdx.
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
В ix и iy — координаты, с помощью которых можно получить исходные данные из массива image, и записать результат работы.
Оптимизация
Не получается?
В первую очередь следует прочитать документацию вместе с SDK (NVIDIA_CUDA_Programming_Guide, CudaReferenceManual, ptx_isa), после этого можно спросить на официальном форуме — там даже девелоперы nVidia часто отписываются, да и вообще много умных людей. По русски можно спросить у меня на форуме например, где отвечу я 🙂 Также много людей обитает на gpgpu.ru.
Надеюсь это введение поможет людям, решившим попробовать программирование для видеокарт. Если есть проблемы/вопросы — буду рад помочь. Ну а в переди нас ждет введение в Brook+ и SIMD x86
CUDA: Как работает GPU
Внутренняя модель nVidia GPU – ключевой момент в понимании GPGPU с использованием CUDA. В этот раз я постараюсь наиболее детально рассказать о программном устройстве GPUs. Я расскажу о ключевых моментах компилятора CUDA, интерфейсе CUDA runtime API, ну, и в заключение, приведу пример использования CUDA для несложных математических вычислений.
Вычислительная модель GPU:
При использовании GPU вы можете задействовать грид необходимого размера и сконфигурировать блоки под нужды вашей задачи.
CUDA и язык C:
Дополнительные типы переменных и их спецификаторы будут рассмотрены непосредственно в примерах работы с памятью.
CUDA host API:
Перед тем, как приступить к непосредственному использованию CUDA для вычислений, необходимо ознакомиться с так называемым CUDA host API, который является связующим звеном между CPU и GPU. CUDA host API в свою очередь можно разделить на низкоуровневое API под названием CUDA driver API, который предоставляет доступ к драйверу пользовательского режима CUDA, и высокоуровневое API – CUDA runtime API. В своих примерах я буду использовать CUDA runtime API.
Понимаем работу GPU:
Как было сказано, нить – непосредственный исполнитель вычислений. Каким же тогда образом происходит распараллеливание вычислений между нитями? Рассмотрим работу отдельно взятого блока.
Задача. Требуется вычислить сумму двух векторов размерностью N элементов.
Нам известна максимальные размеры нашего блока: 512*512*64 нитей. Так как вектор у нас одномерный, то пока ограничимся использованием x-измерения нашего блока, то есть задействуем только одну полосу нитей из блока (рис. 3).
Рис. 3. Наша полоса нитей из используемого блока.
Заметим, что x-размерность блока 512, то есть, мы можем сложить за один раз векторы, длина которых N // Функция сложения двух векторов
__global__ void addVector( float * left, float * right, float * result)
<
//Получаем id текущей нити.
int idx = threadIdx.x;
Таким образом, распараллеливание будет выполнено автоматически при запуске ядра. В этой функции так же используется встроенная переменная threadIdx и её поле x, которая позволяет задать соответствие между расчетом элемента вектора и нитью в блоке. Делаем расчет каждого элемента вектора в отдельной нити.
Пишем код, которые отвечает за 1 и 2 пункт в программе:
#define SIZE 512
__host__ int main()
<
//Выделяем память под вектора
float * vec1 = new float [SIZE];
float * vec2 = new float [SIZE];
float * vec3 = new float [SIZE];
//Инициализируем значения векторов
for ( int i = 0; i //Указатели на память видеокарте
float * devVec1;
float * devVec2;
float * devVec3;
…
dim3 gridSize = dim3(1, 1, 1); //Размер используемого грида
dim3 blockSize = dim3(SIZE, 1, 1); //Размер используемого блока
Теперь нам остаеться скопировать результат расчета из видеопамяти в память хоста. Но у функций ядра при этом есть особенность – асинхронное исполнение, то есть, если после вызова ядра начал работать следующий участок кода, то это ещё не значит, что GPU выполнил расчеты. Для завершения работы заданной функции ядра необходимо использовать средства синхронизации, например event’ы. Поэтому, перед копированием результатов на хост выполняем синхронизацию нитей GPU через event.
Код после вызова ядра:
//Выполняем вызов функции ядра
addVector >>(devVec1, devVec2, devVec3);
//Хендл event’а
cudaEvent_t syncEvent;
cudaEventCreate(&syncEvent); //Создаем event
cudaEventRecord(syncEvent, 0); //Записываем event
cudaEventSynchronize(syncEvent); //Синхронизируем event
Рассмотрим более подробно функции из Event Managment API.
Рис. 4. Синхронизация работы основоной и GPU прграмм.
На рисунке 4 блок «Ожидание прохождения Event’а» и есть вызов функции cudaEventSynchronize.
Ну и в заключении выводим результат на экран и чистим выделенные ресурсы.
cudaFree(devVec1);
cudaFree(devVec2);
cudaFree(devVec3);
Думаю, что описывать функции высвобождения ресурсов нет необходимости. Разве что, можно напомнить, что они так же возвращают значения cudaError_t, если есть необходимость проверки их работы.
Заключение
Надеюсь, что этот материал поможет вам понять, как функционирует GPU. Я описал самые главные моменты, которые необходимо знать для работы с CUDA. Попробуйте сами написать сложение двух матриц, но не забывайте об аппаратных ограничениях видеокарты.
Нужны ли графические ядра Nvidia CUDA для игр?
Ядра CUDA являются эквивалентом процессорных ядер Nvidia. Они оптимизированы для одновременного выполнения большого количества вычислений, что очень важно для современной графики. Естественно, на графические настройки больше всего повлияло количество ядер CUDA в видеокарте, и они требуют больше всего от графического процессора, то есть теней и освещения, среди прочего.
CUDA долгое время была одной из самых выдающихся записей в спецификациях любой видеокарты GeForce. Однако не все до конца понимают, что такое ядра CUDA и что конкретно они означают для игр.
В этой статье дан краткий и простой ответ на этот вопрос. Кроме того, мы кратко рассмотрим некоторые другие связанные вопросы, которые могут возникнуть у некоторых пользователей.
Что такое ядра видеокарты CUDA?
CUDA является аббревиатурой от одной из запатентованных технологий Nvidia: Compute Unified Device Architecture. Его цель? Эффективные параллельные вычисления.
Одиночное ядро CUDA аналогично ядру ЦП, основное отличие в том, что оно менее изощренное, но реализовано в большем количестве. Обычный игровой процессор имеет от 2 до 16 ядер, но количество ядер CUDA исчисляется сотнями, даже в самых низких современных видеокартах Nvidia GeForce. Между тем, у высококлассных карт сейчас их тысячи.
Что делают ядра CUDA в играх?
Обработка графики требует одновременного выполнения множества сложных вычислений, поэтому такое огромное количество ядер CUDA реализовано в видеокартах. И учитывая, как графические процессоры разрабатываются и оптимизируются специально для этой цели, их ядра могут быть намного меньше, чем у гораздо более универсального CPU.
И как ядра CUDA влияют на производительность в игре?
По сути, любые графические настройки, которые требуют одновременного выполнения вычислений, значительно выиграют от большего количества ядер CUDA. Наиболее очевидными из них считается освещение и тени, но также включены физика, а также некоторые типы сглаживания и окклюзии окружающей среды.
Ядра CUDA или потоковые процессоры?
Там, где у Nvidia GeForce есть ядра CUDA, у их основного конкурента AMD Radeon есть потоковые процессоры.
Ядра CUDA лучше оптимизированы, поскольку аппаратное обеспечение Nvidia обычно сравнивают с AMD, но нет никаких явных различий в производительности или качестве графики, о которых вам следует беспокоиться, если вы разрываетесь между приобретением Nvidia или AMD GPU.
Сколько ядер CUDA вам нужно?
И вот сложный вопрос. Как часто бывает с бумажными спецификациями, они просто не являются хорошим индикатором того, какую производительность вы можете ожидать от аппаратного обеспечения.
Многие другие спецификации, такие как пропускная способность VRAM, более важны для рассмотрения, чем количество ядер CUDA, а также вопрос оптимизации программного обеспечения.
Для общего представления о том, насколько мощен графический процессор, мы рекомендуем проверить UserBenchmark. Однако, если вы хотите увидеть детальное и всестороннее тестирование, есть несколько надежных сайтов, таких как GamersNexus, TrustedReviews, Tom’s Hardware, AnandTech и ряд других.
Вывод
Надеемся, что это помогло пролить некоторый свет на то, чем на самом деле являются ядра CUDA, что они делают и насколько они важны. Прежде всего, мы надеемся, что помогли развеять любые ваши заблуждения по этому поводу.
NVIDIA CUDA-X
Библиотеки GPU-ускорения для ИИ и HPC
Разработчики, исследователи и изобретатели во всех отраслях используют программирование на GPU для ускорения своих приложений. Разработка таких приложений требует надежной среды программирования с высокооптимизированными библиотеками для конкретных областей. NVIDIA CUDA-X создана на основе CUDA® и представляет собой набор библиотек, инструментов и технологий, которые обеспечивают значительно более высокую производительность по сравнению с другими решениями во всех отраслях: от ИИ до НРС.
Ускорение современных приложений
Библиотеки CUDA-X AI и CUDA-X HPC эффективно используют мощность графических процессоров NVIDIA с тензорными ядрами для ускорения разработки и развертывания приложений в различных отраслях.
Cuda-X AI
Cuda-X HPC
Современные технологии ИИ способны кардинально изменить работы во многих отраслях, но применение их возможностей представляет собой сложную задачу. Разработка приложений на базе ИИ осуществляется в несколько этапов: обработка данных, конструирование признаков, машинное обучение, верификация и развертывание. Каждый шаг включает в себя обработку крупных массивов данных и осуществление больших объемов вычислений. CUDA-X AI предоставляет инструменты и технологии, необходимые решения этой задачи.
Приложения для НРС используются во многих отраслях: от гидродинамики до моделирования погоды. CUDA-X HPC – это набор библиотек, инструментов, компиляторов и API, с помощью которых разработчики решают самые сложные в мире задачи. CUDA-X HPC включает в себя настроенные ядра для высокопроизводительных вычислений (HPC). Библиотеки GPU-ускорения для линейной алгербры, параллельных алгоритмов, обработки сигналов и изображений создают основу для приложений, требующих большого объема вычислений, в таких областях, как вычислительная физика, химия, молекулярная динамика и сейсмические исследования.
Расширенная доступность
Платформа CUDA-X имеет расширенную экосистему и доступна для использования. Библиотеки программного ускорения являются частью основных облачных платформ, в том числе AWS, Microsoft Azure и Google Cloud. Фрагменты кода или контейнеризированные программные стеки можно бесплатно скачать из репозитория NGC. С помощью GPU NVIDIA библиотеки CUDA-X можно разворачивать на любых устройствах: ПК, рабочих станциях, серверах, суперкомпьютерах, облачных платформах и IoT-устройствах.
Более миллиона разработчиков используют CUDA-X для повышения продуктивности благодаря постоянному росту производительности приложений. Если вы создаете новое приложение или стремитесь ускорить его работу, CUDA-X обеспечивает самый эффективный способ.
Используйте мощность GPU для приложений
Узнайте, как NVIDIA CUDA-X и в частности библиотеки GPU-ускорения трансформируют рабочие процессы в отраслях.
Знакомство с программно-аппаратной архитектурой CUDA
Поговорим о том, что такое CUDA, как эта технология связана с NVIDIA и как ускоряет обработку данных вычислительной техникой.
Сложность вычислительных заданий требует резкого увеличения ресурсов и скорости компьютеров. Наиболее перспективным направлением повышения скорости решения задач является внедрение идей параллелизма в работу вычислительных систем.
Сегодня спроектированы и испытаны сотни различных компьютеров, которые используют в своей архитектуре тот или иной вид параллельной обработки данных. Основная сложность при проектировании параллельных программ – обеспечение правильной последовательности взаимодействия между разными вычислительными процессами, а также координация ресурсов, которые разделяются между ними.
Поговорим о CUDA
CUDA – это программно-аппаратная архитектура параллельных вычислений, позволяющая существенно увеличить вычислительную продуктивность благодаря использованию графических процессоров NVIDIA.
При использовании данной технологии необходимо знать следующие понятия:
CUDA позволяет программистам реализовывать на специальном упрощенном диалекте языка C алгоритмы, которые используются в графических процессорах NVIDIA, и включать специальные функции в текст программы на C.
«Архитектура CUDA позволяет разработчику на свое усмотрение организовывать доступ к набору инструкций GPU и управлять его памятью.»
Эта технология поддерживает несколько языков программирования. Среди них Java, Python и некоторые другие.
Этапы запуска программы на GPU или как все происходит
Рассмотрим, как происходит запуск программы на графическом процессоре:
На рисунке изображены все перечисленные шаги запуска программы, кроме первого (источник).
Взаимодействие CPU и GPU
Как видно из рисунка, центральный процессор взаимодействует с графическим через CUDA Runtime API, CUDA Driver API и CUDA Libraries. Runtime и Driver API отличаются уровнем абстракции. Грубо говоря, первый вариант более высокого уровня в плане программирования, более абстрактный, а второй – напротив, более низкого (уровень драйвера).
В целом Runtime API является абстрактной оберткой Driver API. Во время программирования вы можете использовать любой из представленных вариантов. Из личного опыта: при использовании Driver API нужно написать немного «лишнего» кода + данный вариант сложнее.
Также необходимо понять одну важную вещь, которая впоследствии сэкономит вам время и нервы:
«Если отношение времени, потраченного на работу ядер, окажется меньше времени, потраченного на выделение памяти и запуск этих ядер, вы получите нулевую эффективность от использования GPU.»
Давайте разберем написанное подробнее. Чтобы запустить некоторые задачи на GPU, необходимо потратить «немного» времени на выделение памяти, копирование результата, etc., поэтому не нужно выполнять на графическом процессоре легкие задания, которые на деле занимают буквально миллисекунды. Зачем выполнять на GPU то, с чем легко, а главное, быстрее справится центральный процессор?
У вас возникнет вопрос: «Тогда зачем вообще использовать GPU, если при этом приходится тратить драгоценное время на выделение памяти и другие ненужные вещи?». Это заблуждение, и со временем вы поймете, что CUDA – действительно мощная технология. Дальше разберемся, почему это так.
Аппаратная часть
Архитектура GPU построена несколько иначе, нежели CPU. Поскольку графические процессоры сперва использовались только для графических расчетов, которые допускают независимую параллельную обработку данных, то GPU и предназначены именно для параллельных вычислений. Он спроектирован таким образом, чтобы выполнять огромное количество потоков (элементарных параллельных процессов).
Архитектура CPU и GPU
Как видно из картинки – в GPU есть много простых арифметически-логических устройств (АЛП), которые объединены в несколько групп и обладают общей памятью. Это помогает повысить продуктивность в вычислительных заданиях, но немного усложняет программирование.
«Для достижения лучшего ускорения необходимо продумывать стратегии доступа к памяти и учитывать аппаратные особенности.»
GPU ориентирован на выполнение программ с большим объемом данных и расчетов и представляет собой массив потоковых процессоров (Streaming Processor Array), что состоит из кластеров текстурных процессоров (Texture Processor Clusters, TPC). TPC в свою очередь состоит из набора мультипроцессоров (SM – Streaming Multi-processor), в каждом из которых несколько потоковых процессоров (SP – Streaming Processors) или ядер (в современных процессорах количество ядер превышает 1024).
Набор ядер каждого мультипроцессора работает по принципу SIMD (но с некоторым отличием) – реализация, которая позволяет группе процессоров, работающих параллельно, работать с различными данными, но при этом все они в любой момент времени должны выполнять одинаковую команду. Говоря проще, несколько потоков выполняют одно и то же задание.
Мультипроцессоры, SM
В результате GPU фактически стал устройством, которое реализует потоковую вычислительную модель (stream computing model): есть потоки входящих и исходящих данных, что состоят из одинаковых элементов, которые могут быть обработаны независимо друг от друга.
Вычислительные возможности
Продолжаем разбираться с CUDA. Каждая видеокарта обладает так называемыми compute capabilities – количественными характеристиками скорости выполнения определенных операций на графическом процессоре. Данное число показывает, насколько быстро видеокарта будет выполнять свою работу.
В NVIDIA эту характеристику обозначают Compute Capability Version. В таблице приведены некоторые видеокарты и соответствующие им вычислительные возможности:
Полный перечень можно посмотреть здесь. Compute Capability Version описывает множество параметров, среди которых: количество потоков на блок, максимальное количество блоков и потоков, размер warp, а также многое другое.
Потоки, блоки и сетки
CUDA использует большое количество отдельных потоков для расчетов. Все они группируются в иерархию – grid / block / thread.
Структура блоков
Верхний уровень – grid – отвечает ядру и объединяет все потоки, которые выполняет данное ядро. Grid – одномерный или двумерный массив блоков (block). Каждый блок (block) представляет собой полностью независимый набор скоординированных между собой потоков. Потоки из разных блоков не могут взаимодействовать.
Мы упоминали об отличии от SIMD-архитектуры. Есть такое понятие, как warp – группа из 32 потоков (в зависимости от архитектуры GPU, но почти всегда 32). Только потоки в рамках одной группы (warp) могут физически выполняться одновременно. Потоки разных варпов могут находиться на разных стадиях выполнения программы. Такой метод обработки данных обозначается термином SIMT (Single Instruction – Multiple Theads). Управление работой варпов выполняется на аппаратном уровне.
Почему иногда центральный процессор выполняет задания быстрее графического?
Выше уже было написано, что не стоит выполнять на GPU слишком простые задания. Чтобы понять, следует определить два термина:
Таким образом, главный вопрос состоит в следующем: почему графический процессор иногда «тупит»? Объясняем на простом примере.
У нас есть 2 автомобиля:
Если одна операция – это передвижение одного человека на определенное расстояние (пусть будет 1 км), то задержка (время, за которое один человек пройдет 1 км) для первого авто составит 3600/120 = 30 сек, а пропускная способность – 9/30 = 0,3. Для автобуса – 3600/90 = 40 сек и 30/40 = 0,75.
CPU – это фургон, а GPU – автобус: у него большая задержка, но также и большая пропускная способность. Если для вашего задания задержка каждой конкретной операции не так важна, как количество этих самых операций в секунду, то стоит рассмотреть использование GPU.
Выводы
Отличительными чертами GPU в сравнении с CPU являются:
Главный минус CUDA в том, что данная технология поддерживается только видеокартами NVIDIA без каких-либо альтернатив.
Графический процессор не всегда может дать ускорение при выполнении определенных алгоритмов. Поэтому перед использованием GPU для вычислений стоит хорошо подумать, а нужен ли он в данном случае. Вы можете использовать видеокарту для сложных вычислений: работа с графикой или изображениями, инженерные расчеты, криптографические задачи (майнинг), и т. д., но не используйте GPU для решения простых задач (разумеется, вы можете, но тогда эффективность будет равняться нулю).
Помните о задаче с фургоном и автобусом, а также не забывайте, что использование графического процессора гораздо вероятнее замедлит программу, нежели ускорит ее.