Ускорение свободного падения чем обозначается

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце273,1
Меркурий3,68—3,74Венера8,88
Земля9,81Луна1,62
Церера0,27Марс3,86
Юпитер23,95Сатурн10,44
Уран8,86Нептун11,09
Плутон0,61

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Ускорение свободного падения чем обозначается

где Ускорение свободного падения чем обозначается— широта рассматриваемого места, Ускорение свободного падения чем обозначается— высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Содержание

Вычисление ускорения свободного падения

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

Ускорение свободного падения чем обозначается,

Ускорение свободного падения чем обозначаетсям/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

Источник

Свободное падение тел

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Максимальная высота подъема тела, брошенного вертикально:

Ускорение свободного падения чем обозначается

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Ускорение свободного падения чем обозначается

Условия для движения вдоль оси О Х :

Условия для движения вдоль оси O Y :

Приведем формулы для движения тела, брошенного под углом к горизонту.

Дальность полета тела:

Максимальная высота подъема:

Источник

Ускорение свободного падения

Ускорение свободного падения чем обозначается

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Ускорение свободного падения чем обозначается

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

Подставим значения в формулу:

Ускорение свободного падения чем обозначается

И кому же верить?

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Источник

Ускорение свободного падения чем обозначается

История открытия

Учёные Древней Греции разделяли любое движение на два типа: естественное и принудительное. Перемещение тела под воздействием гравитации считалось естественным, так как не имело видимой причины и происходило само собой.

Ускорение свободного падения чем обозначается

Аристотель считал, что скорость падения напрямую зависит от массы. Это ошибочное утверждение родилось в результате примитивных наблюдений. Философ приводил в пример движение к земле яблок и листьев. Очевидно, что последние летели гораздо медленнее. Исследователи тех времён ещё очень мало понимали в физике. Такие понятия, как сопротивление воздуха и ускорение были неизвестны.

Утверждения Аристотеля считались неоспоримым постулатом вплоть до начала XVII века. Галилео Галлилей решительно отверг древнюю классификацию движения. В результате проведения нескольких опытов с движением тела по наклонной плоскости, учёный ввёл понятие ускорения.

Определение ускорения свободного падения в физике

Основное внимание Галлилей уделял изучению процесса свободного падения. Самым знаменитым стал эксперимент, проведённый на Пизанской башне.

С сооружения высотой 60-м были одновременно сброшены два предмета:

Ускорение свободного падения чем обозначается

Результат был просто ошеломляющим. Оба тела достигли земли практически одновременно, а небольшая разница была объяснена силой сопротивления воздушной среды. Надо заметить, что наука тех лет существенно отличалась от сегодняшней. Считалось, что воздух не мешает падению, а, напротив, увеличивает его скорость.

Ещё одним заблуждением того времени было утверждение о том, что любое движение со временем прекращается, даже если на его пути нет преград. Галлилей опроверг и этот ошибочный закон физики, введя определение инерции.

В XVI веке ещё не существовало точных хронометров. Из-за этого ускорение падения тел с Пизанской башни было рассчитано довольно грубо. Для более точного измерения учёный изучал равноускоренное движение шарика по наклонной плоскости. А более или менее правильное значение ускорения сумел вычислить Гюйгенс в 1660 г.

Физическая сущность

Ускорение свободного падения чем обозначается

Свободным падением может называться равноускоренное движение тела в результате действующей на него силы тяжести, происходящее в вакууме. Атмосфера Земли способна тормозить ускорение и замедлять падающие предметы. Однако, если величина сопротивления воздуха небольшая, ей можно пренебречь. К примеру, в опыте Галилея на башне в Пизе использовались шарообразные предметы, обладающие аэродинамичной формой. В результате этого коэффициент торможения удалось свести к минимуму.

Ускорение у поверхности Земли не зависит от массы предмета — это постоянная величина, обозначающаяся латинской буквой g и составляющая 9,80665 м/с.^2. Из-за воздействия центробежных сил на экваторе его значение немного меньше, а на полюсах, соответственно, больше.

Величина ускорения свободного падения зависит от нескольких факторов:

Вектор свободного падения всегда направлен вниз. Это можно наглядно увидеть, подбросив какой-либо предмет. Благодаря воздействию ускорения, его движение будет постепенно замедляться. Затем оно полностью остановится и направится в обратную сторону.

Формулы для расчёта

Галилей понимал, что исследование падения тел с Пизанской башни является несовершенным. Был поставлен новый эксперимент, в котором учёному удалось увеличить время движения и уменьшить сопротивление воздуха. Отполированные латунные шарики скатывались по желобам, расположенным под определённым углом наклона. В результате были выведен физический закон, согласно которому все падающие тела движутся с одинаковой, постоянно увеличивающейся скоростью.

Формула для нахождения: g=G (M/R ^ 2), где:

Ускорение свободного падения чем обозначается

При помощи этой зависимости можно рассчитать значение g на поверхности любой планеты во вселенной.

Существуют задачи, для решения которых необходим более точный расчёт. В таком случае используется другая, расширенная формула: g=G (M/(R2+h)), ​где h — это высота над поверхностью планеты.

Стоит помнить, что для максимальной точности расчётов придётся учитывать большое количество факторов. Ускорение может измеряться при помощи специального прибора — гравиметра.

Ускорение на других планетах

Как видно из формулы, гравитационное ускорение напрямую зависит от массы и радиуса планеты. Из этого следует, что значение g на других планетах будет отличаться от земного.

Таблица показателя ускорения g для основных объектов Солнечной системы.

НаименованиеУскорение, м/с. 2
Солнце274,01
Венера8,87
Земля9,81
Марс3,72
Юпитер25,8
Сатурн11,54
Уран9,04
Меркурий3,73
Нептун11,33
Луна1,69

Солнце является самым большим объектом в солнечной системе, его масса почти в 300 тыс. раз больше земной. Но как можно заметить из таблицы, ускорение на поверхности звезды превышает земное всего в 28 раз. Это объясняется огромным радиусом светила.

Во вселенной существуют очень компактные объекты с невероятной плотностью и чудовищным притяжением. Если взять среднюю нейтронную звезду с радиусом 13 км и массой 2,5*10 30 кг, то ускорение на её поверхности превысит земное в 100 млрд раз и составит довольно внушительное число — 9,87*10^11м/с. 2

Воздействие перегрузок на человека

Благодаря научно-техническому прогрессу и стремительному развитию технологий, современный человек имеет возможность пользоваться довольно быстрыми средствами передвижения. Чтобы попасть в любую точку планеты на самолёте, потребуется не более суток. Быстрая скорость передвижения неминуемо связана с таким понятием, как перегрузка.

Любая перегрузка являет собой отношение двух ускорений:

Ускорение свободного падения чем обозначается

За единицу измерения принято брать гравитационное ускорение на Земле — 9,80665 м/с². Таким образом, нулевую перегрузку можно ощутить на себе лишь в невесомости.

Перегрузка является векторной величиной. Для людей и других живых организмов огромное значение имеет её направление. Это связано с тем, что организм приспособлен к постоянному воздействию гравитационного ускорения.

Характер положительной перегрузки заключается в том, что её вектор направлен вниз — от головы к ногам. Кровь оттекает от мозга и при показателе более 10 g человек может потерять сознание за считаные секунды. При отрицательном значении кровь, напротив, бьёт в голову. Это переносится гораздо хуже и может привести к кровоизлиянию и смерти.

Показатель перегрузки для различных ситуаций:

Военным и спортивным лётчикам приходится постоянно испытывать большие перегрузки. Для уменьшения вредного воздействия на организм существуют специальные защитные костюмы.

Переносить перегрузку лучше всего лёжа на спине. Именно в таком положении находятся космонавты при взлёте ракет.

Источник

Свободное падение

Ускорение свободного падения чем обозначается

1. Свободное падение — падение тел в безвоздушном пространстве под действием притяжения к Земле. Наблюдения свидетельствуют о том, что скорость свободно падающего тела увеличивается с течением времени. Поскольку на свободно падающее тело действует единственная сила — сила тяжести, то его ускорение постоянно, т.е. свободное падение — движение равноускоренное.

2. Опыт показывает, что все свободно падающие тела движутся с одинаковым ускорением. Так, если вертикально расположенную трубку, в которой находятся три тела, имеющие разную массу: пёрышко, кусочек пробки и дробинку, перевернуть, то эти тела будут падать на дно трубки. При этом, если в трубке есть воздух, то из-за сопротивления воздуха они упадут не одновременно: дробинка упадёт раньше всех, а пёрышко позже всех тел. Если же воздух из трубки откачать, то тела упадут на дно одновременно.

Ускорение свободного падения зависит от высоты тела над поверхностью Земли. Чем выше поднято тело, тем слабее оно притягивается к Земле, тем меньше ускорение свободного падения.

4. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения свободно падающего тела с высоты ​ \( h \) ​ (рис. 23).

Ускорение свободного падения чем обозначается

Уравнения зависимости от времени проекции скорости и координаты свободно падающего тела с некоторой высоты тела:

Знаки проекций зависят от направления оси координат и начала координат. В соответствии с рисунком

5. График зависимости модуля скорости от времени при свободном падении приведён на рисунке (рис. 24).

Ускорение свободного падения чем обозначается

6. График зависимости проекции скорости от времени при свободном падении приведены на рисунке (ось Y направлена вертикально вверх) (рис. 25).

Ускорение свободного падения чем обозначается

7. Тело, брошенное вертикально вверх, тоже движется равноускоренно с ускорением ​ \( g \) ​, которое направлено вертикально вниз. В этом случае, в отличие от свободного падения, скорость и ускорение движения направлены в противоположные стороны (рис. 26).

Ускорение свободного падения чем обозначается

8. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения тела, брошенного вертикально вверх с начальной скоростью ​ \( v_0 \) ​:​

\[ v=v_0-gt; l=v_0t-gt^2/2; s=v_0t-gt^2/2 \]

​Записанная формула зависимости пути от времени может быть использована только при движении тела в одну сторону (в данном случае вверх).

Уравнения зависимости от времени проекции скорости и координаты тела, брошенного вертикально вверх с начальной скоростью ​ \( v_0 \) ​ (ось Y направлена вертикально вверх): ​ \( v_y=v_<0y>+g_yt;y=y_0+v_<0y>t+g_yt^2/2 \) ​. Если тело брошено из начала координат, то ​ \( y_0=0 \) ​ и ​ \( y=v_0t-gt^2/2,v_y=v_0-gt \) ​.

9. График зависимости модуля скорости от времени при движении тела вертикально вверх приведён на рисунке (рис. 27).

Ускорение свободного падения чем обозначается

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Свободное падение — это

1) любое движение тела в безвоздушном пространстве
2) движение тела вертикально вверх в безвоздушном пространстве
3) падение тела в безвоздушном пространстве
4) падение тела в как безвоздушном пространстве, так и в воздухе

2. В трубке, из которой откачали воздух, одновременно с одной высоты начали падать три шарика: пенопластовый, пластилиновый и железный. Какой из шариков раньше коснется дна трубки?

1) пенопластовый
2) пластилиновый
3) железный
4) все шарики коснутся дна одновременно

3. Значение ускорения свободного падения зависит от

А. Массы тела.
Б. Широты местности.

Верными являются ответы:

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха время падения мяча на экваторе

1) равно времени его падения на широте Москвы
2) больше времени его падения на широте Москвы
3) меньше времени его падения на широте Москвы
4) ответ может быть любым в зависимости от объёма

5. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха скорость мяча у поверхности Земли на экваторе

1) равна его скорости на широте Москвы
2) больше его скорости на широте Москвы
3) меньше его скорости на широте Москвы
4) ответ может быть любым в зависимости от объёма

6. По какой формуле рассчитывается модуль скорости тела, брошенного вертикально вверх с поверхности Земли

1) ​ \( v=v_0+gt \) ​
2) \( v=v_0-gt \)
3) \( v=v_0+gt/2 \)
4) \( v=gt \)

7. Какой из приведённых ниже графиков является графиком зависимости модуля скорости от времени свободного падения тела?

Ускорение свободного падения чем обозначается

8. Какой из приведённых ниже графиков является графиком зависимости от времени проекции скорости тела, брошенного вертикально вверх, достигшего верхней точки и затем упавшего на Землю?

Ускорение свободного падения чем обозначается

9. Чему равен модуль скорости свободно падающего тела через 4 с после начала падения?

1) 0,4 м/с
2) 4 м/с
3) 40 м/с
4) 160 м/с

10. На какую высоту поднимется тело, брошенное вверх со скоростью 20 м/с?

1) 20 м
2) 10 м
3) 2 м
4) 1 м

11. Тело, брошенное вертикально вверх, долетело до верхней точки и начало падать вниз. Установите соответствие между величиной, приведенной в левом столбце, и характером её изменения, приведенном в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) модуль перемещения
Б) путь
B) координата относительно поверхности Земли

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

1) ускорение движения первого тела больше ускорения движения второго тела
2) ускорение движения первого тела равно ускорению движения второго тела
3) скорость падения на Землю второго тела равна скорости падения на Землю первого тела
4) скорость падения на Землю второго тела больше скорости падения на Землю первого тела
5) тела упадут на Землю одновременно

Часть 2

13. Определите время и координату места встречи двух тел, одно из которых надает на землю с высоты 100 м, а другое тело брошено с поверхности Земли вертикально вверх со скоростью 25 м/с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *