Уотсон и крик 1953 что сделали

Открытие ДНК Уотсоном и Криком

Вклад в науку Фрэнсиса Крика и Джеймса Уотсона

Уотсон и крик 1953 что сделали

Открыли ли Уотсон и Крик подлинную структуру ДНК?

28 февраля 1953 года, четверг. В заведении «Игл Паб» в Кембридже наплыв посетителей, туристов и местных — как раз обеденное время. Вдруг распахивается дверь, и внутрь вбегают два молодых человека. Они подходят к бару и громко заказывают напитки. «У нас праздник, — говорит тот, что повыше. — Мы открыли секрет жизни!»

Уотсон и крик 1953 что сделали

Совершив невероятный научный подвиг, Фрэнсис Крик и Джеймс Уотсон разгадали структуру дезоксирибонуклеиновой кислоты, более известной по сокращению ДНК. В этом им помогали коллеги Розалинд Франклин и Морис Уилкинс. ДНК присутствует в миллиардах клеток, составляющих наше тело. Это химическое соединение, которое является носителем генетической информации и содержит «инструкции» по построению организма.

Уотсон и крик 1953 что сделали

Молекула ДНК похожа на лестницу. В ступеньках лестницы, подобно буквам алфавита, закодирована информация. Эти длинные цепочки образуют инструкции, так же как из букв собираются слова. Каждая такая инструкция (участок спирали ДНК) называется геном. Один ген может означать «цвет глаз — синий», другой — «цвет волос — каштановый». Набор генов разный у всех людей, кроме близнецов.

Благодаря открытиям Крика, Уотсона и других ученых мы научились лечить многие болезни, вызванные ошибками в генах. Мы можем отыскать преступника по оставленным им следам ДНК. Открытие ДНК заложило основы проекта «Человеческий геном», который исследует генные наборы разных людей. Так мы узнаем, какие части молекулы ДНК отвечают за те или иные свойства организма.

Уотсон и крик 1953 что сделали

Гонка за ДНК

Разгадав структуру молекулы ДНК, Крик и Уотсон обошли другого известного исследователя, Лайнуса Полинга. За несколько недель до их триумфа Полинг ошибочно объявил о своей победе.

Источник

68 лет назад была предложена двуспиральная модель ДНК

Уотсон и крик 1953 что сделали

Слева направо: Фрэнсис Крик, Джеймс Уотсон. Фото: (с) A. Barringtot Brown / Photo Reseachers, Inc.

Я был не самым ярким, не был лучше и умнее других. Я такой же, как и все, и хотел заниматься ответами на серьёзные вопросы.
Дж.Уотсон.

21 февраля 1953 года ученые Джеймс Уотсон и Френсис Крик предложили структурную модель ДНК — двойную спираль. Эта работа была отмечена Нобелевской премией по физиологии и медицине в 1962 году и приблизила нас к пониманию фундаментальных основ генетики — науки, которая изучает гены, генетические вариации и наследственность в организмах. Генетика считается одной из самых быстро развивающихся наук в мире, и, пожалуй, самой многообещающей. Сегодня двойная спираль ДНК выступает одним из классических символов науки.

В 1951 году Уотсон начал работать с Френсисом Криком в Кавендишской лаборатории при Кембриджском университете. В течение нескольких лет напряженной работы, и под давлением конкурентов, ученые размышляли о структуре молекулы ДНК и пытались создать модель ДНК. Они обсуждали варианты спиралевидной формы ДНК, а чуть позже родилась идея двойной спирали: ровно 68 лет назад Уотсон догадался, что аденин из одной цепочки соединяется только с тимином из другой, а цитозин — с гуанином.

Еще до совместной работы Крика и Уотсона английский химик и специалист по рентгенокристаллографии Розалинд Франклин получила знаменитую фотографию 51 (рентгенограмма структуры ДНК), которая выявила двойную спираль в основе молекулы. Это экспериментальное подтверждение определило становление генетики как науки. Франклин была ассистенткой физика и молекулярного биолога Мориса Уилкинса, который впоследствии стал работать над изучением ДНК вместе с Криком и Уотсоном. В 1962 году все трое мужчин получили Нобелевскую премию «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живой материи». Что касается Розалинд Франклин, то, к сожалению, ее роль в исследованиях ДНК была широко признана лишь позднее.

Уотсон и крик 1953 что сделали

Новое знание о структуре ДНК повлияло на развитие медицины, физики, химии, палеонтологии, антропологии и др. Благодаря такой науке как генетика сегодня мы можем получить сведения об огромном пути, который проделали наши предки за десятки тысячи лет, мы можем понять происхождение вирусов и лечить заболевания, вызванные ими, совершать прорывы в сельском хозяйстве и т.д.

На Земле существует огромное разнообразие форм жизни, но все виды – от простейшей бактерии до человека – имеют одинаковый генетический код: из четырех нуклеотидов в ДНК, которые обозначаются буквами A, C, G и T (аденин (А), цитозин (Ц), гуанин (Г), и тимин (Т)). Последовательность этих химических единиц определяет, какие белки производит клетка живого организма. В каждой человеческой клетке содержится от двух до трех метров ДНК. Молекула ДНК, хранящая нашу наследственность, очень хрупкая. Но пока мы живы, специальные ферменты предохраняют её от разрушения.

Источник

Интриги, ложь и странные случайности — как учёные открывали структуру ДНК

8 июня — день рождения Фрэнсиса Крика, который вместе с Джеймсом Уотсоном получил Нобелевскую премию за открытие структуры ДНК. Это событие перевернуло историю биологии, а история открытия похожа на детективный роман.

«Раньше мы считали, что наша судьба написана на звёздах. Сегодня мы знаем, что наша судьба в большей степени написана в наших генах».

Будет что открыть

В 1916 году, в разгар Первой мировой войны, в семье выходцев из среднего класса Гарри и Анны-Элизабет Крик родился сын Фрэнсис. Крики жили в центре Англии у Нортгемптона. Гарри управлял обувной фабрикой своего деда. Его дедушка, Уолтер Дробридж Крик, был биологом, геологом и палеонтологом; он даже писал статьи в соавторстве с Чарльзом Дарвином.

Дома у Криков придерживались старинных обычаев — например, старались, чтобы первый гость, переступивший порог в Новый год, оказался темноволосым, а не блондином: считалось, что это приносит удачу. После рождения Фрэнсиса вынесли на крышу дома, чтобы гарантировать мальчику «восхождение на вершину».

Анна-Элизабет, как многие мамы, полагала, что ее сын наделен исключительными талантами, и делала все для того, чтобы развить его способности: мальчику покупали книги, он жадно читал, особенно любил «Детскую энциклопедию». Больше всего его интересовали естественные науки. Как устроена Вселенная? Что такое атомы? Откуда все берется? Фрэнсис решил стать ученым — правда, он боялся, что, когда вырастет, всё на свете уже откроют. «Не переживай, зайчик, — сказала мама. — Тебе еще будет что открыть».

Уотсон и крик 1953 что сделали

В 10 лет Фрэнсис начал проводить эксперименты: ему купили учебник по химии. Он пытался получить искусственный шелк (неудачно), взрывал различные смеси (с большим успехом), собирал гербарии, издавал рукописный журнал. Но он не был ни вундеркиндом, ни даже ребенком с выдающимися способностями: просто отличался любознательностью, предприимчивостью и энергией.

В 12 лет Фрэнсис сказал родителям, что больше не пойдет в церковь: его интерес к науке трансформировался в религиозный скептицизм и атеизм.

«Я рано осознал, что в свете обстоятельного научного знания некоторых религиозных верований придерживаться затруднительно. Знание реального возраста Земли и палеонтологических данных не позволяет никому, кто наделен рациональным мышлением, верить в буквальную истинность каждой строчки Библии, как верят в нее фундаменталисты».

Критерий сплетни

Учился Фрэнсис Крик в самой обычной школе Нортгемптона; в 14 за успехи в учебе он получил стипендию на обучение в частной лондонской школе Милл Хилл. Это была школа для мальчиков, где неплохо преподавали точные и естественные науки; особое внимание уделялось физике, химии и математике. 7 июня 1933 года он получил премию Уолтера Нокса по химии.

Фрэнсис увлекся физикой. В 18 лет он поступил в Лондонский университетский колледж, в 21 сдал итоговый экзамен по физике и математике с отличием; преподавание в лондонском университете было «грамотным, но несколько старомодным»: квантовой механике, например, отводилось шесть лекций, а что касается математики, то теорию групп на занятиях даже не упоминали.

После университета Фрэнсис занялся исследованиями в Университетском колледже Лондона: изучал коэффициент вязкости воды под давлением (позже он назвал свою тему «самая неинтересная научная проблема»). В начале 1940 года он перешел в Адмиралтейскую лабораторию научных исследований, женился, а во время войны работал в отделе проектирования морских мин.

После окончания войны Крика ждало место в отделе научной разведывательной информации Адмиралтейства в Лондоне, но он решил изменить свою научную специальность. Фрэнсис мечтал о фундаментальных, а не о прикладных исследованиях. Но чем именно он хотел заниматься, только предстояло выяснить.

В 1947 году Крик начал изучать биологию. Ему пришлось перейти от «элегантности и глубокого понимания» физики на «сложные химические механизмы, естественный отбор которых развивался в течение миллиардов лет».

Ученый писал, что для того чтобы перейти от физики к биологии, нужно «почти заново родиться»

Свой переход он объяснил тем, что физика уже и так достигла больших высот — необходимо было развитие биологических дисциплин. Крика очень воодушевляла эта мысль. Фрэнсиса многое интересовало в биологии — больше всего граница между живым и неживым и работа мозга. Он назвал этот интерес «критерием сплетни»: предметом истинных интересов является то, о чем хочется рассказывать приятелям.

Выбрать между молекулярной биологией и нейробиологией было непросто; Крик решил, что знание физики поможет ему в первой из областей. Для того чтобы в 30 лет изменить научную специальность, предстояло многое наверстать: прежде всего органическую химию, биологию, биофизику. Крик старался много читать, самообразовываться, посещать семинары вольнослушателем. И стал искать себе новую работу.

Тайна живого и неживого

Так Фрэнсис Крик попал в Кавендишскую лабораторию физического факультета Кембриджа, где в 1949 году началась работа по изучению структуры белков методом рентгеновской дифракции.

Любой биолог после открытий Дарвина и Менделя задумывался, как именно в живой природе передается наследственная информация. Спор о носителях наследственности стал, пожалуй, главной проблемой биологии середины ХХ века. В модели наследственности как смешения свойств родителей у потомства должна была все время появляться смесь свойств родителей.

Уотсон и крик 1953 что сделали

Бессмертная Генриетта Лакс: как мать пятерых детей изменила медицину

В дискретной модели наследственности гены — носители наследственных признаков не смешиваются, а лишь перекомбинируются. Опыты Менделя доказали дискретную природу наследственности — в них было ясно показано, что в третьем поколении регулярно появляются признаки первого поколения. В начале XX века открытия Менделя и Дарвина дождались Рональда Фишера — человека, соединившего биологию с математикой и математически обосновавшего менделевскую генетику и менделевские законы наследственности. И так было доказано, что наследственность дискретна, она состоит из генов, но как осуществляется процесс передачи?

Уотсон и крик 1953 что сделали

В Кавендишской лаборатории с помощью рентгенографии белков хотели понять технологию передачи наследственной информации. К тому моменту уже было известно, что белки, осуществляющие функции ферментов, вовлечены в эти процессы. ДНК была лучшим кандидатом на передачу наследственной информации. Сегодня мы знаем, что ДНК является матрицей и носителем генетической информации, но, помимо этого, важнейшую роль в чтении, регуляции и передаче, связанных с наследственной информацией, играют РНК и белки. Пахло несколькими Нобелевскими премиями и огромным научным прорывом.

В Кембридже, Лондоне и Калифорнии

В то время над структурой ДНК работали три команды исследователей в Америке и Англии: в Калифорнии — Лайнус Полинг, в Кавендишской лаборатории Кембриджа — Уотсон и Крик, в Университетском колледже Лондона — Морис Уилкинс и Розалинд Франклин.

Уотсон и крик 1953 что сделали

Полинг, только что открывший структуру белка, мог легко стать первым и в определении структуры ДНК, поэтому все команды спешили. История открытия драматична, а сюжет похож на детективный: в нем есть обиды, передергивания, ложь, этически сложные решения и то, что называется человеческим фактором.

Директор Кавендишской лаборатории решил пойти по неизбитому пути: он пригласил на работу Джеймса Уотсона, молодого американского биолога английского происхождения. Уотсон был вундеркиндом: в 23 он уже защитил докторскую диссертацию по биологии (о воздействии рентгеновских лучей на размножение бактериофагов), решил посвятить свою жизнь генетике и интересовался физикой. Фрэнсису Крику было 33, и в 1949-м он был всего лишь начинающим аспирантом-биофизиком, правда, со знаниями в нескольких областях; внимательным и наблюдательным самоучкой. Крик уже работал в рентгенографии и кристаллографии над структурой белков и неплохо понимал рентгенограммы. Итак, в Кембридже были биолог с интересом к физике и физик, увлекшийся биологией. Но, пожалуй, главным было то, что 23-летний Уотсон и 33-летний Крик неплохо работали вдвоем: они шутили и могли после работы сходить в паб. Как увидим, человеческие отношения значили многое в этом открытии.

Уотсон и крик 1953 что сделали

Радий — элемент-убийца, который долгое время считали лекарством. История Марии и Пьера Кюри

По-другому сложилась обстановка в Университетском колледже Лондона. В то время Медицинским исследовательским советом в отделении биофизики, где изучали структуру ДНК, руководил Джон Рэндалл, который собрал интересную команду: заместителем был его бывший аспирант Морис Уилкинс, талантливый физик, недавно вернувшийся из Беркли, где он принимал участие в проекте «Манхэттен». Уилкинс был замечательным ученым, и Рэндалл очень стремился привлечь его в проект: он пообещал Уилкинсу руководство исследованиями ДНК. Талант биофизика Розалинд Франклин, успешной ученой-рентгенографа, совершенствовавшей технику микросъемки и добивавшейся удивительных по четкости рентгенограмм молекул, был востребован во Франции; чтобы переманить ее в Лондон, Рэндалл втайне от Уилкинса пообещал ей ту же позицию — руководителя исследования. Это создало в лаборатории напряженную атмосферу: Уилкинс ждал от Франклин подчинения, а она требовала того же от Уилкинса; дошло до откровенной неприязни — Уилкинс звал ее «синим чулком», она не молчала в ответ. Как знать — если бы не ссора между ними, кто открыл бы структуру ДНК?

Фотография 51

Ключевую роль в решении задачи о строении ДНК сыграла рентгеновская фотография 51, сделанная в Университетском колледже Лондона Розалинд Франклин и ее аспирантом Раймондом Гослингом. Эта фотография была получена с такой точностью, потому что Франклин, хорошо знавшая физическую химию, умело управляла гидратацией образцов, а благодаря своему опыту в работе с дифрактором внесла усовершенствования в аппарат для съемки и настроила его.

Уотсон и крик 1953 что сделали

До этого все лаборатории пытались снять молекулу в разных проекциях, но снимки получались нечеткими. Уилкинс считал, что ДНК имеет спиральную структуру, Франклин ему возражала, а Лайнус Полинг считал, что молекула должна состоять из трех спиралей.

Розалинд Франклин получила фотографию 51 в мае 1952 года на дифрактометре усовершенствованной ею конструкции. В январе 1953 года Джеймс Уотсон посетил лабораторию Рэндалла — обе лаборатории финансировались Советом по медицинским исследованиям. Британцы спешили: Лайнус Полинг опубликовал препринт статьи о трехспиральной ДНК, и, если он увидит новые данные, он, разумеется, предположит, что спиралей две. Морис Уилкинс показал (без ведома Франклин) очень четкую фотографию 51, на которой явно были видны две спирали ДНК, Джеймсу Уотсону. Интересно, что сын Лайнуса Полинга, Питер, работал в лаборатории вместе с Уотсоном и Криком, и поэтому они видели препринт статьи Полинга о трехспиральной структуре.

Уотсон и крик 1953 что сделали

Много лет не стихают споры, почему Уотсон и Крик получили доступ к результатам Розалинд Франклин и не спросили у неё разрешения перед публикацией. Вышло, как говорится, не очень. Сэр Джон Рэндалл впоследствии настаивал, что все работы по ДНК принадлежат Совету по медицинским исследованиям; в начале 1953 года Розалинд Франклин уволилась из лаборатории Университетского колледжа.

Вырезай и склеивай, или Аденин, тимин, цитозин, гуанин

28 февраля 1953 года ликующий Фрэнсис Крик вошел в паб Eagle в Кембридже и объявил, что он и Джеймс Уотсон «нашли секрет жизни».

Месяцем позже Уотсон и Крик собрали трехмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.

Доступ Крика к результатам расчетов Франклин конца 1952 года, увиденная Уотсоном фотография 51 давали подтверждение догадкам, что ДНК — двойная спираль. Но как устроена сама эта двойная спираль, из чего она состоит, как устроены цепи и процесс репликации, — это открыли Уотсон и Крик.

Реконструкция модели двойной спирали ДНК Крика и Уотсона 1953 года
Фото: The Board of Trustees of the Science Museum / CC BY-NC-SA 4.0

Ключевой проблемой, которую необходимо было разгадать, было понимание того, как нуклеотидные основания образуют ядро двойной спирали. Закономерности связи нуклеотидов между собой навели ученых на мысль о комплементарности азотистых оснований. Окончательные правильные соотношения (A-T, G-C) были получены Уотсоном. Он нарезал из картона детали, моделирующие молекулы пуринов и пиримидинов, и стал раскладывать вырезки на столе.

Между прочим, в замечательной книге «Исчезающая ложка» Сэма Кина об истории химических элементов и открытий в главе о Лайнусе Полинге и открытии ДНК упоминается некий коллега Уотсона и Крика, заметивший равное процентное соотношение аденина — тизина в сухой ДНК; он пытался поделиться этим открытием с Полингом, тот отмахнулся, а вот Уотсон и Крик его выслушали и выводы сделали правильные. Кин не называет фамилии этого ученого.

За открытие структуры ДНК Джеймс Уотсон и Фрэнсис Крик совместно с Морисом Уилкинсом в 1962 году получили Нобелевскую премию по физиологии и медицине, Франклин премию не получила: она умерла от рака в 1958 году.

Уотсон и крик 1953 что сделали

19 марта 1953 года Крик написал сыну, который учился в британской школе-интернате, письмо об открытии. 10 апреля 2013 года это письмо было продано на аукционе Сhristie’s в Нью-Йорке за 6 миллионов долларов.

После открытия спирали

В 1954 году в возрасте 37 лет Фрэнсис Крик закончил работу над диссертацией и получил докторскую степень. Затем он занялся механизмами синтеза белка в Политехническом институте Бруклина в Нью-Йорке; потом вернулся в Кембридж, где работал до 1976 года, затем переехал в Калифорнию, в Институт Солка. В 1958-м на выборах профессора генетики в Кембридже Крик был забаллотирован и не получил должность.

Уотсон и крик 1953 что сделали

Несколько десятилетий Крик посвятил молекулярной биологии и процессам ДНК —> РНК —> белок; кроме этого, он поработал и во второй интересовавшей его области — нейробиологии.

Последовательного атеиста, его занимал вопрос, почему так много людей религиозны, несмотря на то что простая логика разбивает многие из религиозных утверждений в прах. Он предложил новое направление для исследований, которое назвал «биохимической теологией». Крик писал: «К молитве прибегает столь много людей, что трудно поверить, что она не приносит им удовлетворения». Он предлагал провести исследования людей за молитвой и предполагал, что при определенных условиях мозг верующих может вырабатывать дофамин.

Крик был ярым противником преподавания креационизма в школах и выдвигал идею сделать День Дарвина британским национальным праздником

Кроме того, Крик был сторонником идеи панспермии — распространения жизни во Вселенной; он считал, что производство живых систем из молекул — уникально редкое явление во Вселенной.

Крик — автор четырех книг: «О молекулах и людях», «Жизнь как она есть: ее происхождение и сущность», «До чего же дикая погоня: личное представление о научном открытии» и «Удивительные гипотезы: научный поиск души» — они дают представление о его мастерстве рассказчика, чувстве юмора и широте интересов, благодаря которой коллеги называли его «интеллектуальной электростанцией». Говорили, что подлости в нем не было ни на йоту, а вот смелости высказывать научные идеи — много.

Уотсон и крик 1953 что сделали

«Человека с узким кругозором легко увлечь лженаукой». Биолог Александр Панчин — о том, зачем детям изучать научный метод

Фрэнсис Крик умер в 88 лет в 2004 году в Калифорнии. А последствия их с Уотсоном открытия все еще служат человечеству. В 70-х годах появилось несколько важнейших научных методов, основанных на открытии Уотсона — Крика. Секвенирование позволяет изучать последовательность генов и проводить масштабные исследования вроде «Генома человека». Генетически модифицированные продукты, полимеразная цепная реакция (да-да, тот самый ПЦР-тест, который мы с вами постоянно сдавали весь прошлый год) — быстрая и точная диагностика вирусных заболеваний — всеми этими вещами человечество обязано Фрэнсису Крику и Джеймсу Уотсону.

На обложке: Фрэнсис Крик и Джеймс Уотсон. Фото: Shutterstock / Billion Photos, Wikimedia Commons / Wellcome Collection / CC BY 4.0

В статье использованы цитаты из книги Фрэнсиса Крика ​​​​​​»Что за безумное стремленье», вы​шедшей в 2020-м году в издательстве АСТ.

Источник

28 февраля 1953 года открыта двойная спираль ДНК.

Уотсон и крик 1953 что сделали

Этот день в истории:

В субботу 28 февраля 1953 г. двое молодых ученых, Дж.Уотсон и Ф.Крик, в небольшой закусочной Eagleв Кембридже объявили толпе пришедших на ленч людей, что они открыли секрет жизни. Много лет спустя Одиль, жена Ф.Крика, сказала, что она, конечно, не поверила ему: приходя домой, он часто заявлял что-нибудь в этом роде, но потом оказывалось, что это ошибка. На этот раз ошибки не было, и с этого заявления началась революция в биологии, которая продолжается и по сей день.

Уотсон и крик 1953 что сделали

25 апреля 1953 г. в журнале Nature появились сразу три статьи по структуре нуклеиновых кислот. В одной из них, написанной Дж.Уотсоном и Ф.Криком, была предложена структура молекулы ДНК в виде двойной спирали. В двух других, написанных М.Вилкинсом, А.Стоксом, Г.Вилсоном, Р.Франклин и Р.Гослингом, были приведены экспериментальные данные, подтверждающие спиральную структуру молекул ДНК. История открытия двойной спирали ДНК напоминает приключенческий роман и заслуживает хотя бы краткого изложения.

Уотсон и крик 1953 что сделали

Важнейшие представления о химической природе генов и матричном принципе их воспроизводства были впервые четко сформулированы в 1927 г. Н.К. Кольцовым (1872–1940). Его ученик Н.В. Тимофеев-Ресовский (1900–1981) воспринял эти идеи и развил их как принцип конвариантной редупликации генетического материала. Немецкий физик Макс Дельбрюк (1906–1981; Нобелевская премия 1969 г.), работавший в середине 1930-х гг. в Химическом институте кайзера Вильгельма в Берлине, под влиянием Тимофеева-Ресовского заинтересовался биологией настолько, что бросил физику и стал биологом.

В течение долгого времени, в полном соответствии с определением жизни, данным Энгельсом, биологи считали, что наследственным веществом являются какие-то особые белки. О том, что нуклеиновые кислоты могут иметь к генам какое-то отношение, никто и не думал – слишком уж они казались простыми. Так продолжалось до 1944 г., когда было сделано открытие, коренным образом изменившее все дальнейшее развитие биологии.

Уотсон и крик 1953 что сделалиВ этом году была опубликована статья Освальда Эйвери, Колина Маклеода и Маклина Маккарти о том, что у пневмококков наследуемые свойства передаются от одних бактерий другим с помощью чистой ДНК, т.е. именно ДНК является веществом наследственности. Затем Маккарти и Эйвери показали, что обработка ДНК расщепляющим ее ферментом (ДНКазой) приводит к потере ею свойств гена. До сих пор непонятно, почему это открытие осталось не отмеченным Нобелевской премией.

Незадолго до того, в 1940 г., Л.Полинг (1901–1994; Нобелевские премии 1954 и 1962 гг.) и М.Дельбрюк разработали концепцию молекулярной комплементарности в реакциях антиген-антитело. В те же годы Полинг и Р.Кори показали, что полипептидные цепи могут образовывать спиральные структуры, а несколько позже, в 1951 г., Полинг разработал теорию, позволявшую предсказывать виды рентгенограмм для различных спиральных структур.

После открытия Эйвери с соавторами, несмотря на то, что сторонников теории белковых генов оно не убедило, стало ясно, что необходимо определить структуру ДНК. Среди понявших значение ДНК для биологии началась гонка за результатами, сопровождавшаяся жесткой конкуренцией.

Уотсон и крик 1953 что сделали

Рентгеновская установка, применявшаяся в 1940-х гг. для изучения кристаллической структуры аминокислот и пептидов

В 1947–1950 гг. Э.Чаргафф на основании многочисленных экспериментов установил правило соответствия между нуклеотидами в ДНК: количества пуриновых и пиримидиновых оснований одинаковы, причем количество адениновых оснований равно количеству тиминовых, а количество гуаниновых оснований – количеству цитозиновых.

Первые структурные работы (С.Ферберг, 1949, 1952) показали, что ДНК имеет спиральную структуру. Имея огромный опыт определения структуры белков по рентгенограммам, Полинг без сомнения мог бы быстро решить проблему структуры ДНК, будь у него сколько-нибудь приличные рентгенограммы. Однако их не было, а по тем, что ему удалось получить, не удавалось сделать однозначный выбор в пользу одной из возможных структур. В результате, торопясь опубликовать результат, Полинг выбрал неверный вариант: в статье, опубликованной в начале 1953 г., он предложил структуру в виде трехнитчатой спирали, в которой фосфатные остатки образуют жесткую сердцевину, а азотистые основания расположены на периферии.

Много лет спустя, вспоминая историю открытия структуры ДНК, Уотсон заметил, что «Лайнус [Полинг] не заслуживал того, чтобы угадать правильное решение. Он не читал статей и ни с кем не разговаривал. Более того, он даже забыл собственную статью с Дельбрюком, в которой говорится о комплементарности репликации генов. Он думал, что сможет определить структуру только потому, что такой умный».

Когда Уотсон и Крик начали работу над структурой ДНК, уже многое было известно. Оставалось получить надежные рентгеноструктурные данные и интерпретировать их на основании уже имевшихся тогда сведений. Как все это происходило, хорошо описано в известной книге Дж.Уотсона «Двойная спираль», хотя многие факты в ней изложены весьма субъективно.

Уотсон и крик 1953 что сделали

Дж.Уотсон и Ф.Крик на пороге великого открытия

Конечно, для того, чтобы построить модель двойной спирали, нужны были обширные знания и интуиция. Но не будь совпадения нескольких случайностей, модель могла появиться несколькими месяцами позже, а ее авторами могли быть другие ученые. Вот несколько примеров.

Розалинда Франклин (1920–1958), работавшая с М.Вилкинсом (Нобелевская премия 1962 г.) в Кингс-колледже (Лондон), получила высочайшего качества рентгенограммы ДНК. Но работа эта ее интересовала мало, она считала ее рутинной и не спешила делать выводы. Этому способствовали ее плохие отношения с Вилкинсом.

Уотсон и крик 1953 что сделалиВ самом начале 1953 г. Вилкинс без ведома Р.Франклин показал Уотсону ее рентгенограммы. Кроме того, в феврале того же года Макс Перутц показал Уотсону и Крику годовой отчет Совета по медицинским исследованиям с обзором работ всех ведущих сотрудников, включая Р.Франклин. Этого оказалось достаточно, чтобы Ф.Крик и Дж.Уотсон смогли понять, как должна быть устроена молекула ДНК.

Рентгенограмма ДНК, полученная Р.Франклин

В статье Вилкинса с соавторами, опубликованной в том же номере Nature, что и статья Уотсона и Крика, показано, что, судя по рентгенограммам, структура ДНК из разных источников примерно одинакова и представляет собой спираль, у которой азотистые основания расположены внутри, а фосфатные остатки снаружи.

Статья Р.Франклин (с ее студентом Р.Гослингом) была написана в феврале 1953 г. Уже в начальном варианте статьи она описала структуру ДНК в виде двух коаксиальных и сдвинутых друг относительно друга вдоль оси спиралей с азотистыми основаниями внутри и фосфатами снаружи. По ее данным, шаг спирали ДНК в форме В (т.е. при относительной влажности >70%) составлял 3,4 нм, и на один виток приходилось 10 нуклеотидов. В отличие от Уотсона и Крика, Франклин не строила моделей. Для нее ДНК была не более интересным объектом исследования, чем каменный уголь и углерод, которыми она занималась во Франции до приезда в Кингс-колледж.

Узнав о модели Уотсона–Крика, она от руки дописала в окончательном варианте статьи: «Таким образом, наши общие представления не противоречат модели Уотсона и Крика, приведенной в предыдущей статье». Что и не удивительно, т.к. эта модель была основана на ее экспериментальных данных. Но ни Уотсон, ни Крик, несмотря на самые дружеские отношения с Р.Франклин, никогда не говорили ей того, что спустя годы после ее смерти много раз повторяли публично, – что без ее данных они никогда не смогли бы построить свою модель.

Уотсон и крик 1953 что сделали

Р.Франклин (крайняя слева) на встрече с коллегами в Париже

Р.Франклин умерла от рака в 1958 г. Многие считают, что, доживи она до 1962 г., Нобелевскому комитету пришлось бы нарушить свои строгие правила и вручить премию не трем, а четырем ученым. В знак признания заслуг ее и Вилкинса, одно из зданий в Кингс-колледже назвали «Франклин–Вилкинс», навсегда соединив имена людей, которые друг с другом почти не разговаривали.

При знакомстве со статьей Уотсона и Крика (она приведена ниже) удивляют ее малый объем и лапидарный стиль. Авторы прекрасно понимали значение своего открытия и, тем не менее, ограничились лишь описанием модели и кратким указанием, что «из постулированного … специфического образования пар сразу же следует возможный механизм копирования генетического материала». Сама модель взята как будто «с потолка» – нет никаких указаний на то, как она была получена. Не приведены ее структурные характеристики, за исключением шага и числа нуклеотидов на шаг спирали. Образование пар также описано нечетко, т.к. в то время использовались две системы нумерации атомов в пиримидинах. Статья иллюстрирована лишь одним рисунком, сделанным женой Ф.Крика. Однако для обычных биологов перегруженные кристаллографическими данными статьи Вилкинса и Франклин были трудны для восприятия, а статью Уотсона и Крика поняли все.

Позже и Уотсон, и Крик признавали, что просто боялись в первой же статье излагать все детали. Это было сделано во второй статье, озаглавленной «Генетические следствия из структуры ДНК» и напечатанной в Nature 30 мая того же года. В ней приведены обоснования модели, все размеры и детали структуры ДНК, схемы образования цепей и спаривания оснований, обсуждены различные следствия для генетики. Характер и тон изложения говорят о том, что авторы вполне уверены в своей правоте и важности своего открытия. Правда, пару Г–Ц они соединили только двумя водородными связями, но уже через год в методической статье указали, что возможны три связи. Вскоре и Полинг подтвердил это расчетами.

Открытие Уотсона и Крика показало, что генетическая информация записана в ДНК четырехбуквенным алфавитом. Но потребовалось еще 20 лет на то, чтобы научиться ее читать. Сразу же встал вопрос о том, каким должен быть генетический код. Ответ на него в 1954 г. предложил физик-теоретик Г.А. Гамов*: информация в ДНК кодируется триплетами нуклеотидов – кодонами. Это было подтверждено экспериментально в 1961 г. Ф.Криком и С.Бреннером. Затем в течение 3–4 лет в работах М.Ниренберга (Нобелевская премия 1965 г.), С.Очоа (Нобелевская премия 1959 г.), Х.Кораны (Нобелевская премия 1965 г.) и др. было определено соответствие между кодонами и аминокислотами.

В середине 1970-х гг. Ф.Сэнгер (р. 1918; Нобелевские премии 1958 и 1980 гг.), также работавший в Кембридже, разработал метод определения последовательностей нуклеотидов в ДНК. Сэнгер использовал его для определения последовательности 5386 оснований, составляющих геном бактериофага jХ174. Однако геном этого фага – редкое исключение: он представляет собой одноцепочечную ДНК.
Настоящая эра геномов началась в мае 1995 г., когда Дж.К. Вентер объявил о расшифровке первого генома одноклеточного организма – бактерии Haemophilus influenzae. Сейчас расшифрованы геномы около 100 различных организмов.

Еще недавно ученые думали, что всё в клетке определяется последовательностью оснований в ДНК, однако жизнь, по-видимому, гораздо сложнее.
Теперь хорошо известно, что ДНК нередко имеет форму, отличную от двойной спирали Уотсона–Крика. Более 20 лет назад в лабораторных экспериментах была обнаружена так называемая Z-спиральная структура ДНК. Это тоже двойная спираль, но закрученная в другую сторону по сравнению с классической структурой. До недавнего времени считалось, что Z-ДНК не имеет отношения к живым организмам, но недавно группа исследователей из Национальных институтов сердца, легких и крови (США) обнаружила, что один из генов иммунной системы активируется только тогда, когда часть его регуляторной последовательности переходит в Z-форму. Теперь предполагается, что временное образование Z-формы может быть необходимым звеном в регуляции экспресии многих генов. Обнаружено, что в некоторых случаях вирусные белки связываются с Z-ДНК и приводят к повреждению клеток.

Уотсон и крик 1953 что сделали

Кроме спиральных структур ДНК может образовывать хорошо известные скрученные кольца у прокариот и некоторых вирусов.

В прошлом году С.Найдл из Института исследований рака (Лондон) обнаружил, что нерегулярные концы хромосом – теломеры, представляющие собой одиночные цепи ДНК, – могут складываться в очень регулярные структуры, напоминающие пропеллер). Сходные структуры были обнаружены и в других участках хромосом и получили название G-квадруплексов, поскольку образуются участками ДНК, богатыми гуанином.

Уотсон и крик 1953 что сделали

Пропеллерная структура ДНК

По-видимому, такие структуры способствуют стабилизации участков ДНК, на которых они образуются. Один из G-квадруплексов был обнаружен непосредственно рядом с геном c-MYC, активация которого вызывает рак. В этом случае он может предотвращать связывание с ДНК белков – активаторов гена, и исследователи уже начали поиск препаратов, стабилизирующих структуру G-квадруплексов, в надежде, что они помогут в борьбе с раком.

В последние годы была обнаружена не только способность молекул ДНК к формированию структур, отличных от классической двойной спирали. К удивлению ученых, в ядре клетки молекулы ДНК находятся в непрерывном движении, как бы «танцуют».

Давно известно, что ДНК образует комплексы с белками-гистонами в ядре с протамином в сперматозоидах. Однако эти комплексы считались прочными и статичными. С помощью современной видеотехники удалось заснять динамику этих комплексов в реальном времени. Оказалось, что молекулы ДНК постоянно образуют мимолетные связи друг с другом и с разнообразными белками, которые, как мухи, вьются вокруг ДНК. Некоторые белки движутся с такой скоростью, что от одной стороны ядра до другой проходят за 5 с. Даже гистон Н1, наиболее прочно связанный с молекулой ДНК, каждую минуту диссоциирует и снова связывается с ней. Это непостоянство связей помогает клетке регулировать активность своих генов – ДНК постоянно проверяет наличие в своем окружении факторов транскрипции и других регуляторных белков.

Ядро, которое считалось довольно статическим образованием – хранилищем генетической информации, – на самом деле живет бурной жизнью, и от того, какова хореография его компонентов, во многом зависит благополучие клетки. Некоторые болезни человека могут быть вызваны нарушениями координации этих молекулярных танцев.

Очевидно, что при такой организации жизни ядра его разные участки неравноценны – наиболее активные «танцоры» должны быть ближе к центру, а наименее активные – к стенкам. Так оно и оказалось. Например, у человека хромосома 18, в которой всего несколько активных генов, всегда находится вблизи границы ядра, а набитая активными генами хромосома 19 – всегда вблизи его центра. Более того, движение хроматина и хромосом и даже просто взаимное расположение хромосом, по-видимому, влияет на активность их генов. Так, близкое расположение хромосом 12, 14 и 15 в ядрах клеток лимфомы мыши считают фактором, способствующим превращению клетки в раковую.

Прошедшие полвека в биологии стали эрой ДНК – в 1960-х гг. расшифрован генетический код, в 1970-х гг. получены рекомбинантные ДНК и разработаны методы секвенирования, в 1980-х гг. разработана полимеразная цепная реакция (ПЦР), в 1990 г. начат проект «Геном человека». Один из друзей и коллег Уотсона, У.Гилберт, считает, что традиционная молекулярная биология умерла – теперь все можно выяснить, изучая геномы.

Уотсон и крик 1953 что сделали

Ф.Крик среди сотрудников лаборатории молекулярной биологии в Кембридже

Сейчас, просматривая статьи Уотсона и Крика 50-летней давности, удивляешься, как много из предположений оказались верными или близкими к истине – ведь у них не было почти никаких экспериментальных данных. Что касается самих авторов, пятидесятилетие открытия структуры ДНК оба ученых встречают, активно работая теперь уже в разных областях биологии. Дж.Уотсон был одним из инициаторов проекта «Геном человека» и продолжает работать в области молекулярной биологии, а Ф.Крик в начале 2003 г. опубликовал статью о природе сознания.

Дж.Д. Уотсон,
Ф.Г.К. Крик,
отдел по изучению молекулярной структуры биологических систем Совета по медицинским исследованиям, Кавендишская лаборатория, Кембридж. 25 апреля, 1953 г.Молекулярная структура нуклеиновых кислот

Мы хотим предложить модель структуры соли дезоксирибонуклеиновой кислоты (ДНК). Эта структура обладает новыми свойствами, представляющими интерес для биологии.
Структура нуклеиновой кислоты уже предложена Полингом и Кори. Они любезно позволили нам ознакомиться с рукописью их статьи до публикации. Их модель состоит из трех переплетенных цепей с фосфатами, расположенными вблизи оси спирали, и азотистыми основаниями на периферии. По нашему мнению, такая структура неудовлетворительна по двум причинам. Во-первых, мы считаем, что исследуемый материал, дающий рефлексы рентгеновских лучей, является солью, а не свободной кислотой. Без кислотных атомов водорода неясно, какие силы могут поддерживать целостность такой структуры, особенно с учетом того, что отрицательно заряженные фосфатные группы вблизи ее оси будут взаимно отталкиваться. Во-вторых, некоторые из ван-дер-ваальсовых расстояний оказываются слишком малыми.
Еще одна трехцепочечная структура предложена Фрейзером (в печати). В его модели фосфаты находятся снаружи, а азотистые основания, соединенные между собой водородными связями, – внутри спирали. В статье эта структура определена очень плохо и по этой причине мы не станем ее комментировать.
Мы хотим предложить радикально отличающуюся от этих структуру соли дезоксирибонуклеиновой кислоты. Эта структура состоит из двух спиральных цепей, завитых вокруг общей оси. Мы исходили из обычных предположений, а именно, что каждая цепь образована остатками b-D-дезоксирибофуранозными остатками, соединенными 3′,5′-связями. Эти цепи (но не их основания) соединены связями (диадами), перпендикулярными к оси спирали. Обе цепи образуют правую спираль, но, благодаря диадам, имеют противоположные направления. Каждая цепь слегка напоминает модель № 1 Ферберга тем, что основания расположены внутри спирали, а фосфаты снаружи. Конфигурация сахара и атомов вблизи него близка к «стандартной конфигурации» Ферберга, в которой сахар расположен приблизительно перпендикулярно к связанному с ним основанию. Остатки на каждой цепи расположены с шагом 3,4 А по направлению z. Мы предположили, что угол между соседними остатками составляет 36 о, так что эта структура повторяется через каждые 10 остатков, т.е. через 34 А. Расстояние от оси до атома фосфора составляет 10 А. Поскольку фосфаты расположены снаружи, они легко доступны для катионов.
Вся структура открыта и содержит довольно много воды. При уменьшении содержания воды можно ожидать, что основания несколько наклонятся, и вся структура станет более компактной.
Новым свойством структуры является способ, которым цепи удерживаются друг возле друга за счет пуриновых и пиримидиновых оснований. Плоскости оснований перпендикулярны оси спирали. Они попарно соединены между собой, причем одно основание на первой цепи соединено водородной связью с одним основанием на второй цепи таким образом, что эти основания расположены бок о бок друг с другом и имеют одну и ту же z-координату. Для того, чтобы образовалась связь, одно основание должно быть пуриновым, а другое пиримидиновым. Водородные связи образуются между позицией 1 пурина и позицией 1 пиримидина и между позицией 6 пурина и позицией 6 пиримидина.
Предполагается, что основания входят в эту структуру только в наиболее вероятной таутомерной форме (т.е. в кето-, а не в энольной форме). Обнаружено, что только специфические пары оснований могут образовывать связи друг с другом. Эти пары таковы: аденин (пурин) – тимин (пиримидин) и гуанин (пурин) – цитозин (пиримидин).
Другими словами, если аденин является одним из членов пары на любой цепи, то в соответствии с этим предположением другим членом пары должен быть тимин. То же относится к гуанину и цитозину. Последовательность оснований на одной цепи, по-видимому, ничем не ограничена. Однако, поскольку могут образовываться только определенные пары оснований, то при заданной последовательности оснований одной цепи последовательность оснований другой цепи определяется автоматически.
Экспериментально обнаружено, что в ДНК отношения количества аденинов к количеству тиминов и количества гуанинов к количеству цитозинов всегда близко к единице.
Вероятно, невозможно построить такую структуру с рибозой вместо дезоксирибозы, т.к. дополнительный атом кислорода делает ван-дер-ваальсово расстояние слишком малым.
Опубликованные до настоящего времени рентгеноструктурные данные по дезоксирибонуклеиновой кислоте недостаточны для строгой проверки нашей модели. Насколько мы можем судить, она приблизительно соответствует экспериментальным данным, но ее нельзя считать доказанной, пока не будет проведено ее сопоставление с более точными экспериментальными данными. Некоторые из них приведены в следующей статье. Нам не были известны детали представленных в ней результатов, когда мы придумывали нашу структуру, которая основывается главным образом, хотя и не только, на опубликованных экспериментальных данных и стереохимических соображениях.
Следует заметить, что из постулированного нами специфического образования пар сразу же следует возможный механизм копирования генетического материала.
Все детали структуры, включая условия, необходимые для ее построения, и наборы координат атомов будут приведены в последующих публикациях.
Мы очень признательны д-ру Джерри Донахью за постоянные советы и критику, особенно относительно межатомных расстояний. Нас также стимулировало общее представление о неопубликованных экспериментальных данных и идеях д-ра М.Г.Ф. Вилкинса и д-ра Р.Э. Франклин и их сотрудников в Кингс-колледже в Лондоне. Один из нас (Дж.Д.У.) получал стипендию Национального фонда детского паралича.

* Георгий Антонович Гамов (1904–1968, эмигрировал в США в 1933 г.) – один из крупнейших ученых XX в. Он автор теории тета-распада и туннельного эффекта в квантовой механике; жидко-капельной модели атомного ядра – основы теорий ядерного распада и термоядерных реакций; теории внутренней структуры звезд, показавшей, что источником солнечной энергии являются термоядерные реакции; теории «Большого взрыва» в эволюции Вселенной; теории реликтового излучения в космологии. Хорошо известны его научно-популярные книги, такие как серия книг о мистере Томпкинсе («Мистер Томпкинс в Стране чудес», «Мистер Томпкинс внутри себя» и др.), «Раз, два, три… бесконечность», «Планета под названием Земля» и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *