Унарная позиционная непозиционная система счисления чем они различаются

Основы систем счисления

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления — это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.

Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.

Единичная система счисления

Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система

Унарная позиционная непозиционная система счисления чем они различаются

Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

Унарная позиционная непозиционная система счисления чем они различаются

Вавилонская шестидесятеричная система

В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Унарная позиционная непозиционная система счисления чем они различаются
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Унарная позиционная непозиционная система счисления чем они различаются
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Унарная позиционная непозиционная система счисления чем они различаются
Теперь число 3632 следует записывать, как:

Унарная позиционная непозиционная система счисления чем они различаются

Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система

Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.

Позиционные системы счисления

Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.

Десятичная система счисления

Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления

Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления

8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Шестнадцатеричная система счисления

Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления

Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.

Смешанные системы счисления

К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.

Преобразование в десятичную систему счисления

Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510

Преобразование из десятичной системы счисления в другие

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы

В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118

Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную

Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 458: 45 = (100) (101) = 1001012

Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Преобразование дробной части двоичной системы в 8- и 16-ую

Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28

Преобразование дробной части десятичной системы в любую другую

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Найдите дополнительную информацию об унарной, позиционных и непозиционных системах счисления.

Найдите дополнительную информацию об унарной, позицион­ных и непозиционных системах счисления. Чем они различа­ются? Приведите примеры.

Ответ

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например, чтобы цифры располагались по убыванию.

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»). Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Источник

Разница между позиционной и непозиционной системой счисления

Системы счисления классифицируются на 2 основные разновидности — позиционные и непозиционные. В чем заключается специфика тех и других?

Унарная позиционная непозиционная система счисления чем они различаются

Что представляет собой позиционная система счисления?

Рассматриваемая система счисления характеризуется тем, что цифры в ней в зависимости от своей позиции относительно начала числа (при его прочтении слева направо) будут иметь разную силу. Чем правее расположена цифра — тем она слабее. Например, в числе 143 самая сильная цифра — 1, поскольку обозначает сотню, далее по силе — 4, поскольку она обозначает десяток, третья по силе цифра — 3, так как она соответствует единичному числу.

Систем счисления, считающихся позиционными, в мире используется довольно много. В числе самых распространенных — двоичная (применяется в программировании), десятичная (более всего распространена в повседневной жизни), восьмеричная и шестнадцатеричная (в основном они применяются в инженерном деле).

Что представляет собой непозиционная система счисления?

Соответствующая система счисления характеризуется тем, что цифры в ней не всегда делятся по силе в зависимости от позиции относительно начала числа. Разность в их силе, в принципе, возможна, но не всегда является правилом.

Унарная позиционная непозиционная система счисления чем они различаются

Например, римское число XX (двадцать) состоит из двух одинаковых по силе цифр X, каждая из которых обозначает десять. В свою очередь, в числе XV (пятнадцать) первая цифра сильнее, поскольку соответствует десятичному основанию, а вторая — единичному числу пять.

Кроме того, в непозиционной системе счисления, в которой используются римские цифры, число, расположенное левее, может быть более слабым. Например, римская цифра IV, то есть 4, состоит из более слабой, расположенной левее I(единицы) и более сильной, расположенной правее V (пять). Цифра 4 образуется, таким образом, посредством вычитания более слабой цифры из более сильной.

Сравнение

Главное отличие позиционной системы счисления от непозиционной заключается в том, что в первой в структуре числа, состоящего более чем из одной цифры, все цифры отличаются по силе (в общем случае сильнее те, что расположены левее). Во второй системе счисления данная закономерность наблюдается только в некоторых случаях. Вполне возможно, что в структуре числа будут присутствовать цифры с одинаковой силой. При этом если сила цифр разная, необязательно, что более сильные будут располагаться левее, может наблюдаться и обратная ситуация.

Определив,в чем разница между позиционной и непозиционной системой счисления, зафиксируем выводы в таблице.

Источник

Непозиционные системы счисления

Здравствуйте, на этой странице рассмотрим одну из важных тем в информатике – а именно непозиционные системы счисления. Здесь вы узнаете, что является непозиционными системами, и познакомитесь с основными определениями, которые относятся к этой теме. Также затронем их отличия от позиционных нумераций и приведем достоинства и недостатки.

Определение непозиционной системы счисления

Непозиционными являются нумерации, где положение цифры в числе (разряд) не влияет на её значение.

Чтобы разобраться конкретно в том, что здесь написано, выберем самое популярное исчисление, которое называется десятичным. Вы все с ним знакомы. Им пользуются люди в большинстве стран мира. Алфавит десятичной нумерации состоит из арабских знаков – чисел от 0 до 9. Данный вид записи является позиционным. Почему, спросите вы? Всё просто. В качестве примера приведем два числа – 1000 и 10. Смотрите на цифру один – в зависимости от того, какое место она занимает в числе, меняется значение, которое она обозначает. В числе 1000 – тысячи, а 10 – десятки.

В непозиционных представлениях все обстоит совсем иначе. Давайте приведем в пример Римскую нотацию. Её вы тоже видели и с ней знакомы. Вспомните – в книгах по истории с помощью неё представляются века и номера монархов. Как пример, Петр I или Иван IV Грозный. Обратите внимание на I и IV, которые в арабском виде запишутся как 1 и 4. Здесь значение единицы не изменяется от того, какое место она занимает. На первом месте она стоит или на втором – неважно.

Историками считается, что исчисления, которые называются непозиционными, ведут свои корни от глубокой древности – это первые формы для счета, которые использовал человек. Поговорим дальше про их виды и разберем недостатки.

Примеры непозиционных систем счисления

Унарная непозиционная

Еще называется непозиционной единичной. Скорее всего, вы уже догадались, почему она так называется. Дело в том, что в этой форме записи используется только один знак. Это представление применяли древнейшие люди. Для записи значений использовались насечки на костях животных или стенах пещеры. Также в обиходе были зарубки на дереве. Используется до сих пор. Вспомните сериалы, где заключенные отсчитывают свои дни в неволе. Также применяется для обучения детей счету – так называемый пальцевый метод.

Унарная позиционная непозиционная система счисления чем они различаются

Унарная сс – отметки на кости

Римская непозиционная

Её мы уже привели выше. Используется до сих пор. В качестве алфавита здесь применяются латинские буквы, такие как V, I, D, M, C, X, L. Всё остальное же получается с помощью различного написания этих символов – здесь используются принципы вычитания и сложения. Так если младший разряд записывается перед старшим, то он вычитается. Если же наоборот, то складывается. Есть у неё и еще одна особенность – нет 0, который является отсутствием числа. Ниже приведена небольшая табличка с расшифровкой римских цифр.

Римское непозиционное счисление появилось в Риме на самом пике процветания империи. Однако и после того как империя распалась этим счислением пользовались еще очень долго. Она использовалась в Европе до 1200х годов, пока великий математик Леонардо Фибоначчи не издал трактат – “Книга Абака”. В нем ученый показывал превосходство позиционных систем над непозиционными.

Унарная позиционная непозиционная система счисления чем они различаются

Египетская непозиционная

Возникла в третьем тысячелетии до нашей эры. Все значения записывались здесь с помощью иероглифов. Каких-то особых правил здесь не существовало – все числовые значения просто складывались. Также не было и правил, которые относятся к записи – последовательность могла быть записана, как слева на право, так и справа налево. Иероглифы могли занимать любой разряд. Ниже приведена табличка со значениями некоторых из них.

Унарная позиционная непозиционная система счисления чем они различаются

Алфавитные системы счисления

Стоит отметить эти формы записи. Здесь все очень просто – каждой букве алфавита сопоставлялась цифра. Стоит отметить, что эти непозиционные системы являются более совершенными, чем все предыдущие, поскольку имелись обозначения десятков и сотен. К недостаткам можно отнести их сложность. Здесь можно выбрать два популярных примера.

Славянская

Использовалась нашими предками во времена древней Руси. Первые записи о ней в летописи временных лет появляются с начала десятого века. Каждой букве глаголицы соответствовало некоторое число. Полностью вышла из использования во времена Российской Империи в восемнадцатом веке, её место заняло десятичное исчисление. Пользуемся мы им, и посей день.

Унарная позиционная непозиционная система счисления чем они различаются

Греческая

Она же называется непозиционной новогреческой или ионийской. Упоминания о ней датируются третьим веком до нашей эры. Здесь счет велся буквами, которые употреблялись в римской письменности. Пришла на смену старогреческому формату. По сути, непозиционное кириллическое представление является её копией.

Достоинства и недостатки. Возможность использования в информатике и других науках.

К достоинствам можно отнести только их простоту. Как мы уже говорили выше, та же унарная непозиционная система применяется для обучения детей. Однако недостатков у них гораздо больше и они очень существенные:

Всё эти недостатки делают их использование в математике и информатике непрактичным.

Заключение

В качестве итогов можно сказать, что после прочтения этого материала вы имеете полное представление о том, что называется непозиционными системами счисления, овладели нужным определением. Знаете виды, которые использовали разные народы в различных частях земного шара. Теперь вы имеете представление о том, как считали люди в Риме, Египте, Греции и древней Руси. Знаете их плюсы и минусы. Понимаете, почему нельзя использовать их в информатике. Как по мне тема достаточно легкая, но очень интересная. При возникновении вопросов задайте их в комментариях к этой записи. Буду рад на них ответить. Также вы можете почитать другие материалы, которые затрагивают информатику на нашем сайте.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *