Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Система счисления

Содержание:

Задумывались ли вы над тем, почему при сложении тех или иных чисел получается строго определённое число? А почему мы обходимся всего десятью цифрами? Странные вопросы. Дело в том, что мы привыкли проводить вычисления, используя всего одну и ту же систему счисления. Однако это было так не всегда.

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Системой счисления принято называть знаковую систему, в которой были приняты определённые правила записи чисел. Знаки, с помощью которых записывают числа, мы называем цифрами, а их совокупность — алфавитом системы счисления.

Для любой системы счисления, цифры которые служат для обозначения чисел, называемые узловыми; остальные числа (алгоритмические) получаются в результате операций над узловыми числами.

В Древнем Вавилоне узловыми числами выступали 1,10,60;

Системы счисления отличаются друг от друга выбором узловых чисел и способами образования алгоритмических чисел. В информатике выделяют такие виды систем счисления, как:

Унарная система

В самой древней и простой унарной системе счисления, для записи любых чисел использовался всего лишь один символ — в виде зарубки, выемки, узелка или камушка.

Если вы думаете, что не пользуетесь этой системой счисления, тогда не считайте на пальцах!

Непозиционная система счисления

Для такой системы счисления количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа.

Примерно в III тысячелетии до н.э. древние египтяне разработали десятичную непозиционную систему счисления, в которой для обозначения узловых чисел 1, 10, 100 использовались символы – иероглифы.

В большинстве непозиционных систем счисления новые числа образуются путём сложения узловых чисел.

Каноническим примером непозиционной системы счисления всегда приводится римская система счисления. В качестве узловых цифр здесь применялись заглавные буквы латинского алфавита:

I = 1,
V = 5,
X = 10,
L = 50,
C = 100,
D = 500,
M = 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает единицу независимо от места в числе.

Однако римская система не может быть полностью непозиционной, так как меньшая цифра, которая стоящая слева перед большей, должна вычитаться из неё:

IV = 4, в то время как:
VI = 6

Непозиционной системой счисления являлась и кириллическая система счисления — система счисления, применяемая на территории Древней Руси до XVIII века, основанная на алфавитной записи чисел с использованием кириллицы.

Позиционная система счисления

В позиционной системе счисления, количественный эквивалент цифры как раз зависит от её положения в записи числа. Основание позиционной системы счисления соответствует количеству цифр, которые составляют её алфавит.

Основным примером позиционной системы счисления является десятичная система записи чисел, к которой мы все так уже привыкли с детства, и в которой производим все основные математические вычисления.

Алфавитом десятичной системы являются цифры от 0 до 9. Образование чисел в ней происходит следующим образом: значения цифр умножаются на их «веса» соответствующих разрядов, а затем все полученные значения складываются.

Числительными русского языка, такое значением хорошо отражается, к примеру: «пять-сот семь-десят два».

Основанием позиционной системы счисления является любое натуральное число q>1. Алфавитом произвольной позиционной системы счисления с основанием q служат числа 0,1. q−1, каждое из которых записывается при помощи одного уникального символа; младшей цифрой всегда выступает 0.

Основными преимуществами любой позиционной системы счисления являются простота выполнения арифметических операций и небольшое количество символов, используемых в записи чисел.

Представление числа в позиционной системе счисления

В позиционной системе счисления с основанием q всякое число может быть представлено по формуле (развёрнутая форма записи):

А — число;
q — основание системы счисления;
ai — цифры, принадлежащие алфавиту данной системы счисления;
n — количество целых разрядов числа;
m — количество дробных разрядов числа;
qi — «вес» i-го разряда.

Свёрнутой формой записи числа называется его представление в виде:

Источник

Унарная система счисления

Здравствуйте, в этой статье пойдет речь про унарную систему счисления. Ниже мы разберем основные определения, касающиеся данной темы, историю происхождения, её достоинства и недостатки. Рассмотрим области, где применяется эта система исчисления, примеры и её значение в информатике и других прикладных науках.

Экскурс в прошлое

Как только древние люди научились подсчитывать предметы, то сразу появилась потребность в отображении чисел. Для подсчета добычи, овец или жителей племени использовались зарубки на деревьях, засечки на костях животных и стенах пещер, камушки, и другие предметы, с помощью которых можно отобразить количественное значение.

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Пример У.С: засечки на кости

Ученые археологи нашли такие «записи», которые сохранились до наших дней со времен Палеолита. А это, немного немало, около десяти тысяч лет до нашей эры. Со временем люди стали объединять предметы в группы, появились более совершенные позиционные системы. Однако единичная система исчисления, еще называемая учеными унарной, никуда не ушла – человечество пользуется ей до сих пор. Рассмотрим её более подробно…

Определение и его разъяснение

Унарной – называется непозиционная система счисления, которая состоит всего лишь из одного знака (цифры), который обозначает единицу. Как было написано выше, за «знак» можно было взять всё что угодно – палочку на стене пещеры или зарубку на дереве.

Теперь немного поговорим, почему она называется непозиционной. Тут все очень просто – в таких отображениях положение знака (цифры) не влияет на его значение. Возьмите две спички и примите одну за единицу, поменяйте их местами – число не изменится, каждая спичка, как обозначала 1, так и будет её обозначать.

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

В позиционных исчислениях все несколько иначе. Давайте возьмем в пример, самое популярное в мире, десятичное счисление. Запишите число 10 и поменяйте нулик с единичкой местами – у вас получится другое число (01). Почему так вышло? Дело в том, что в первом случае 1 обозначала количество десятков, а во втором количество единиц. То есть, поменяв место цифры, мы изменили её значение. Поэтому представление называется позиционным. Далее рассмотрим несколько интересных фактов.

Интересные исторические факты

Не одна древняя цивилизация не использовала примитивную унарную запись в чистом виде, однако она лежала в основе большинства форм представления чисел существовавших в древности.

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Преимущества и недостатки

Скорее всего, Вы сами о них уже догадались. К преимуществам унарной формы можно отнести простоту – используется всего лишь один знак, а это значит, что легко выполняются простейшие математические операции, такие как сложение и вычитание.

Недостатков же больше и они очень существенные. Именно из-за них люди предпочли использовать позиционные нумерации:

Примеры применения в мире, информатике и других науках

Заключение

Вот Вы и познакомились с самой примитивной – непозиционной унарной системой счисления. Теперь Вы знаете основные положения и примеры, касающиеся этой темы, области применения в информатике и других сферах. При возникновении вопросов задавайте их в комментариях. А также можете прочитать про Греческий формат.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Найдите дополнительную информацию об унарной, позиционных и непозиционных системах счисления.

Найдите дополнительную информацию об унарной, позицион­ных и непозиционных системах счисления. Чем они различа­ются? Приведите примеры.

Ответ

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например, чтобы цифры располагались по убыванию.

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»). Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Источник

Разница между позиционной и непозиционной системой счисления

Системы счисления классифицируются на 2 основные разновидности — позиционные и непозиционные. В чем заключается специфика тех и других?

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Что представляет собой позиционная система счисления?

Рассматриваемая система счисления характеризуется тем, что цифры в ней в зависимости от своей позиции относительно начала числа (при его прочтении слева направо) будут иметь разную силу. Чем правее расположена цифра — тем она слабее. Например, в числе 143 самая сильная цифра — 1, поскольку обозначает сотню, далее по силе — 4, поскольку она обозначает десяток, третья по силе цифра — 3, так как она соответствует единичному числу.

Систем счисления, считающихся позиционными, в мире используется довольно много. В числе самых распространенных — двоичная (применяется в программировании), десятичная (более всего распространена в повседневной жизни), восьмеричная и шестнадцатеричная (в основном они применяются в инженерном деле).

Что представляет собой непозиционная система счисления?

Соответствующая система счисления характеризуется тем, что цифры в ней не всегда делятся по силе в зависимости от позиции относительно начала числа. Разность в их силе, в принципе, возможна, но не всегда является правилом.

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Например, римское число XX (двадцать) состоит из двух одинаковых по силе цифр X, каждая из которых обозначает десять. В свою очередь, в числе XV (пятнадцать) первая цифра сильнее, поскольку соответствует десятичному основанию, а вторая — единичному числу пять.

Кроме того, в непозиционной системе счисления, в которой используются римские цифры, число, расположенное левее, может быть более слабым. Например, римская цифра IV, то есть 4, состоит из более слабой, расположенной левее I(единицы) и более сильной, расположенной правее V (пять). Цифра 4 образуется, таким образом, посредством вычитания более слабой цифры из более сильной.

Сравнение

Главное отличие позиционной системы счисления от непозиционной заключается в том, что в первой в структуре числа, состоящего более чем из одной цифры, все цифры отличаются по силе (в общем случае сильнее те, что расположены левее). Во второй системе счисления данная закономерность наблюдается только в некоторых случаях. Вполне возможно, что в структуре числа будут присутствовать цифры с одинаковой силой. При этом если сила цифр разная, необязательно, что более сильные будут располагаться левее, может наблюдаться и обратная ситуация.

Определив,в чем разница между позиционной и непозиционной системой счисления, зафиксируем выводы в таблице.

Источник

Основы систем счисления

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления — это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.

Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.

Единичная система счисления

Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Вавилонская шестидесятеричная система

В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Унарная позиционная и непозиционная системы счисления чем отличаются примеры
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Унарная позиционная и непозиционная системы счисления чем отличаются примеры
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Унарная позиционная и непозиционная системы счисления чем отличаются примеры
Теперь число 3632 следует записывать, как:

Унарная позиционная и непозиционная системы счисления чем отличаются примеры

Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система

Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.

Позиционные системы счисления

Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.

Десятичная система счисления

Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления

Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления

8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Шестнадцатеричная система счисления

Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления

Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.

Смешанные системы счисления

К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.

Преобразование в десятичную систему счисления

Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510

Преобразование из десятичной системы счисления в другие

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы

В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118

Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную

Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 458: 45 = (100) (101) = 1001012

Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Преобразование дробной части двоичной системы в 8- и 16-ую

Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28

Преобразование дробной части десятичной системы в любую другую

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *