Уклон что это физика
Физика: движение тела по наклонной плоскости. Примеры решения и задачи
Основная формула динамики
Прежде чем переходить к изучению физики движения тела по плоскости наклонной, приведем необходимые теоретические сведения для решения этой задачи.
В XVII Исаак Ньютон благодаря практическим наблюдениям за движением макроскопических окружающих тел вывел три закона, носящих в настоящее время его фамилию. На этих законах зиждется вся классическая механика. Нас интересует в данной статье лишь второй закон. Его математический вид приведен ниже:
Вам будет интересно: Эйлера теорема. Теорема Эйлера для простых многогранников
Формула говорит о том, что действие внешней силы F¯ придаст ускорение a¯ телу массой m. Это простое выражение будем далее использовать для решения задач движения тела по плоскости наклонной.
Наклонная плоскость и силы, действующие на тело, находящееся на ней
Вам будет интересно: Афанасьевская культура: локализация, датировка, носители
Ключевым моментом, от которого зависит успех решения задач движения тела по плоскости наклонной, является определение действующих на тело сил. Под определением сил понимают знание их модулей и направлений действия.
Ниже дан рисунок, где показано, что тело (автомобиль) находится в покое на наклоненной под углом к горизонту плоскости. Какие силы на него действуют?
Список ниже перечисляет эти силы:
Далее опишем подробнее каждую из них применительно к рассматриваемой задаче.
Сила тяжести
Вам будет интересно: Антрополог Станислав Владимирович Дробышевский: биография и научная деятельность
Реакция опоры
Второй действующей на тело силой является реакция опоры (N). Причина ее появления связана с третьим законом Ньютона. Величина N показывает, с какой силой плоскость воздействует на тело. Она направлена вверх перпендикулярно плоскости наклонной. Если бы тело находилось на горизонтальной поверхности, то N равнялась бы его весу. В рассматриваемом же случае N равна лишь второй составляющей, полученной при разложении силы тяжести (см. абзац выше).
Реакция опоры не оказывает прямого воздействия на характер движения тела, поскольку она перпендикулярна плоскости наклона. Тем не менее она обуславливает появление трения между телом и поверхностью плоскости.
Сила трения
Третьей силой, которую следует учитывать при исследовании движения тела по наклонной плоскости, является трение (Ff). Физическая природа трения является непростой. Ее появление связано с микроскопическими взаимодействиями соприкасающихся тел, имеющих неоднородные поверхности контакта. Выделяют три вида этой силы:
Трение покоя и скольжения описываются одной и той же формулой:
Трение качения описывается по отличной от предыдущей формуле. Она имеет вид:
Сила Ff, какого бы типа она ни была, всегда направлена против движения тела, то есть Ff стремится остановить тело.
Натяжение нити
При решении задач движения тела по наклонной плоскости эта сила не всегда присутствует. Ее появление определяется тем, что находящееся на наклонной плоскости тело связано с помощью нерастяжимой нити с другим телом. Часто второе тело свисает на нити через блок за пределами плоскости.
На находящийся на плоскости предмет, сила натяжение нити воздействует либо ускоряя его, либо замедляя. Все зависит от модулей сил, действующих в физической системе.
Появление этой силы в задаче значительно усложняет процесс решения, поскольку приходится рассматривать одновременно движение двух тел (на плоскости и свисающего).
Далее приведем пример решения двух задач без участия силы натяжения нити.
Задача на определение критического угла
Теперь пришло время применить описанную теорию для решения реальных задач движения по наклонной плоскости тела.
Предположим, что брус из дерева имеет массу 2 кг. Он находится на деревянной плоскости. Следует определить, при каком критическом угле наклона плоскости брус начнет по ней скользить.
Скольжение бруса наступит только тогда, когда суммарная действующая вниз вдоль плоскости сила на него окажется больше нуля. Таким образом, чтобы решить эту задачу, достаточно определить результирующую силу и найти угол, при котором она станет больше нуля. Согласно условию задачи на брус будут вдоль плоскости оказывать действие только две силы:
Чтобы началось скольжение тела, должно выполняться условие:
Отметим, что если составляющая силы тяжести превысит трение покоя, то она также будет больше силы трения скольжения, то есть начавшееся движение будет продолжаться с постоянным ускорением.
Рисунок ниже показывает направления всех действующих сил.
Обозначим критический угол символом θ. Несложно показать, что силы Fg1 и Ff будут равны:
Подставляем найденные величины в неравенство, получаем:
m × g × sin(θ) ≥ µ × m × g × cos(θ).
Преобразуя это равенство, приходим к условию движения тела:
Мы получили весьма интересный результат. Оказывается, значение критического угла θ не зависит от массы тела на наклонной плоскости, а однозначно определяется коэффициентом трения покоя µ. Подставляя его значение в неравенство, получим величину критического угла:
Задача на определение ускорения при движении по наклонной плоскости тела
Теперь решим несколько иную задачу. Пусть на стеклянной наклонной плоскости находится брус из дерева. Плоскость к горизонту наклонена под углом 45o. Следует определить, с каким ускорением будет двигаться тело, если его масса равна 1 кг.
Запишем главное уравнение динамики для этого случая. Поскольку сила Fg1 будет направлена вдоль движения, а Ff против него, то уравнение примет вид:
Подставляем полученные в предыдущей задаче формулы для сил Fg1 и Ff, имеем:
Откуда получаем формулу для ускорения:
Снова мы получили формулу, в которой нет массы тела. Этот факт означает, что бруски любой массы будут соскальзывать за одно и то же время по наклонной плоскости.
Учитывая, что коэффициент µ для трущихся материалов дерево-стекло равен 0,2, подставим все параметры в равенство, получим ответ:
Таким образом, методика решения задач с наклонной плоскостью заключается в определении результирующей силы, действующей на тело, и в последующем применении второго закона Ньютона.
Уклон что это физика
Войти
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
Уклоны. Теория
Дорожные знаки. Интересное
Как было сказано ранее, по одному из определений уклон это тангенс угла. С большим интересом узнал, что он равен коэффициенту сцепления. Вот тут и начинает прояснятся тайный смысл предупреждающих дорожных знаков 1.13 и 1.14 (крутой спуск / подъём).
Коэффициентом сцепления называется отношение двух сил – силы, необходимой для сдвига машины с заблокированными колесами, и силы тяжести, прижимающей машину к дороге. Так мы легко можем получить коэффициенты сцепления для сухого асфальта – 7000/10000 = 0,7, для грязной дороги – 3000/10000 = 0,3, и для льда – 1000/10000 = 0,1.
Например, автомобиль, стоящий на сухом асфальтированном уклоне с коэффициентом сцепления 0,7, начнет сползать вниз, если тангенс угла наклона при этом будет равен 70% (это уклон около 35 градусов, вряд ли вы когда-нибудь встретите такой). Но, кроме дорог, существуют улочки старых городов, особенно приморских, с углами наклона, существенно превышающими всевозможные нормативы. [2]
И в чём практическая ценность этой информации? Вот в чём: если на дворе гололёд, то на дороге с уклоном в 10% и более остановившаяся машина не удержится, будет скатываться.
К тому же, «при движении в сырую погоду вниз по асфальтированному уклону крутизной 20% эффективность торможения падает наполовину. И очень часто вам придется двигаться по мокрому льду с коэффициентом сцепления 0,1 и менее. А это значит, что вы должны внимательно отслеживать предупреждающие дорожные знаки 1.13 и 1.14. Их устанавливают, когда тангенс угла уклона приближается к 10%. Если вы пренебрежете этими знаками и остановитесь на подъеме, то в лучшем случае – не сможете сдвинуться с места. А уж если затормозите на спуске, машину может занести. Старайтесь тормозить двигателем на длительных спусках.» [2]
Вот о чём предупреждают знаки.
Причины: почему проценты?
При рассмотрении темы уклонов всегда возникает вопрос, а почему уклон измеряют в процентах, а не в привычных градусах? По этому поводу слышал несколько версий:
б) Погрешность
Построить угол, заданный в градусах, так сказать «в натуре» на строительной площадке, задача не из простых, а построить точно и вовсе запредельная. Небольшие величины уклона в градусах имеют вид десятичных дробей, а ведь погрешность даже в 1° на 10 метров длины даст ошибочные 17 сантиметров высоты. Так же, проценты величина относительная, и потому уклон, выраженный в процентах, можно построить имея в распоряжении только рулетку (или иной инструмент для измерения длинны) и уровень.
в) Неравномерность
Дорога, на протяжении всего спуска (подъёма), имеет неравномерный уклон. В каждый отдельный момент угол разный, и поэтому проще посчитать сколько составляет горизонтальная длинна участка спуска (подъёма), и на сколько изменилась высота относительно начала спуска (подъёма).
Все эти версии вполне имеют право на жизнь. Общим для них является то, что для нахождения величины уклона используются меры длинны, которые всегда есть под рукой, а это практично. Что касается дорожных знаков, то более правдоподобной выглядит третья версия (неравномерность уклона), а для строительства дорог вторая (погрешность построений).
Есть ещё Международная Конвенция о дорожных знаках и сигналах за 1968 год, и Европейское соглашение 1971 года, дополняющее эту Конвенцию, по которой на предупреждающих знаках крутизна уклонов и подъемов указывается в процентах. [3]
Что стоит за цифрами, например 1/12 или 10%, много это или мало, как это выглядит и где применяется, рассмотрим в следующий раз на примерах из жизни.
1. Словари и энциклопедии на Академике © Академик
2. Материалы сайта «Школа жизни» © Shkolazhizni.ru
3. Википедия © Wikipedia
—
1/4 0,25 25% 14°
1/2 0,50 50% 26,6°
1/6 0,17 17% 9,5°
1/8 0,13 13% 7,1°
1/10 0,10 10% 5,7°
1/12 0,08 8% 4,8°
1/14 0,07 7% 4,1°
1/16 0,06 6% 3,6°
1/18 0,06 6% 3,2°
1/20 0,05 5% 2,9°
Вертикальная планировка
1. При уклонах местности до 1% здания можно располагать независимо от направления горизонталей.
2. При уклонах от 1 до 3% поперек горизонталей можно располагать здания длиной не более 50 м. Более длинные здания следует размещать вдоль горизонталей.
3. При уклоне от 3 до 5% (слабо пересеченный рельеф) поперек горизонталей можно располагать здания длиной до 30м.
4. При уклоне от 5 до 8% (пересеченный рельеф) все здания располагают параллельно горизонталям или применяют ступенчатые здания, понижая отметку 1-го этажа каждой секции или блока.
5. При уклоне более 8% (сильно пересеченный рельеф) применяют только террасную застройку.
Б.Ф. Перевозников А.А. Ильина «СООРУЖЕНИЯ СИСТЕМЫ ВОДООТВОДА С ПРОЕЗЖЕЙ ЧАСТИ АВТОМОБИЛЬНЫХ ДОРОГ»; Обзорная информация; Выпуск 2; Москва 2002
http://www.gosthelp.ru/text/ObzornayainformaciyaAvtom10.html
Часть вторая — техническая, про моделирование уклонов в 3D программах (ArchiCAD и SketchUp)
Часть третья — практическая, примеры из жизни
Как обозначается угол наклона в физике
Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.
Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ.
Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.
Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки. Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.
Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона. Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.
Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах.
Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.
Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.
Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах.
Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.
Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.
Какой буквой обозначается (уклон который равен=0,2)
Думаю поймёшь. Смотри фото
Перезвоните пожалуйста по номеру 8 (953)367-35-45 Антон.
Перезвоните мне пожалуйста 8(812)642-29-99 Антон.
Перезвоните мне пожалуйста по номеру. 8 (931) 979-09-12 Антон
это уж как вы сами назовете
Другие вопросы из категории
внутренней и внешней обкладок равны R1=1.4 мм и R2=37 мм, соответственно. Ответ дайте в пФ и округлите до целого числа.
Какова скорость распространения звуковой волны (м/с),если длина волны 8м.,период колебаний 0,02с.
магнитного потока. Найдите силу индукционного тока, если сопротивление проводника 0,24 Ом.
Читайте также
обозначается?
2. По какой формуле находится напряжение?
3. Как называется единица напряжения? Как она обозначается?
4. Как называется прибор для измерения напряжения? Как он обозначается на схемах?
5. Какими правилами следует руководствоваться при включении вольтметра в цепь?
____________________________________________________________________________
1. Что такое сила тока? Какой буквой она обозначается?
2. По какой формуле находится сила тока?
3. Как называется единица силы тока? Как она обозначается?
4. Как называется прибор для измерения силы тока? Как он обозначается на схемах?
5. Какими правилами следует руководствоваться при включении амперметра в цепь?
6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?
расстоянии 69 м от студии. Скорость распространения радиоволн 300000 км / с, а скорость звуковых волн в воздухе 340 м / с. (Технические задержки трянсляции не учитывайте) Для русских. На каком расстоянии находится радиослушатель, Который слышит прямую трансляцию концерта на 195 мс раньше, чем слушатель в концертном зале, сидящий на расстоянии 69 м от студии. Скорость распространения радиоволн 300000 км / с, а скорость звуковых волн в воздухе 340 м / с. (Технические задержки трянсляциы не учитываем)
Обозначения конусности и уклона
Обозначения конусности и уклона отображают величину конусности и уклона в виде отношения, значения в процентах или кода, такого как азбука Морзе.
Обозначение — величины уклона.
Обозначение | Условные обозначения |
---|