Укажите с чем связаны магнитные превращения металлов

Укажите с чем связаны магнитные превращения металлов

А) Изменяются механические свойства;

Б) Изменяются электрические и тепловые свойства;

В) Изменяется кристаллическая решетка;

Г) Изменяется строение внешних электронных оболочек атомов металлов.

Магнитныепревращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Вторичная кристаллизация металлов происходит при следующих

технологических процессах:

А) при остывании жидкого металла;

Б) при обработке металла давлением;

В) при термической обработке (закалке);

Г) при модифицировании жидкого металла.

Вторичная кристаллизация. Получение мелкого зерна из крупного термическим способом, т. е. путем нагрева и охлаждения в твердом состоянии, возможно только в металлах, склонных к аллотропическому превращению (переход от одного типа кристаллической решетки к другому).

10. Получение мелкозернистой структуры металла при кристаллизации достигается за счет:

А) медленного охлаждения;

Б) быстрого охлаждения;

В) модифицирования жидкого расплава. Мелкозернистую структуру можно получить в результате модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы,

БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ОРЛОВСКОЙ ОБЛАСТИ

«ОРЛОВСКИЙ ТЕХНИКУМ АГРОБИЗНЕСА И СЕРВИСА»

Билет№ 14

« Свойства и способы их получения»

В некоторых конструкциях выхлопные клапаны двигателя внутреннего сгорания делаются полыми и заполняются металлическим натрием, в результате их работоспособность значительно возрастает. Благодаря какому свойству металлического натрия это стало возможным?

А) теплопроводности; В них помещают металлический натрий с температурой плавления 97 С. Во время работы двигателя натрий плавится и, переливаясь, при встряхивании переносит теплоту от головки клапана к стержню, а от последнего к направляющей втулке.

2. Назовите самый легкий металл среди ниже перечисленных:

Какие свойства являются определяющими при выборе конструкционного материала для изготовления слесарного молотка?

Среди перечисленных свойств сплавов назовите физические.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Кто из отечественных ученых впервые в России заложил основы металлографии и применил металлографический микроскоп для изучения структуры стали?

В России первые металлографические исследования железа и его сплавов были проведены П. П. Аносовым (1799—1851 гг.).

Среди перечисленных металлов назовите металл с наибольшей плотностью.

Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Для обозначения плотности обычно используется греческая буква ρ

Из перечисленных ниже металлов назовите самый тугоплавкий.

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию.

Источник

Полиморфные и магнитные превращения в металлах

Некоторые элементы видоизменяют свое кристаллическое строение, т. е. тип кристаллической решетки, в зависимости от изменения внешних условий — температуры и давления. Существование вещества в различных кристаллических формах в зависимости от внешних условий обусловливается его стремлением к состоянию с меньшим запасом свободной энергии. Это явление носит название полиморфизма или аллотропии.

Каждый вид решетки называется модификацией. Каждая модификация имеет свою область температур, при которых она устойчива (табл. 2).

При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения, и сопровождается тепловым эффектом. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.

Разные аллотропические формы одного и того же элемента принято обозначать буквами греческого алфавита α, β, γ и т. д., которые в виде индексов добавляют к символу, обозначающему элемент. Аллотропическую форму, устойчивую при самой низкой температуре, обозначают буквой α, существующую при более высокой температуре β, затем γ и т. д.

Укажите с чем связаны магнитные превращения металлов

Переход из α в β модификацию олова сопровождается резким изменением объема. Белое металлическое олово превращается в серый порошок, так как температурный коэффициент линейного расширения серого олова в четыре раза больше, чем у белого. Это явление получило название «оловянной чумы»

Примером аллотропического превращения, обусловленного изменением давления, является видоизменение кристаллического строения углерода, который может существовать в виде графита и алмаза.

Полиморфизм имеет большое практические значение. Используя это явление, можно упрочнять или разупрочнять сплавы с помощью термической обработки.

Магнитные превращения. Некоторым металлам присуща способность сильно намагничиваться в магнитном поле. После удаления магнитного поля они обладают остаточным магнетизмом, что позволяет использовать их для изготовления постоянных магнитов. Это явление впервые было обнаружено на железе и в связи с этим получило название ферромагнетизма. К ферромагнетикам относятся железо, кобальт, никель и некоторые редкоземельные элементы (гадолиний, диспрозий, эрбий). При нагреве ферромагнитные свойства уменьшаются постепенно: вначале слабо, а затем наблюдается очень резкое снижение. Выше определенной температуры, называемой точкой Кюри, они становятся парамагнетиками. Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, поэтому магнитные превращения не являются с аллотропическими.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Полиморфные и магнитные превращения в металлах

Некоторые элементы видоизменяют свое кристаллическое строение, т. е. тип кристаллической решетки, в зависимости от изменения внешних условий — температуры и давления. Существование вещества в различных кристаллических формах в зависимости от внешних условий обусловливается его стремлением к состоянию с меньшим запасом свободной энергии. Это явление носит название полиморфизма или аллотропии. Каждый вид решетки представляет аллотропическое видоизменение или модификацию. Каждая модификация имеет свою область температур, при которых она устойчива (табл. 2).

При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения, и сопровождается тепловым эффектом, подобно явлениям плавление—затвердевание или испарение—конденсация. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.

Укажите с чем связаны магнитные превращения металлов

Несмотря на то, что при аллотропических превращениях межатомные расстояния часто изменяются довольно заметно, атомные объемы и соответственно полные энергии различных модификаций, как правило, различаются мало. Но бывают и исключения. Например, переход из Р- в a-модификацию олова происходит с изменением типа связи от металлической к ковалентной и сопровождается резким изменением объема. Белое металлическое олово превращается в серый порошок, так как температурный коэффициент линейного расширения серого олова в четыре раза больше, чем у белого. Это явление получило название «оловянной чумы».

Разные аллотропические формы одного и того же элемента принято обозначать буквами греческого алфавита а, δ, у и т. д., которые в виде индексов добавляют к символу, обозначающему элемент. Аллотропическую форму, устойчивую при самой низкой температуре, обозначают буквой а, существующую при более высокой температуре δ, затем γ и т. д.

Примером аллотропического превращения, обусловленного изменением давления, является видоизменение кристаллического строения углерода, который может существовать в виде графита и алмаза.

Полиморфизм имеет большое практические значение. Исполь­зуя это явление, можно упрочнять или разупрочнять сплавы с помощью термической обработки.

Магнитные превращения. Некоторым металлам присуща спо­собность сильно намагничиваться в магнитном поле. После удале­ния магнитного поля они обладают остаточным магнетизмом, что позволяет использовать их для изготовления постоянных магнитов. Это явление впервые было обнаружено на железе и в связи с этим получило название ферромагнетизма. К ферромагнетикам относятся железо, кобальт, никель и некоторые редкоземельные элементы (гадолиний, диспрозий, эрбий). При нагреве ферромагнитные свойства уменьшаются постепенно: вначале слабо, а затем наблюдается очень резкое снижение. Выше определенной температуры, называемой точкой Кюри, они становятся парамагнетиками.

Магнитные превращения не связаны с изменением кристалли­ческой решетки или микроструктуры, они не имеют температурного гистерезиса. Поэтому магнитные превращения нельзя отождествлять с аллотропическими. Установлено, что при магнитных превращениях происходят изменения в характере межэлектронного взаимодействия.

1. Из за каких внешних условий меняется тип кристаллической решетки металла.

2. Что такое аллотропия вещества

3. Какое практическое применение существует аллотропическим превращениям.

4. Что такое ферромагнетизм

5. Связаны ли магнитные и аллотропические превращения, и почему.

Кристаллизация металлов

При переходе аморфного тела из жидкого состояния в твердое никаких качественных изменений в строении не происходит, что подтверждает монотонный ход кривой охлаждения (рис. 46, а). В твердом состоянии атомы в аморфном теле расположены так же хаотично, как и в жидком, но только более компактно и вследствие этого имеют более ограниченную свободу перемещения.

При нагреве всех кристаллических тел, в том числе металлов, всегда наблюдается четкая граница перехода из твердого состояия в жидкое. Такая же резкая граница существует и при переходе на жидкого состояния в твердое (рис. 46, б). Укажите с чем связаны магнитные превращения металлов

На участке кривой 1—2 (см. рис. 46, б) внешний подвод тепла сопровождается повышением температуры металла, сохраняющего спою кристаллическую решетку, атомы в которой увеличивают амплитуду колебания за счет поглощения тепловой энергии. На участке 2—3 подвод тепла продолжается, но он не приводит к повышению температуры, т. е. подводимая энергия целиком расходуется на разрушение кристаллической решетки и переход атомов в неупорядоченное состояние. Внешне это проявляется в пе­реходе твердого состояния в жидкое. В точке 3 разрушаются последине участки кристаллической решетки, и продолжающийся подвод тепла вызывает повышение температуры жидкого металла (34).

При охлаждении наблюдается обратный процесс. На участке 5—6 происходит кристаллизация, сопровождающаяся выделением тепла, которое называется скрытой теплотой кристаллизации. Кристаллизация металла происходит не строго при температуре плавления, а при некотором переохлаждении ∆t, значение которого зависит от природы самого металла, от степени его загрязненности различными включениями и от скорости охлаждения. Чем меньше загрязнен металл включениями, тем больше степень переохлаждения при кристаллизации.

Образование кристаллической решетки сопровождается уменьшением запаса внутренней энергии тела.

Согласно второму закону термодинамики, всякая система стремится к минимальному значению свободной энергии F=UTS. где F — свободная энергия; U — внутренняя энергия системы; Т — абсолютная температура; S — энтропия. Изменение свободной энергии в зависимости от температуры для твердого и жидкого состояний схематически показано на рис. 47.

Укажите с чем связаны магнитные превращения металлов

При температуре Тпл свободные энергии обоих состояний равны. Такую температуру называют равновесной или теоретической температурой кристаллизации.

Как было отмечено, ни плавление, ни кристаллизация не происходят точно при этой температуре. Например, для начала кристаллизации необходимо переохлаждение до Т1.

Разность между теоретической и фактической температурами кристаллизации называется степенью переохлаждения ∆Т=Тил—Т1.

Механизм кристаллизации металла состоит в том, что при соответствующем понижении температуры внутри тигля с жидким металлом начинают образовываться мелкие кристаллики, называ­емые центрами кристаллизации или зародышами.

Для начала роста кристаллов из жидкого металла вокруг возникающих центров кристаллизации необходимо, чтобы свобод­ная энергия металла уменьшилась. Если же в результате образо­вания зародыша свободная энергия металла увеличивается, то зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером зародыша, а такой зародыш — устойчивым.

Чем больше степень переохлаждения, понижающая свободную энергию металла, тем меньше критический размер зародыша.

Вокруг образовавшихся центров начинают расти кристаллы (рис. 48). По мере роста кристаллов в металле, оставшемся еще в жидком состоянии, продолжают возникать новые центры кри­сталлизации. Каждый из растущих новых кристаллов ориентирован в пространстве произвольно. Как видно из схемы, поверхности растущих кристаллов соприкасаются, их правильная внешняя форма нарушается, получается произвольной.

Кристаллы с неправильной внешней формой называются зернами или кристаллами. Твердые тела, в том числе и металлы, состоящие из большого количества зерен, называют поликристаллическими.

Укажите с чем связаны магнитные превращения металлов

Как установлено Д. К. Черновым, процесс кристаллизации состоит из двух элементарных процессов: зарождения центров кристаллизации и роста кристаллов из этих центров. Гораздо позже Тамман, изучая процесс кристаллизации, установил зависимость числа центров кристаллизации (ч. ц.) и скорости роста кристаллов (с. р.) от степени переохлаждения ДТ (рис. 49).

Размер образовавшихся кристаллов зависит от степени переохлаждения.

1. Какое основное отличие перехода из твердого состояния в жидкое аморфных и кристаллических тел

2. Что такое равновесная температура

3. Как называется разница между фактической температурой кристаллизации и теоретической температурой кристаллизации

4. Опешите механизм кристаллизации жидкого металла

5. Объясните почему при постоянном подводе тепла на участке 2-3 нет увеличения температуры

Источник

ПОЛИМОРФНЫЕ И МАГНИТНЫЕ ПРЕВРАЩЕНИЯ МЕТАЛЛОВ В ТВЕРДОМ СОСТОЯНИИ

Укажите с чем связаны магнитные превращения металлов Укажите с чем связаны магнитные превращения металлов Укажите с чем связаны магнитные превращения металлов Укажите с чем связаны магнитные превращения металлов

Укажите с чем связаны магнитные превращения металлов

Укажите с чем связаны магнитные превращения металлов

АНИЗОТРОПИЯ СВОЙСТВ КРИСТАЛЛОВ

РЕАЛЬНОЕ СТРОЕНИЕ КРИСТАЛЛОВ И ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ

Нами было рассмотрено строение идеальных кристаллов. Структура реальных кристаллов, составляющих полиструктуру, имеет много дефектов (несовершенств) строения, которые оказывают большое влияние на многие свойства материала и в первую очередь на прочность. Сегодня можно получить кусок металла, представляющий собой один кристалл, так называемый монокристалл. Монокристаллы весом в несколько сот граммов изготавливают для исследования и для получения полупроводников. Исследование монокристаллов показа-ло, что они обладают весьма высокой прочностью. Прочность же реальных кристаллов на 2–3 порядка меньше, чем у монокристалла. Это объясняется наличием дефектов в кристаллической решетке, происходящие в процессе кристаллизации либо пластической деформации.

Основными дефектами кристаллической решетки являются точечные, линейные и поверхностные.

Линейные дефекты называют дислокациями. Это цепочки дислокации, перестановки атомов, они наиболее часто получаются в процессе пластической деформации.

Поверхностные дефекты возникают на границах кристаллов (зерен) и имеют, как правило, дислокационное происхождение.

Анизотропия – это различие свойств монокристаллов в зависимости от направления воздействия нагрузок. Она обусловлена неодинаковым расположением и плотностью атомов в зависимости от плоскости и направления. Анизотропность кристаллов объясняется особенностями расположения атомов в пространстве. Аморфные тела изотропны, т.е. все их свойства одинаковы во всех направлениях.

Реальный металл состоит из многих кристаллов, в 1 см3 такого металла содержится десятки тысяч кристаллов. Произвольность ориентировки каждого кристалла приводит к тому, что в любом направлении располагается примерно одинаковое количество различно ориентированных кристаллов. В результате получается, что свойства такого поликристаллического сплава одинаковы во всех направлениях, хотя свойства отдельно взятого кристалла зависят от направления.

Это явление называется квазиизотропией или ложной, кажущейся изотропностью.

Существование одного металла в нескольких кристаллических формах носит название полиморфизма или аллотропии. Это свойство металлов изменять тип и размеры кристаллических решеток при нагревании и охлаждении. Превращение одной аллотропической формы в другую при нагреве чистого металла сопровождается поглощением тепла и происходит при постоянной температуре. На термической кривой (в координатах температура – время) превращение отмечается горизонтальным участком. При охлаждении происходит выделение тепла (выделение скрытой теплоты превращения) теоретически при такой же температуре, что и при нагреве. Температура, при которой происходит переход из одного типа кристаллической решетки в другой, носит название температуры полиморфного (аллотропического) превращения. Так, например, железо имеет две температуры полиморфного превращения: 911 и 1392 °С.

Полиморфные превращения наблюдаются у многих металлов, таких, как железо, марганец, олово и др. Каждое полиморфное превращение, начиная с низкой температуры, обозначается греческими буквами. Полиморфные превращения железа обозначаются следующим образом: Feα→ Feβ → Feγ → Feδ. На кривой охлаждения железа показаны все его полиморфные превращения.

Ниже 911 °С железо существует в форме α, при 911 °С объемноцентрированная решетка Feα переходит в гранецентрированную решетку Feγ, которая при 1392 °С вновь превращается в объемноцентрированную. При температуре 768 °С получается остановка на кривой охлаждения, связанная не с перестройкой решетки, а с изменением магнитных свойств.

Выше 768 °С α – железо немагнитно и его называют β-железом. При нагревании происходит те же переходы, только в обратной последовательности.

Полиморфные превращения сопровождаются изменением в твердом состоянии структуры металла, а следовательно, и его свойств. Такое явление широко используется при термической обработке железоуглеродистых сплавов.

Укажите с чем связаны магнитные превращения металлов

Магнитные превращения характерны для таких металлов, как железо, кобальт, никель. Эти металлы способны хорошо намагничиваться, приобретать ферромагнитные свойства. Однако при нагреве ферромагнитные свойства этих металлов теряются. П. Кюри показал, что полная потеря ферромагнитных свойств происходит при определенной температуре, названной точкой Кюри.

Интенсивность намагничивания с повышением температуры постепенно снижается, и точка Кюри соответствует окончательной потере ферромагнетизма. Магнитные превращения существенно отличаются от аллотропического. Основные отличия состоят в том, что механические и физические свойства не изменяются (изменяются

только электрические, магнитные и тепловые) и, самое главное, магнитное превращение не сопровождается перекристаллизацией, т.е. изменением решетки. Согласно современным представлениям, при магнитных превращениях происходит изменение не в кристаллической структуре металла, а во взаимодействии внешних и внутренних электронных оболочек атомов.

Источник

Магнитные превращения

Кроме полиморфных превращений, за­ключающихся в перестройке кристаллических решеток, в металлах могут наблюдаться превращения, не приво­дящие к изменению типа решетки. Они заключаются в перестройках электронных оболочек, обусловленных изменением магнитных моментов. Такие превращения называются магнитными.

Известно, что атомы металлов с полностью заполнен­ными электронными оболочками (такие как Na, К, Ag, Аu, Сu и др.) не имеют результирующего магнитного момента. Эти вещества диамагнитны.

Если же внутрен­няя электронная оболочка атомов заполнена не пол­ностью (у таких металлов, как Fe, Co, Cr, Ni и др.), то такие атомы обладают определенным магнитным мо­ментом, а сами вещества могут быть как ферромагнит­ными, так и парамагнитными.

Существуют и другие магнитные явления, такие как метамагнетизм, т. е. смещение температуры перехода от ферромагнитного к антиферромагнитному под действи­ем магнитного поля (температура Нееля сдвигается в область более высоких температур).

Магнитные превращения, так же как и полиморфные, играют большую роль в технике, особенно в энергетиче­ском машиностроении. Одним из важных явлений, свя­занных с протеканием магнитных превращений, являет­ся магнитострикция, т. е. изменение размеров кристаллов при переходе металла из парамагнитного состояния в ферромагнитное (ниже точки Кюри) различное по ве­личине для разных кристаллографических направлении. Магнитострикция может возникать и в результате на­магничивания образца под действием приложенного внешнего магнитного поля.

Константой магнитострикцииl называют относительное удлинение образца в направ­лении поля при его намагничивании до насыщения. Константа магнитострикции может быть положительной и отрицательной (т.е. образец под действием поля и в результате магнитных превращений может не только удлиняться, но и сжиматься). У никеля, например, l от­рицательная, при намагничивании никеля происходит уменьшение образца в направлении намагниченности, поэтому растяжение образца в магнитном поле затруд­няет процесс намагничивания, сжатие же, наоборот, об­легчает. У железа константа магнитострикции положи­тельна, при намагничивании образец удлиняется в на­правлении магнитного поля.

В монокристаллах константа магнитострикции зависит от кристаллографических направлений. В поликристаллических веществах, как правило, магнитострикция изотропна, т. е. одинакова для любого направления образца.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *