Угол внутри окружности чему равен

Углы, связанные с окружностью

Вписанные и центральные углы

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Угол внутри окружности чему равен

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Угол внутри окружности чему равен

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Угол внутри окружности чему равен

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Угол внутри окружности чему равен

Теоремы об углах, образованных хордами, касательными и секущими

ФигураРисунокТеорема
Вписанный уголУгол внутри окружности чему равен

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиУгол внутри окружности чему равенУгол внутри окружности чему равен
Угол, образованный секущими, которые пересекаются вне кругаУгол внутри окружности чему равенУгол внутри окружности чему равен
Угол, образованный касательной и хордой, проходящей через точку касанияУгол внутри окружности чему равенУгол внутри окружности чему равен
Угол, образованный касательной и секущейУгол внутри окружности чему равенУгол внутри окружности чему равен
Угол, образованный двумя касательными к окружностиУгол внутри окружности чему равенУгол внутри окружности чему равен

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Угол внутри окружности чему равен

В этом случае справедливы равенства

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Угол внутри окружности чему равен

В этом случае справедливы равенства

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

что и завершает доказательство теоремы 1.

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

что и требовалось доказать.

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

что и требовалось доказать.

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

что и требовалось доказать

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Угол внутри окружности чему равен

что и требовалось доказать.

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Источник

Вписанный и центральный угол окружности (ЕГЭ 2022)

С появлением окружности, а затем колеса человечество сильно упростило себе жизнь.

И через много веков на ЕГЭ появились задачи по этой теме, конечно же 🙂

Зная свойства вписанного и центрального угла окружности, ты сможешь решить множество таких задач. И в этой статье мы тебе с этим поможем.

Вписанный и центральный угол окружности — коротко о главном

Центр окружности – такая точка, расстояния от которой до всех точек окружности одинаковые.

Угол внутри окружности чему равен

Радиус – отрезок, соединяющий центр и точку на окружности.

Угол внутри окружности чему равен

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов – одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр – точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности? Тоже отрезок? Так вот, этот отрезок называется «хорда».

Угол внутри окружности чему равен

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда \( \displaystyle AB\) стягивает дугу \( \displaystyle AB\).

А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Угол внутри окружности чему равен

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

Радиус равен половине диаметра.

Угол внутри окружности чему равен

Кроме хорд бывают еще и секущие.

Угол внутри окружности чему равен

Вспомнили самое простое?

А теперь – названия для углов.

Центральный угол – угол между двумя радиусами.

Естественно, не правда ли? Стороны угла выходят из центра – значит, угол – центральный.

Угол внутри окружности чему равен

А теперь – вписанный угол.

Вписанный угол – угол между двумя хордами, которые пересекаются в точке на окружности.

Угол внутри окружности чему равен

При этом говорят, что вписанный угол \( \displaystyle ABC\) опирается на дугу (или на хорду) \( \displaystyle AC\).

Вот здесь иногда возникают сложности. Обрати внимание – НЕ ЛЮБОЙ угол внутри окружности – вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Смотри на картинку:

Угол внутри окружности чему равен

Угол внутри окружности чему равен

Измерение дуг и углов окружности

Длина окружности. Дуги и углы измеряются в градусах и радианах.

Сперва о градусах

Для углов проблем нет – нужно научиться измерять дугу в градусах.

Угол внутри окружности чему равен

Градусная мера (величина дуги) – это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Угол внутри окружности чему равен

Видишь две дуги \( \displaystyle AB\) и два центральных угла?

Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше \( \displaystyle 180<>^\circ \)), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о радианах

Что же это за зверь такой «радиан»?

Представь себе: радианы – это способ измерения угла … в радиусах!

Угол величиной \( \displaystyle 1\) радиан – такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос – а сколько же радиан в развёрнутом угле?

Угол внутри окружности чему равен

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде \( \displaystyle 1,\text< >2,\text< >3,\frac<7><5>,\frac<2><239>\) и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в \( \displaystyle 2,5\) раза или в \( \displaystyle \sqrt<17>\) раз больше радиуса!

Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву \( \displaystyle \pi \).

Итак, \( \displaystyle \pi \) – это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём \( \displaystyle \pi \) радиан. Именно оттого, что половина окружности в \( \displaystyle \pi \) раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число \( \displaystyle \pi \), получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы – нам достаточно двух знаков после занятой, мы привыкли, что

\( \displaystyle \pi \approx 3,14\)

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна \( \displaystyle 6,28\), а точно эту длину просто невозможно записать «человеческим» числом – нужна буква \( \displaystyle \pi \).

И тогда эта длина окружности окажется равной \( \displaystyle 2\pi \). И конечно, длина окружности радиуса \( \displaystyle R\) равна \( \displaystyle 2\pi R\).

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится \( \displaystyle \pi \) радиан.

Угол внутри окружности чему равен

Исходя из этого, можно пересчитать любые углы «в градусах» на углы «в радианах». Для этого нужно просто решить пропорцию! Давай попробуем. Возьмём угол в \( \displaystyle 30<>^\circ \).

Значит, \( \displaystyle x=\frac<30<>^\circ \text< >\!\!\pi\!\!\text< >><180<>^\circ >=\frac<\text< >\!\!\pi\!\!\text< >><6>\)рад., то есть \( \displaystyle 30<>^\circ =\frac<\pi ><6>\)рад. Таким же образом получается табличка с наиболее популярными углами.

Угол, образованный пересекающимися хордами хордами
Угол внутри окружности чему равен
Формула: Угол внутри окружности чему равен
\( \displaystyle 30<>^\circ\)\( \displaystyle \frac<\pi ><6>\)
\( \displaystyle 45<>^\circ\)\( \displaystyle \frac<\pi ><4>\)
\( \displaystyle 90<>^\circ\)\( \displaystyle \frac<\pi ><2>\)
\( \displaystyle 180<>^\circ\)\( \displaystyle \pi \)
\( \displaystyle 270<>^\circ\)\( \displaystyle \frac<3\pi ><2>\)
\( \displaystyle 360<>^\circ\)\( \displaystyle 2\pi \)

Итак, осознай и не бойся: если ты видишь букву или выражение \( \displaystyle \frac<7\pi ><2>\) и т.п., то речь идёт об угле и, по сути, запись через букву \( \displaystyle \pi\) всегда выражает, какую часть от развёрнутого угла составляет тот угол, о котором идёт речь.

А для убедительности ещё раз взгляни на табличку:

\( \displaystyle 30<>^\circ\)\( \displaystyle \frac<\pi ><6>\)\( \displaystyle \frac<1><6>\) от \( \displaystyle 180<>^\circ \), то есть от \( \displaystyle \pi \)
\( \displaystyle 45<>^\circ\)\( \displaystyle \frac<\pi ><4>\)\( \displaystyle \frac<1><4>\) от \( \displaystyle 180<>^\circ \), то есть от \( \displaystyle \pi \)
\( \displaystyle 90<>^\circ\)\( \displaystyle \frac<\pi ><2>\)\( \displaystyle \frac<1><2>\) от \( \displaystyle 180<>^\circ \), то есть от \( \displaystyle \pi \)
\( \displaystyle 180<>^\circ\)\( \displaystyle \pi \)это и есть \( \displaystyle \pi \)
\( \displaystyle 270<>^\circ\)\( \displaystyle \frac<3\pi ><2>\)\( \displaystyle 270<>^\circ \) в \( \displaystyle 1,5\) раза больше, чем \( \displaystyle 180<>^\circ \)
\( \displaystyle 360<>^\circ\)\( \displaystyle 2\pi \)А это \( \displaystyle 2\) раза по \( \displaystyle 180<>^\circ \), то есть \( \displaystyle 2\pi \)

Вписанный угол вдвое меньше центрального — доказательство

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Угол внутри окружности чему равен

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре.

И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (\( \displaystyle AC\)), что и вписанный угол.

Почему же так? Почему вписанный угол вдвое меньше центрального?

Давай разберёмся сначала на простом случае.

Случай 1. Хорда проходит через центр окружности

Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Угол внутри окружности чему равен

Что же тут получается? Рассмотрим \( \displaystyle \Delta AOB\). Он равнобедренный – ведь \( \displaystyle AO\) и \( \displaystyle OB\) – радиусы. Значит, \( \displaystyle \angle A=\angle B\) (обозначили их \( \displaystyle \alpha \)).

Теперь посмотрим на \( \displaystyle \angle AOC\). Это же внешний угол для \( \displaystyle \Delta AOB\)!

Источник

Центральные и вписанные углы

Угол внутри окружности чему равен

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Угол внутри окружности чему равен

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, что и вписанный угол.

Угол внутри окружности чему равен

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

Угол AOC и угол ABC, вписанный в окружность, опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Угол внутри окружности чему равен

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Угол внутри окружности чему равен

Как решаем: окружность 360° − ⌒AC − ⌒CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ ⌒AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Угол внутри окружности чему равен

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ ⌒AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Угол внутри окружности чему равен

⌒СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от ⌒CB = 72° / 2 = 36°

Источник

Углы в окружности, центральный и вписанный. Свойства и способы нахождения

Планиметрия – это раздел геометрии, изучающий свойства плоских фигур. К ним относятся не только всем известные треугольники, квадраты, прямоугольники, но и прямые и углы. В планиметрии также существуют такие понятия, как углы в окружности: центральный и вписанный. Но что они означают?

Что такое центральный угол?

Угол внутри окружности чему равен

Для того чтобы понять, что такое центральный угол, нужно дать определение окружности. Окружность – это совокупность всех точек, равноудаленных от данной точки (центра окружности).

Очень важно отличать ее от круга. Нужно запомнить, что окружность – это замкнутая линия, а круг – это часть плоскости, ограниченная ею. В окружность может быть вписан многоугольник или угол.

Центральный угол – это такой угол, вершина которого совпадает с центром окружности, а стороны пересекают окружность в двух точках. Дуга, которую угол ограничивает точками пересечения, называется дугой, на которую опирается данный угол.

Рассмотрим пример №1.

Угол внутри окружности чему равен

На картинке угол AOB – центральный, потому что вершина угла и центр окружности – это одна точка О. Он опирается на дугу AB, не содержащую точку С.

Чем вписанный угол отличается от центрального?

Угол внутри окружности чему равен Вам будет интересно: Площадь боковой поверхности и объем усеченной пирамиды: формулы и пример решения типовой задачи

Однако кроме центральных существуют также вписанные углы. В чем же их различие? Так же как и центральный, вписанный в окружность угол опирается на определенную дугу. Но его вершина не совпадает с центром окружности, а лежит на ней.

Приведем следующий пример.

Угол внутри окружности чему равен

Угол ACB называется углом, вписанным в окружность с центром в точке О. Точка С принадлежит окружности, то есть лежит на ней. Угол опирается на дугу АВ.

Чему равен центральный угол

Для того чтобы успешно справляться с задачами по геометрии, недостаточно уметь различать вписанный и центральный углы. Как правило, для их решения нужно точно знать, как найти центральный угол в окружности, и уметь вычислить его значение в градусах.

Угол внутри окружности чему равен Вам будет интересно: Профиль крыла самолета: виды, технические и аэродинамические характеристики, метод расчета и наибольшая подъемная сила

Итак, центральный угол равен градусной мере дуги, на которую он опирается.

Угол внутри окружности чему равен

На картинке угол АОВ опирается на дугу АВ, равную 66°. Значит, угол АОВ также равен 66°.

Таким образом, центральные углы, опирающиеся на равные дуги, равны.

Угол внутри окружности чему равен

На рисунке дуга DC равна дуге AB. Значит, угол АОВ равен углу DOC.

Как найти вписанный угол

Может показаться, что угол, вписанный в окружность, равен центральному углу, который опирается на ту же дугу. Однако это грубая ошибка. На самом деле, даже просто посмотрев на чертеж и сравнив эти углы между собой, можно увидеть, что их градусные меры будут иметь разные значения. Так чему же равен вписанный в окружность угол?

Градусная мера вписанного угла равна одной второй от дуги, на которую он опирается, или половине центрального угла, если они опираются на одну дугу.

Рассмотрим пример. Угол АСВ опирается на дугу, равную 66°.

Угол внутри окружности чему равен

Значит, угол АСВ = 66° : 2 = 33°

Рассмотрим некоторые следствия из этой теоремы.

Где могут встретиться задачи на эту тему? Их виды и способы решения

Так как окружность и ее свойства – это один из важнейших разделов геометрии, планиметрии в частности, то вписанный и центральный углы в окружности – это тема, которая широко и подробно изучается в школьном курсе. Задачи, посвященные их свойствам, встречаются в основном государственном экзамене (ОГЭ) и едином государственном экзамене (ЕГЭ). Как правило, для решения этих задач следует найти углы на окружности в градусах.

Углы, опирающиеся на одну дугу

Этот тип задач является, пожалуй, одним из самых легких, так как для его решения нужно знать всего два простых свойства: если оба угла являются вписанными и опираются на одну хорду, они равны, если один из них – центральный, то соответствующий вписанный угол равен его половине. Однако при их решении нужно быть крайне внимательным: иногда бывает сложно заметить это свойство, и ученики при решении таких простейших задач заходят в тупик. Рассмотрим пример.

Дана окружность с центром в точке О. Угол АОВ равен 54°. Найти градусную меру угла АСВ.

Угол внутри окружности чему равен

Углы, опирающиеся на разные дуги одной окружности

Иногда в условиях задачи напрямую не прописана величина дуги, на которую опирается искомый угол. Для того чтобы ее вычислить, нужно проанализировать величину данных углов и сопоставить их с известными свойствами окружности.

В окружности с центром в точке О угол АОС равен 120°, а угол АОВ – 30°. Найдите угол ВАС.

Угол внутри окружности чему равен

Для начала стоит сказать, что возможно решение этой задачи с помощью свойств равнобедренных треугольников, однако для этого потребуется выполнить большее количество математических действий. Поэтому здесь будет приведен разбор решения с помощью свойств центральных и вписанных углов в окружности.

Итак, угол АОС опирается на дугу АС и является центральным, значит, дуга АС равна углу АОС.

Точно так же угол АОВ опирается на дугу АВ.

Зная это и градусную меру всей окружности (360°), можно с легкостью найти величину дуги ВС.

Вершина угла САВ, точка А, лежит на окружности. Значит, угол САВ является вписанным и равен половине дуги СВ.

Угол САВ = 210° : 2 = 110°

Задачи, основанные на соотношении дуг

Некоторые задачи вообще не содержат данных о величинах углов, поэтому их нужно искать, исходя только из известных теорем и свойств окружности.

Найдите угол, вписанный в окружность, который опирается на хорду, равную радиусу данной окружности.

Угол внутри окружности чему равен

Если мысленно провести линии, соединяющие концы отрезка с центром окружности, то получится треугольник. Рассмотрев его, можно заметить, что эти линии являются радиусами окружности, а значит, все стороны треугольника равны. Известно, что все углы равностороннего треугольника равны 60°. Значит, дуга АВ, содержащая вершину треугольника, равна 60°. Отсюда найдем дугу АВ, на которую опирается искомый угол.

Угол АВС = 300° : 2 = 150°

В окружности с центром в точке О дуги соотносятся как 3:7. Найдите меньший вписанный угол.

Для решения обозначим одну часть за Х, тогда одна дуга равна 3Х, а вторая соответственно 7Х. Зная, что градусная мера окружности равна 360°, составим уравнение.

По условию, нужно найти меньший угол. Очевидно, что если величина угла прямо пропорциональна дуге, на которую он опирается, то искомый (меньший) угол соответствует дуге, равной 3Х.

Значит, меньший угол равен (36° * 3) : 2 = 108° : 2 = 54°

Так как 300° : 60° = 5, то большая дуга в 5 раз больше меньшей.

Большая дуга = 50 * 5 = 250

Итак, конечно, существуют и другие подходы к решению подобных задач, но все они так или иначе основаны на свойствах центральных и вписанных углов, треугольников и окружности. Для того чтобы успешно их решать, необходимо внимательно изучать чертеж и сопоставлять его с данными задачи, а также уметь применять свои теоретические знания на практике.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *