Угол контакта в радиально упорном подшипнике на что влияет

Радиально-упорные шариковые подшипники

Радиально-упорные шарикоподшипники имеют дорожки качения на внутреннем и наружном кольцах, смещённые относительно друг друга вдоль оси подшипника. Такая конструкция позволяет подшипнику воспринимать комбинированные нагрузки, то есть нагрузки, действующие в радиальном и осевом направлениях. Подшипник радиально упорный может выдерживать только осевую нагрузку и работать с высокими скоростями.

Осевая грузоподъёмность радиально-упорного шарикоподшипника возрастает с увеличением угла контакта. Угол контакта — это угол между линией, соединяющей точки контакта шарика с дорожками качения, по которым нагрузка передаётся от одной дорожки качения на другую, и линией, перпендикулярной оси подшипника (рис. 1).

Угол контакта в радиально упорном подшипнике на что влияет

Рис.1 Угол контакта

На рис. 2 представлены наиболее распространёнными типами радиально-упорных шарикоподшипников являются:

Угол контакта в радиально упорном подшипнике на что влияет

Рис.2 Типы радиально-упорных шариковых подшипников

Дуплексом называется комплект из двух сдвоенных подшипников, равномерно воспринимающих нагрузку и способных работать как один подшипник. Каждая пара таких подшипников имеет свой уникальный номер, указанный вместе со стрелочками, показывающими направление дуплексации, на внешнем кольце (рис.3). Каждый подшипник из комплекта может применяться как одинарный, но два одинарных подшипника, не сдуплексированных, в качестве дуплексных использовать нельзя. Высокоточные дуплексные подшипники используются, например, в шпинделях металлорежущих станков.

Угол контакта в радиально упорном подшипнике на что влияет

Рис.3 Дуплексированный подшипник

Подшипники, скомплектованные из двух радиально-упорных подшипников с одинаковыми углами контакта имеют три варианта схемы комплектации (дуплексации) (рис.4). Это схема «О» (пример: 236208), схема «Х» (пример: 336317) и схема «Т» («тандем»; пример: 466311). При схеме «О» линии действия нагрузки пересекают осевую линию в двух сравнительно отдаленных точках. При схеме «Х» точки пересечения линий действия нагрузки и осевой линии находятся вблизи друг друга (иногда – линии действия нагрузки пересекаются до достижения линии оси). При схеме «Т» (тандем) линии действия нагрузки параллельны друг другу.

Источник

Шариковый радиально-упорный подшипник

Термин «радиально-упорные шарикоподшипники» используется для обозначения специальных шарикоподшипников. Шарики проходят через глубокие канавки во внутреннем и внешнем кольце с узкой плоскостью скоса. Опять же, относительно небольшие области контакта между шариками и дорожкой качения (точечный контакт) делают сопротивление качению очень низким. Так называемый сепаратор предотвращает касание шариков и, таким образом, обеспечивает передачу нагрузки с низким коэффициентом трения движущихся частей машины.

Разница между этими подшипниками и радиальными подшипниками состоит в том, что поперечное сечение подшипников выполнено асимметрично. Шариковый радиально-упорный подшипник предназначены для выдерживания нагрузок, линия приложения которых не перпендикулярна оси подшипника, а скорее под определенным углом к перпендикулярной оси (угол контакта). Для этого заплечик выполнен более выраженным вокруг шара (зона контакта) рядом с линией приложения (угол контакта), что позволяет лучше поддерживать нагрузки, приложенные под углом. Если угловые нагрузки разделены на их радиальную и осевую доли нагрузки, радиально-упорные шарикоподшипники могут выдерживать осевые нагрузки только в одном направлении из-за своей конструкции.

Противоположный буртик подшипника менее выражен, чтобы упростить монтаж. Необходимо соблюдать осторожность, чтобы правильно установить подшипник.

Углы обычно составляют 15 °, 25 ° и 40 °. Чем больше угол контакта, тем выше осевая нагрузка. В то же время ограничение максимальной скорости уменьшается с увеличением угла контакта.

На практике шариковые упорные подшипники часто используются попарно. Это позволяет поддерживать осевые нагрузки в обоих направлениях. В зависимости от рисунка линий приложения нагрузки специалисты говорят о раскладках O или X. Если два подшипника установлены друг за другом с одинаковым углом контакта, используется термин тандемная компоновка.

Современные радиально-упорные подшипники обычно заполнены подходящей консистентной смазкой для роликовых подшипников и, следовательно, не требуют обслуживания во многих областях применения. Больше не требуется затрат на уплотнение и подачу масла.

В зависимости от количества используемых шариковых рядов различают однорядные и многорядные шарикоподшипники.

Кроме того, радиально-упорные подшипники классифицируются в зависимости от качества дорожки качения и производственных допусков на радиально-упорные шарикоподшипники (нормальная версия) и подшипники шпинделя (высокоточная версия).

Шарикоподшипники с четырехточечным контактом были разработаны для поддержки осевых нагрузок в обоих направлениях.

Компания «УСА» предлагает широкий выбор манжет различного предназначения от отечественных и импортных производителей. Всегда большой выбор продукции в наличии на складе и возможность оформления под заказ. Вся продукция сертифицирована и доступна для приобретения или заказа.

При возникновении любых вопросов обращайтесь по телефону 8 (8332) 35-50-40, наши квалифицированные специалисты проконсультируют вас.

Источник

Радиально-упорный подшипник

Подшипник: общее понятие

В широком смысле подшипник — это опора для вращающейся оси/вращающегося вала. Эта опора принимает на себя радиальную/осевую нагрузку, предназначенную для оси или вала, а далее передает ее в область рамы, корпуса или какой-либо другой части механизма.

Одновременно подшипник выполняет важную функцию – надежно удерживает вал в предложенном пространстве, при этом дает ему возможность беспрепятственно, в зависимости от конструкции: раскачиваться/вращаться/ передвигаться линейно.

Все эти движения вала происходят, благодаря подшипникам, с минимальными затратами энергии. От правильно выстроенного порядка этой цепочки зависит качество работы и продуктивность того или иного механизма, прибора, машины и так далее.

На сегодняшний день существуют следующие виды подшипников:

Все они представлены в нашем каталоге подшипников в разделе “радиально-упорные подшипники”

Далее будет подробно рассмотрен радиально упорный шариковый подшипник

Радиально упорный подшипник: понятие и назначение

Радиально-упорный подшипник представляет собой конструктивный узел, предназначенный для того чтобы принимать на себя и осевую и радиальную нагрузки. Радиальная нагрузка — это нагрузка, которая носит перпендикулярный характер относительно вала. Радиальная нагрузка на подшипник провоцирует проявление в подшипнике осевых усилий. Самым оптимальным вариантом будет наличие в механизме второго подшипника, который и примет на себя осевые усилия.

Угол контакта в радиально упорном подшипнике на что влияет

Конструктивные узлы могут быть разных вариантов модификации. Подшипник радиально-упорный шариковый бывает открытым или с защитной металлической шайбой/контактным уплотнением. Модификация, оснащённая четырьмя контактами, обладает разъемными внешними/внутренними кольцами, принимает максимум осевых нагрузок.

Подшипник радиально-упорный шариковый оснащен полиамидным сепаратором. Также встречаются конструктивные узлы с латунным или стальным сепаратором. Эти подшипники принимают радиальную и осевую нагрузку одностороннего характера. Роликовый радиально-упорный подшипник, как правило, оснащен телом качения конического вида.

Поскольку расположение роликов по отношению к оси вращения производится под определенным углом, этот тип устройства принимает на себя комбинированные нагрузки.

Угол контакта в радиально упорном подшипнике на что влияет

На максимальную величину такой нагрузки влияет угол соприкосновения тел и дорожек качения. Широко применяются во всех отраслях машиностроения, сельскохозяйственной отрасли, химической промышленности и многих других сферах, в частности упорно радиальный подшипник встречается в:

Чаще всего используется подшипник шариковый радиально упорный однорядный, очевидным преимуществом использования которого можно считать: тихий ход, малое трением, высокая частота вращения, долгий срок службы.

Конические радиально-упорные устройства могут быть следующих типов:

Радиально упорный подшипник: материал производства

Производство ведется как самих подшипников, так и их колец, а также тел качения ведётся из сертифицированной стали 100Cr6 (1.3505), соблюдая SAE52100 и SUJ2..

Подшипник радиально упорный шариковый: размеры

Поскольку радиально-упорные подшипники – это неотъемлемая часть множество механизмов, количество их размеров тоже множество. Размер таких подшипников определяется серией диаметров и серией ширин. Радиально упорные подшипники размеры таблица:

Подшипники роликовые радиально упорные размеры таблица:

Угол контакта в радиально упорном подшипнике на что влияет

Установка радиально упорных подшипников

Перед установкой упорно радиальные подшипники следует промыть, это обязательное правило для всех модификаций подшипников. При монтаже/установке радиально упорного подшипника, прежде всего, учитывается показатель валового линейного удлинения.

При завышенных температурных показателях и вследствие уменьшения зазора оси упорно радиальный подшипник может быть повреждён. Осевые зазоры регулируются путем перемещения наружных колец. Поскольку работа достаточно кропотливая и от ее качества будет зависеть функционирование всего механизма в целом, лучше обратиться к профессионалам в этом вопросе.

Важным фактором является не только правильная установка, но и правильный выбор самого подшипника, во первых необходимо учитывать размеры, диаметр и класс, а также руководствоваться следующими критериями:

Источник

Угол контакта в радиально упорном подшипнике на что влияет

Радиально-упорные подшипники предназначены для восприятия как радиальных нагрузок, т.е. нагрузок, действующих перпендикулярно оси вала, закреплённому в подшипниках, так и нагрузок, действующих вдоль оси вала в одном или в двух направлениях.

Порядок слов в названии подшипника подчёркивает, что, прежде всего, они предназначены для работы с радиальными нагрузками.

Также говорят об радиальных ( Радиальные подшипники) упорно – радиальных и упорных ( Упорные подшипники) подшипниках.

Независимо от названия, любой подшипник воспринимает как радиальные, так и осевые нагрузки, но в существенно разных объёмах.

Названия лишь подчеркивают, какая из нагрузок – радиальная или осевая (упорная), является основной. В данном разделе мы не будем делать особенного различия между радиально-упорными и упорно-радиальными подшипниками.

Конструкции и исполнения

Выбор типа, исполнения и пр. подшипника для конкретного механизма является сложной задачей. В её решении могут оказать существенную помощь методики и автоматизированные системы расчёта подшипников, которые предлагают компании – производители подшипников.

ГОСТ 3189-89 «Подшипники шариковые и роликовые. Система условных обозначений» выделяет следующие типы радиально – упорных подшипников, таблица 1.

Таблица 1. ГОСТ 3189-89 «Подшипники шариковые и роликовые. Система условных обозначений».

Типы радиально-упорных подшипников.

Тип подшипника

Обозначение по ГОСТ 3189-89

Радиально-упорные шарикоподшипники

Радиально-упорные шарикоподшипники имеют дорожки качения и бортики на внутреннем и наружном кольцах, смещённые относительно друг друга вдоль оси подшипника. Такая конструкция подшипника позволяет ему воспринимать нагрузки, действующие в радиальном и осевом направлениях.

Наиболее распространёнными типами радиально-упорных шарикоподшипников являются:

· однорядные радиально-упорные шарикоподшипники (рисунок РУ-2);

· двухрядные радиально-упорные шарикоподшипники (рисунок РУ-3);

· шарикоподшипники с четырёхточечным контактом (рисунок РУ-4).

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-1. Конструкция радиально-упорного шарикоподшипника.

Радиально-упорные однорядовые шариковые подшипники

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-2. Радиально-упорный однорядовый шариковый подшипник.

Двухрядные радиально-упорные шарикоподшипники

Двухрядные радиально-упорные шарикоподшипники – это обычно два однорядных радиально-упорные шарикоподшипники, установленные «спина к спине».

Но они могут быть выполнены заодно, с монолитными внутренним и внешним кольцом качения, на каждом из которых имеется по две дорожки качения (рисунок РУ-3).

Подшипник, показанный на рисунке РУ-3, способен воспринимать радиальные усилия и осевые усилия в обоих направлениях.

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-3. Двухрядный радиально-упорный шарикоподшипник.

В общем случае имеется три схемы установки шариковых радиально-упорных однорядных подшипников на цапфе, рисунок РУ-4:

· О-образная, «спина к спине». Позволяет воспринимать радиальные усилия и осевые усилия в обоих направлениях;

· Х-образная схема «лицом к лицу». Позволяет воспринимать радиальные усилия и осевые усилия в обоих направлениях;

· схема «тандем». Позволяет воспринимать радиальные усилия и осевые усилия в одном направлении. Используется для повышения жесткости подшипникового узла.

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-4. Схема установки однорядных радиально-упорных шариковых подшипников на вал.

Радиально-упорные шариковые подшипники с четырёхточечным контактом

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-5. Радиально-упорный шариковый подшипник с четырёхточечным контактом.

Радиально-упорные роликоподшипники с коническими телами качения

Радиально-упорные подшипники с телами качения в виде усеченных конусов имеют конические ролики, направляемые бортом внутреннего кольца (рисунок РУ-6).

Такие подшипники имеют большую радиальную грузоподъемность, а также осевую грузоподъёмность в одном направлении.

Обычно устанавливаются на вал парами, для того, чтобы обеспечить грузоподъёмность в обоих осевых направлениях, т.е. также, как и однорядные радиально-упорные шарикоподшипники. При парной установке зазор между ними обеспечивается подбором расстояния по оси между внутренними или наружными кольцами двух смежных подшипников.

В силу того, что оба подшипника являются разъемными, имеется возможность независимого монтажа внутренних колец с сепараторами и наружных колец.

В зависимости от величины угла контакта, конические роликоподшипники делятся на три группы:

· с нормальным углом;

· с увеличенным углом.

Выпускаются двух- и четырехрядные конические роликоподшипники. Для данного типа подшипников в основном применяются сепараторы из стали, изготовленные штамповкой.

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-6. Радиально-упорный конический роликовый подшипник.

Выпускаются двух- и четырехрядные конические роликовые подшипники, рисунки РУ-7, РУ-8.

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-7. Радиально-упорный роликовый двухрядный подшипник (конический).

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-8. Радиально-упорный роликовый четырехрядный подшипник (конический).

Такие подшипники предназначены для работы с осевыми нагрузками, действующими в обоих направлениях по оси.

Устройство колец и использование конических тел вращения позволяет обеспечить большие, чем в случае шарикоподшипников, площади пятна контакта между кольцами и коническими роликами. Поэтому роликовые радиально-упорные конические подшипники могут принимать как значительные радиальные нагрузки, так и значительные нагрузки вдоль оси вала.

Радиально-упорные подшипники с роликами бочкообразной формы

В таких подшипниках (рисунок РУ-9) используются тела качения бочкообразной формы. Кольца подшипника выполняются с дорожками качения, имеющим в разрезе изогнутую примерно по окружности форму, так, что при осевом смещении осей колец друг относительно друга тела вращения всё равно прилегают к поверхности дорожек качения колец.

Угол контакта в радиально упорном подшипнике на что влияет

Рисунок РУ-9. Радиально-упорный роликовый подшипник с роликами бочкообразной формы.

Такой подшипник внешне выглядит очень простым. При этом он компенсирует как радиальные нагрузки, так и осевые в обоих направлениях. При этом является самоустанавливающимся. Подшипник имеет компактные осевые размеры.

В устройствах, где ось изгибается под действием неравномерных радиальных нагрузок, или из-за разности температур на концах вала, такие подшипники снижают вибрации и обеспечивают малые потери на трение.

О классификации подшипников

Многообразие типов, исполнений, размеров делает систематизацию и классификацию подшипников сложнейшей задачей.

Основными ГОСТами, связанными с подшипниками, являются:

1. ГОСТ 520-2011. Подшипники качения. Общие технические условия (ISO 492:2002, NEQ
ISO 199:2005, NEQ).

Этот ГОСТ ссылается также на следующие стандарты по подшипникам качения:

ГОСТ 831, ГОСТ 832, ГОСТ 3478, ГОСТ 4252, ГОСТ 4657, ГОСТ 5377, ГОСТ 5721, ГОСТ 6364, ГОСТ 7242, ГОСТ 7634, ГОСТ 7872, ГОСТ 8328, ГОСТ 8338, ГОСТ 8419, ГОСТ 8545, ГОСТ 8882, ГОСТ 8995, ГОСТ 9592, ГОСТ 9942, ГОСТ 18572, ГОСТ 20531, ГОСТ 23179, ГОСТ 23526, ГОСТ 24696, ГОСТ 24850, ГОСТ 27057, ГОСТ 27365, ГОСТ 28428.

2. ГОСТ 3189-89. Подшипники шариковые и роликовые. Система условных обозначений.

Этот ГОСТ ссылается также на следующие стандарты по подшипникам качения:

ГОСТ 520-2002, ГОСТ 832-78, ГОСТ 3395-89, ГОСТ 3478-79, ГОСТ 4060-78, ГОСТ 5377-79, ГОСТ 5721-75

ГОСТ 7872-89, ГОСТ 24310-80, ГОСТ 24696-81, ГОСТ 24810-81, ГОСТ 24850-81, ГОСТ 28428-90.

Большое внимание стандартизации подшипников уделяет Международная организация по стандартизации – ISO.

Ряд ведущих производителей подшипников предлагают свои системы классификации, являющиеся расширением классификации ISO.

В качестве примера в таблице 2 приведены соответствия наименований, применяемых в РФ, и компаниями SKF, Швеция, FAG, Германия, для шарикоподшипников радиально-упорных однорядных со стопорной канавкой.

Таблица 2. Соответствия наименований шарикоподшипников радиально-упорных однорядных.

РФ, ГОСТ 3189-89

SKF, Швеция

FAG, Германия

Источник

Радиально-упорные подшипники

Угол контакта в радиально упорном подшипнике на что влияет

Шариковые радиально-упорные подшипники почти всегда применяют в парной зеркальной установке с обязательной осевой затяжкой.

Способ затяжки и расположение подшипников влияют на работу узла. Затяжка внутренних обойм (рис. 776, а), когда оси качения шариков скрещиваются между подшипниками (схема Х), обеспечивает большую жесткость узла, чем затяжка наружных обойм (вид б). Когда оси качения располагаются вне подшипников (схема О).

Это хорошо видно на рис. 776, г, изображающем особенно неудачное расположение по схеме О, при котором поверхности качения наружных обойм почти точно укладываются в сферу с центром в оси симметрии установки. Устойчивость вала против выворачивающего действия поперечной силы Р невелики; вал оказывается как бы расположенным на сферической опоре. Расположение по схеме X (вид в) придает валу полную устойчивость.

В зависимости от схемы установки подшипники по-разному реагируют на тепловые деформации системы. Если корпус при работе нагревается больше, чем вал, или выполнен из материала с более высоким коэффициентом линейного расширения, то в схеме X осевой натяг увеличивается, а в схеме О — уменьшается.

Угол контакта в радиально упорном подшипнике на что влияет

Если же температура вала больше температуры корпуса, то в схеме X натяг ослабевает, а в схеме О — увеличивается.

Гироскопические моменты

В радиально-упорных подшипниках вследствие наклона оси вращения шариков под углом β к оси вращения подшипника шарики подвергаются действию гироскопических моментов, стремящихся повернуть шарик вокруг собственной оси, касательной к направлению окружной скорости шарика (рис. 777, а).

Угол контакта в радиально упорном подшипнике на что влияет

Угол контакта в радиально упорном подшипнике на что влияет

где w0 — угловая скорость центра шарика, вращающегося вокруг оси подшипника, рад·с –1 ; wш — угловая скорость шарика при вращении вокруг собственной оси; I — момент инерции шарика;

Угол контакта в радиально упорном подшипнике на что влияет

где dш — диаметр шарика, см; ρ — плотность материала шарика (для шарикоподшипниковых сталей ρ = 8·10 3 кг/м 3 ).

Угловая скорость центра шарика

Угол контакта в радиально упорном подшипнике на что влияет

где w — угловая скорость вала (w = πn/30); D’ и d’ — диаметры окружностей контакта соответственно на наружной и внутренней обоймах;

Угол контакта в радиально упорном подшипнике на что влияет

где dср — средний диаметр подшипника.

Для подшипников легкой серии dш/d = 0,18—0,22, средней серии 0,22—0,25, тяжелой серии 0,27—0,3.

Угловая скорость шарика при вращении вокруг собственной оси

Угол контакта в радиально упорном подшипнике на что влияет

Подставляя в уравнение (348) значение I из формулы (349) и wш из формулы (353), получаем

Угол контакта в радиально упорном подшипнике на что влияет

Как видно из этого уравнения, гироскопический момент пропорционален квадрату угловой скорости и четвертой степени диаметра шарика. Он возрастает по синусоидальному закону с увеличением угла контакта β, достигая максимальной величины в упорных подшипниках, у которых β = 90° (вид в).

Удобно выразить гироскопический момент через центробежную силу шарика:

Угол контакта в радиально упорном подшипнике на что влияет

Вводя значение Рцб в формулу (354), получаем

Угол контакта в радиально упорном подшипнике на что влияет

Подставляя D’ из формулы (351) и вводя обозначение dш/dср = а, находим

Угол контакта в радиально упорном подшипнике на что влияет

Вращению шарика под действием Мг препятствует момент трения (вид б):

Угол контакта в радиально упорном подшипнике на что влияет

где f — коэффициент трения скольжения (вследствие неизбежных при работе подшипника вибраций коэффициент трения имеет незначительную величину f = 0,01—0,02); N — реактивная сила на поверхности контакта; при равномерном распределении нагрузки по шарикам

Угол контакта в радиально упорном подшипнике на что влияет

здесь А — осевая нагрузка на подшипник; z — число шариков.

Угол контакта в радиально упорном подшипнике на что влияет

Вращение шариков не происходит, если

Угол контакта в радиально упорном подшипнике на что влияет

Подставляя в это соотношение значение Мтр из формулы (358) и Мг из формулы (356), находим минимальную величину осевой нагрузки, при которой вращение не происходит

Угол контакта в радиально упорном подшипнике на что влияет

или ввиду того, что

Угол контакта в радиально упорном подшипнике на что влияет

Рассчитаем подшипник 46316 средней серии (d = 8 см; D = 17 см; dср = 12,5 см; dш = 2,8 см; β = 26°; число шариков z = 12).

Примем n = 3000 об/мин (w = 314 рад·с –1 ); коэффициент трения f = 0,02.

Диаметры окружностей контакта по формулам (351) и (352)

Угол контакта в радиально упорном подшипнике на что влияет

Угловая скорость центров шариков по формуле (350)

Угол контакта в радиально упорном подшипнике на что влияет

Центробежная сила шарика по формуле (355)

Угол контакта в радиально упорном подшипнике на что влияет

Минимальная осевая сила, предупреждающая вращение шариков, по формуле (359)

Угол контакта в радиально упорном подшипнике на что влияет

В подшипниках, нагруженных достаточно большой осевой силой, вращение шариков обычно не происходит (за исключением шариков, диаметр которых в пределах допуска на изготовление меньше диаметра остальных шариков).

В ненагруженных подшипниках (замыкающие подшипники парных установок) вращение наблюдается при недостаточно сильной затяжке, а также при ослаблении натяга в результате осевого перемещения вала под действием рабочей нагрузки.

В подшипниках, нагруженных только радиальной силой, вращение может происходить в ненагруженной зоне подшипника. Для предотвращения этого явления необходимо затягивать подшипники достаточно большой осевой силой (А > Аmin).

В радиальных шариковых подшипниках гироскопические моменты возникают при наклоне линий контакта в результате приложения осевых сил, а также при перекосах подшипника. Вследствие незначительности углов β гироскопические моменты невелики.

В конических роликовых подшипниках гироскопические моменты, достигающие при больших углах β значительной величины, воспринимаются поверхностями контакта и вызывают увеличение кромочных нагрузок.

Предварительный натяг

Правильно выбранный натяг обеспечивает плотное прилегание шариков к беговым дорожкам, уменьшает износ поверхностей качения, повышает нагружаемость и долговечность подшипников, предупреждает вращение шариков под действием гироскопических моментов и, следовательно, снижает коэффициент трения.

Чрезмерный натяг столь же опасен, как и недостаточный, так как вызывает защемление шариков, перегрузку поверхностей качения и повышенное тепловыделение.

Предварительный натяг осуществляют следующими основными способами:

1) затяжкой подшипников на мерное осевое смещение наружных обойм относительно внутренних;

2) затяжкой подшипников до получения определенного момента сопротивления вращению;

3) приложением к подшипникам постоянной осевой силы (пружинный натяг).

При первом способе между внутренними и наружными обоймами парных подшипников устанавливают дистанционные втулки неравной длины. При установке по схеме X (см. рис. 776) внутренние обоймы затягивают гайкой 1 (рис. 778, а) до упора в торец дистанционной втулки. При этом в схеме возникает натяг, определяемый разностью (а) длин втулок.

Угол контакта в радиально упорном подшипнике на что влияет

При установке по схеме О (вид б) затягивают гайкой 2 наружные обоймы до упора в торец внешней дистанционной втулки.

Применяют также затяжку наружных обойм концевой шайбой 3 (вид в) до выбора зазора (а), регулируемого мерными шайбами 4. Если подшипники расположены рядом (виды г, д), натяг достигается установкой между обоймами калиброванных шайб 5 толщиной, отличающейся на величину (а) от толщины фиксирующего элемента (кольцевого стопора).

Промышленность выпускает сдвоенные радиально-упорные подшипники с заранее установленным зазором (а), выбираемым при затяжке (виды е—з).

Необходимый натяг зависит от формы поверхностей качения, угла контакта, расстояния между подшипниками, характера нагрузки, частоты вращения, температуры узла, коэффициента трения, величины рабочей нагрузки (радиальной и осевой) и других факторов. Учесть в расчете все эти факторы очень трудно.

Заводы-изготовители, выпускающие подшипники для установки с предварительным натягом, придерживаются норм, действительных только для подшипников данного типоразмера и с данным расстоянием между подшипниками. В остальных случаях приходится подбирать натяг опытным путем.

Ориентировочные цифры: для подшипников малого и среднего размера при установке на небольшом расстоянии один от другого а = 0,05—0,07 мм, для крупных подшипников 0,07—0,12 мм. При высоких нагрузках, малых частотах вращения и больших углах контакта применяют большие значения (а); при больших частотах вращения и малых углах контакта — меньшие.

Рекомендуется избегать совместного натяга подшипников, расположенных на больших расстояниях один от другого, когда возникают трудно учитываемые деформации. В таких случаях целесообразно выполнять фиксирующую опору в виде сдвоенных подшипников 6 с предварительным натягом, а вторую опору сделать плавающей в виде радиального (вид и) или сдвоенного (вид к) подшипника с предварительным натягом.

В опорах, где первоначальный натяг быстро теряется (тяжелонагруженные опоры, подшипники с малым углом контакта β), необходимо предусматривать возможность периодической подтяжки подшипников.

Регулировка с помощью калиброванных шайб 1 (рис. 779, а) неудобна. Чаще применяют бесступенчатое регулирование посредством затяжки гайкой 2 внутренних (вид б) или гайкой 3 наружных (вид в) обойм. Остальные обоймы (наружные на виде б и внутренние на виде в) устанавливают жестко.

Угол контакта в радиально упорном подшипнике на что влияет

Натяг регулируют путем затяжки гаек до получения беззазорного, но достаточно легкого вращения.

Обычно применяют следующие достаточно грубые способы.

1. Гайку затягивают до момента, пока вал (или установленная на нем деталь) перестает вращаться от руки, после чего гайку отвертывают на определенный угол (обычно на четверть оборота) и стопорят в этом положении.

2. Гайку затягивают до отказа и затем медленно отвертывают, постепенно прилагая к проверяемой детали усилие руки. Как только деталь начинает вращаться, гайку стопорят.

Если к деталям присоединены какие-либо механизмы, исключающие возможность проворачивания, то гайку затягивают нормированным моментом, предварительно устанавливаемым опытным путем. При этом надо учитывать переменность трения в резьбе и на посадочной поверхности затягиваемой обоймы. Повышенное трение может поглотить большую часть силы затяжки.

Пружинный предварительный натяг

При этом способе в систему вводят спиральные или тарельчатые пружины, обеспечивающие натяг практически постоянной величины, почти независимо от износа поверхностей качения, колебаний линейных размеров и тепловых деформаций.

Пружинный натяг применяют:

— в опорах, расположенных на больших расстояниях одна от другой;

— в прецизионных узлах, где необходимо исключить биения, нарушающие точность производимых машиной операций;

— в быстроходных агрегатах, где зазоры вызывают смещение центра тяжести вращающихся деталей с геометрической оси вращения и появление повышенных центробежных нагрузок;

— в агрегатах, подверженных динамическим нагрузкам, где зазоры приводят к разбиванию и быстрому износу поверхностей качения.

В схеме пружинного натяга (рис. 780, а) подшипник 1 жестко закреплен на валу и в корпусе; подшипник 2 плавает наружной обоймой в корпусе. Плавающая обойма нагружена пружинами, создающими в обоих подшипниках постоянный натяг.

Угол контакта в радиально упорном подшипнике на что влияет

Конструкция (б) отличается от предыдущей тем, что подшипник 2 плавает внутренней обоймой на валу.

Недостаток обеих конструкций состоит в том, что вал жестко зафиксирован только в одном направлении (светлые стрелки). В противоположном направлении вал фиксируется только силами пружин и при осевой нагрузке, превышающей силу пружин, может перемещаться в пределах зазора (s) в натяжном устройстве.

Эти конструкции применимы в случаях:

— когда рабочая осевая нагрузка направлена в одну сторону, а нагрузок в противоположном направлении нет или они невелики по сравнению с силой затяжки пружин;

— когда допустимо осевое смещение вала в пределах зазора под действием повышенных сил, противоположных рабочей нагрузке.

Практически беззазорную фиксацию обеспечивает конструкция (в), где подшипники установлены с предварительным натягом путем затяжки на внутреннюю дистанционную втулку 3, длина которой несколько меньше длины внешней дистанционной втулки 4. Натяг создается спиральной пружиной, действующей на наружные обоймы подшипников.

Так как подшипники установлены в корпусе жестко, то конструкцию применяют при небольших расстояниях между подшипниками, когда тепловые деформации невелики.

При больших расстояниях фиксирующую опору выполняют в виде спаренных радиально-упорных подшипников 5 с пружинным предварительным натягом (вид г). Вторую опору делают плавающей в виде одиночного радиально-упорного подшипника 6 с пружинным натягом или в виде сдвоенных радиально-упорных подшипников 7 (вид д) с предварительным натягом.

Определить силу пружинного предварительного натяга расчетным путем трудно. Расчет натяга из условия предупреждения вращения шариков под действием гироскопических моментов по формуле (359) дает даже при коэффициентах запаса 1,5—2 уменьшенные значения силы предварительного натяга. Это объясняется тем, что сила пружин должна быть достаточной для преодоления силы трения на посадочных поверхностях подвижных обойм, поэтому силу предварительного натяга устанавливают опытным путем.

В системах с пружинным натягом должны быть предусмотрены средства регулирования силы пружин.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *