Угловой диаметр дифракционного диска что это
Угловой диаметр
Угловой размер — это угол между линиями, соединяющими диаметрально противоположные точки измеряемого объекта и глаз наблюдателя.
Под угловым размером может также пониматься не плоский угол, под которым виден объект, а телесный угол.
Если отрезок длиной D перпендикулярен линии наблюдения (более того, она является серединным его перпендикуляром) и находится на расстоянии L от наблюдателя, то точная формула для углового размера этого отрезка: . Если размер тела D мал по сравнению с расстоянием от наблюдателя L, то угловой размер (в радианах) определяется отношением D/L, так как для малых углов. При удалении тела от наблюдателя (увеличении L), угловой размер тела уменьшается.
Понятие углового размера очень важно в геометрической оптике, и в особенности применительно к органу зрения — глазу. Глаз способен регистрировать именно угловой размер объекта. Его реальный, линейный размер определяется мозгом по оценке расстояния до объекта и из сравнения с другими, уже известными телами.
В астрономии
Угловой размер астрономического объекта, видимый с Земли, обычно называется угловым диаметром или видимым диаметром. Вследствие удалённости всех объектов, угловые диаметры планет и звёзд очень малы и измеряются в угловых минутах (′) и секундах(″). Например, средний видимый диаметр Луны равен 31′05″ (вследствие эллиптичности лунной орбиты угловой размер изменяется от 29′24″ до 33′40″). Средний видимый диаметр Солнца — 31′59″ (изменяется от 31′27″ до 32′31″). Видимые диаметры звёзд чрезвычайно малы и лишь у немногих светил достигают нескольких сотых долей секунды.
См. также
Полезное
Смотреть что такое «Угловой диаметр» в других словарях:
УГЛОВОЙ ДИАМЕТР — УГЛОВОЙ ДИАМЕТР, в астрономии видимый диаметр небесного тела, выраженный в угловых мерах (обычно в дуговых градусах и минутах). Это угол, вершиной которого является глаз наблюдателя, а основанием видимый диаметр наблюдаемого тела. Если известно… … Научно-технический энциклопедический словарь
угловой диаметр — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN angular diameter … Справочник технического переводчика
Угловой диаметр — Видимый диаметр объекта, измеряемый в угловых единицах, т.е. в радианах, градусах, дуговых минутах или секундах. Угловой диаметр зависит как от истинного диаметра, так и от расстояния до объекта … Астрономический словарь
угловой диаметр — kampinis skersmuo statusas T sritis fizika atitikmenys: angl. angular diameter; apparent diameter vok. scheinbare Durchmesser, m; Winkeldurchmesser, m rus. видимый диаметр, m; угловой диаметр, m pranc. diamètre angulaire, m; diamètre apparent, m … Fizikos terminų žodynas
угловой диаметр приемника — (η2) Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика
угловой диаметр светоотражающего образца — (η1) Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика
угловой диаметр приемника (η2) — 2.4.3 угловой диаметр приемника (η2): Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (b1 = b2 = 0°). Источник … Словарь-справочник терминов нормативно-технической документации
угловой диаметр светоотражающего образца (η1) — 2.4.2 угловой диаметр светоотражающего образца (η1): Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (b1 = b2 = 0°). Источник … Словарь-справочник терминов нормативно-технической документации
Диаметр — в изначальном значении это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам. Содержание 1 Диаметр геометрических фигур … Википедия
Диаметр Солнца и планет — поперечник видимого диска этих светил, выраженный в угловой мере. Зная видимый диаметр и расстояние от Земли, легко вычислить истинные размеры светил. Угловой диаметр изменяется в зависимости от расстояния, и так как все движения светил относятся … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Угловой диаметр дифракционного диска что это
Зеркальные телескопы не грешат хроматической аберрацией, так как свет в объективе не преломляется. Зато у рефлекторов сильнее выражена сферическая аберрация, которая, кстати говоря, сильно ограничивает поле зрения телескопа. В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее.
Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают.
Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентных целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире (фото справа).
Телескоп без глаза
Если подсоеденить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет впоследствии обратиться.
Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований.
Разрешающая способность телескопа
Из-за явления дифракции на краях объектива звезды видны в телескоп в виде дифракционных дисков, окруженных несколькими кольцами убывающей интенсивности. Угловой диаметр дифракционного диска:
Если диаметр объектива выражен в мм, длина волны в нм а разрешающая способность – в секундах дуги, то последняя формула примет вид:
Два точечных объекта с видимым угловым расстоянием Q находятся на пределе раздельной видимости, что определяет теоретическую разрешающую способность телескопа. Атмосферное дрожание снижает разрешающую способность телескопа до:
Разрешающая способность определяет способность различить два смежных объекта на небе. Телескоп с большей разрешающей способностью позволяет лучше увидеть два близко расположенных друг к другу объекта, например, компоненты двойной звезды. Лучше также можно увидеть детали любого одиночного объекта. Рисунок 3 иллюстрирует, как вид двух близлежащих объектов мог бы изменяться с увеличением разрешающей способности телескопа. Когда угловая разрешающая способность мала, объекты выглядят как одиночное размытое пятно. С увеличением разрешающей способности два источника света станут различимыми как отдельные объекты. Литература: 1.Астрономический календарь. Постоянная часть. М. Наука. 1981. 2. Сикорук Л.Л. Телескопы для любителей астрономии. М. Наука, 1982. 3. Цесевич В.П. Что и как наблюдать на небе. М. Наука. 1979 К зачету необходимо: 1. Знать характеристики объектива и телескопа. 2. Уметь объяснить их назначение. 3. Уметь находить увеличение, фокусное расстояние, выходной зрачок и разрешающую способность телескопа. 4. Уметь дать сравнительный анализ возможностей телескопов: рефрактора школьного, рефлекторов «Мицар» и «Алькор». 1. Определить диаметр объектива данного телескопа. 2. Определить фокусное расстояние телескопа. 3. Определить относительное отверстие телескопа. 4. Определить возможные увеличения телескопа с предложенными окулярами. 5. Определить проницающую силу телескопа. 6. Определить диаметр выходного зрачка телескопа с предложенным окуляром. 7. Определить разрешающую способность телескопа для длины волны, к которой более чувствителен глаз l = 0,555 мкм по формуле: 8. Определить поле зрения телескопа по формуле: Лабораторная работа № 7 Определение положений и условий видимости планет. Цель работы: Изучить положение планет на небе в заданный период времени. Определить условия видимости и наблюдений заданной планеты. Оборудование: Вопросы к допуску: 1. Условия видимости планет. 2. Подвижная карта звёздного неба. Основные теоретические сведения: Мы наблюдаем движение планет Солнечной системы с движущейся вокруг Солнца Земли и это приводит к ряду особенностей в их видимых перемещениях на небе. Траектории движения планет проектируются на неподвижные звёзды. Планеты, как и Солнце, движутся только по зодиакальным созвездиям, постоянно пересекая эклиптику, но никогда сильно не удаляются от неё. Хорошие условия для наблюдений имеют только те планеты, которые находятся на значительном удалении от Солнца, при проекции их положений на эклиптику. Меркурий и Венера, имеющие свои орбиты внутри орбиты Земли, никогда не отходят далеко от Солнца. Меркурий может удалиться на 280, Венера на 480. Поэтому условия для наблюдения Меркурия редко бывают благоприятными. Он почти всё время теряется в лучах Солнца. Венера видна всегда перед восходом Солнца или сразу после его захода. Различают периоды утренней и вечерней видимости Венеры. Некоторые древние народы, которые слабо знали астрономию, считали, что это два разных светила и называли Венеру Утренней и Вечерней звездой, в зависимости от того, когда она наблюдалась. Внешние планеты, т.е. имеющие орбиты за орбитой Земли, удаляются от Солнца, в проекции на эклиптику, в любых пределах. Однако, бывают времена, когда Солнце проходит по тем же зодиакальным знакам, где в данный момент находится та или иная планета. В этот период условия для наблюдения планеты неблагоприятные, потому что она бывает на видимой части неба днём и теряется в ярких лучах Солнца. Планеты движутся прямо, в направлении движения Солнца по эклиптике, потом замедляют свой ход, останавливаются и движутся в противоположном направлении. Через какое-то время направление движения снова меняется. Эти движения называются прямыми и попятными. Древние астрономы называли планеты из-за их сложного движения «блуждающими светилами». Прямые и попятные движения планет объясняются различием орбитальных линейных скоростей планеты и Земли. При этом планеты имеют петлеобразные траектории. Размер петли зависит от отношения радиусов орбит планеты и Земли. У Юпитера угловой размер петли около 110, а у Плутона всего 30.
|