Углерод является основой жизни потому что
Почему углерод играет ключевую роль в жизни клетки и составляет химическую основу жизни?
Углерод — элемент номер шесть. Прямо в середине первой строки периодической таблицы химических элементов. Ну и что? Углерод основа жизни – это самый важный элемент живых организмов. Без этого элемента жизнь, какой мы ее знаем, не существовала бы.
Как вы увидите, шестой элемент периодической таблицы является центральным в соединениях, необходимых для жизни.
Значение углерода
Углерод – соединение, содержащееся главным образом в живых организмах, известно как органическое соединение.
Органические соединения составляют клетки и другие структуры организмов и осуществляют жизненные процессы. Углерод является основным элементом в органических соединениях, поэтому элемент необходим для жизни на Земле. Углерод основа жизни и она, какой мы ее знаем, не могла бы существовать. Теоретически, вроде бы возможны другие формы жизни, но человечество их не знает.
Почему углерод главный для жизни?
Почему углерод так важен для жизни? Причина — способность образовывать устойчивые связи со многими элементами, в том числе и с самим собой. Это свойство позволяет шестому элементу образовывать огромное разнообразие очень больших и сложных молекул.
Углерод в химическом составе живых существ
Поскольку живые существа являются результатом ряда химических реакций в определенный момент времени, и, как уже упоминалось, углерод играет фундаментальную роль в этих реакциях, было бы невозможно представить жизнь без присутствия этого элемента..
Универсальность углерода позволила ему присутствовать в клеточных и микроорганических процессах, которые вызывают жизненно важные компоненты организма: жиры, белки, липиды, которые помогают формированию неврологических систем, и нуклеиновые кислоты, которые хранят ДНК через ДНК. генетический код каждого человека.
Он также присутствует во всех тех элементах, которые потребляют живые существа, чтобы получить энергию и гарантировать свою жизнь.
Углерод в атмосферном значении
Углерод, в форме углекислого газа, представляет собой газ, присутствующий на атмосферном уровне, естественно.
Двуокись углерода препятствует выходу внутренней температуры земли, а ее постоянное присутствие позволяет ее поглощению другими существами выполнять свои циклы питания.
Это ключевой компонент для поддержания различных уровней жизни на планете. Однако на неестественных уровнях, вызванных чрезмерным выбросом человека, он может в конечном итоге содержать слишком много температуры, создавая парниковый эффект. Тем не менее, это будет иметь решающее значение для сохранения жизни в этих новых условиях.
Перенос углерода между живыми существами
Порядок питания в экосистемах тесно связан с переносом углерода между живыми существами, которые участвуют в этих взаимодействиях.
Например, животные обычно получают углерод от первичных производителей и передают его всем, кто находится выше в цепи.
В конце концов углерод возвращается в атмосферу в виде диоксида углерода, где он участвует в каком-то другом органическом процессе.
Углерод в клеточном дыхании
Углерод, наряду с водородом и кислородом, способствует процессу высвобождения энергии через глюкозу в организме, вырабатывая аденозинтрифосфат, который считается источником энергии на клеточном уровне.
Углерод облегчает процесс окисления глюкозы и выделения энергии, превращаясь в сам углекислый газ и выводясь из организма.
Углерод в фотосинтезе
Другое клеточное явление универсального значения – это то, на что способны только растения: фотосинтез; интеграция энергии, поглощенной непосредственно от Солнца, с углеродом, поглощенным из атмосферной среды.Результатом этого процесса является питание растений и продление их жизненного цикла.
Фотосинтез не только гарантирует жизнь растений, но также способствует поддержанию теплового и атмосферного уровня под определенным контролем, а также обеспечивает пищу для других живых существ.
Углерод играет ключевую роль в фотосинтезе, а также в естественном цикле вокруг живых существ..
Углерод в дыхании животных
Хотя животные не могут получать прямую энергию от Солнца для своей пищи, почти все продукты, которые они могут потреблять, содержат в своем составе высокое содержание углерода.
Такое потребление продуктов на основе углерода вызывает у животных процесс, который приводит к выработке энергии для жизни.
Подача углерода животным через пищу обеспечивает непрерывное производство клеток у этих существ..В конце процесса животные могут выделять углерод в виде отходов в виде углекислого газа, который затем поглощается растениями для осуществления своих собственных процессов.
Углерод в естественном разложении
Живые существа действуют как большие запасы углерода в течение своей жизни; атомы всегда работают над непрерывной регенерацией самых основных компонентов организма.
Когда существо умирает, углерод начинает новый процесс, который возвращается в окружающую среду и используется повторно. Есть некоторые маленькие организмы, называемые дезинтеграторами или разлагающими веществами, которые обнаруживаются как на суше, так и в воде, и несут ответственность за поглощение остатков тела без жизни, а также за хранение атомов углерода, а затем за выброс их в окружающую среду.
Углерод – океанический регулятор
Углерод также присутствует в больших океанских телах планеты, как правило, в форме бикарбонат-ионов; результат растворения углекислого газа, присутствующего в атмосфере.
Углерод подвергается реакции, которая переводит его из газообразного состояния в жидкое и превращается в бикарбонат-ионы..В океанах бикарбонат-ионы функционируют в качестве регуляторов рН, необходимых для создания идеальных химических условий, способствующих формированию морской флоры и фауны различных размеров, освобождая место для пищевых цепей океанических видов.
Углерод может быть выпущен из океана в атмосферу через поверхность океана; однако эти количества очень малы.
Возникновение «жизненного» элемента углерода
Каждый атом углерода, находящийся на Земле и во Вселенной, возник в ядре красных гигантов при температуре около 100 миллионов градусов.
Атомы углерода как сказано выше, являются основой любого живого организма, ибо обладают способностью соединяться в длинные цепочки и создавать сложные органические молекулы.
Углеродные атомы, из которых построен человеческий организм и биосфера в целом, возникали в те далекие времена, когда еще не существовали Солнце и Солнечная система, когда не было еще даже полимерной цепи, из которой позднее родилось Солнце и все его семейство. Именно в звездах-гигантах возникали тогда из атомов гелия атомы углерода. Это произошло более семи миллиардов лет тому назад. Из звезд атомы углерода потом попали в межзвездное пространство. Там они смешались с межзвездным веществом, из которого позднее возникли полимерные цепи, включая и создание нашей Солнечной системы.
Таким образом, углерод основа жизни которая переместилась из недр старых красных гигантов на нашу планету, а отсюда в земные растения и, наконец, вместе с пищей — в человеческий организм. Именно тогда зародилась жизнь на Земле.
Можно сказать, что без красных гигантов, существовавших семь миллиардов лет назад, на Земле не было бы углерода, а, следовательно, и жизни. Итак, с точки зрения астрономии нашими далекими предками являются именно красные гиганты.
Пищевые источники углерода
Углерод находится во всех пищевых продуктах в виде соответствующих органических соединений. Человеческий организм не способен усваивать неорганические соединения углерода.
Дефицит углерода
Дефицит углерода не наблюдается.
Избыток углерода
Избыток углерода не наблюдается. Возможны отравления токсичными соединениями оксид углерода (II), четыреххлористый углерод, сероуглерод, соли цианистой кислоты, бензол и другие.
Выводы
Согласно описанному выше, можно сделать следующие выводы, касаемо того, почему углерод играет ключевую роль в жизни клетки и составляет химическую основу жизни:
Углерод — основа жизни всех органических молекул
Углерод — элемент номер шесть. Прямо в середине первой строки периодической таблицы химических элементов. Ну и что? Углерод основа жизни – это самый важный элемент живых организмов. Без этого элемента жизнь, какой мы ее знаем, не существовала бы.
Как вы увидите, шестой элемент периодической таблицы является центральным в соединениях, необходимых для жизни.
Значение углерода
Соединение, содержащееся главным образом в живых организмах, известно как органическое соединение.
Органические соединения составляют клетки и другие структуры организмов и осуществляют жизненные процессы. Углерод является основным элементом в органических соединениях, поэтому элемент необходим для жизни на Земле. Углерод основа жизни и она, какой мы ее знаем, не могла бы существовать. Теоретически, вроде бы возможны другие формы жизни, но человечество их не знает.
Соединения
Соединение — это вещество, состоящее из двух или более элементов. Соединение имеет уникальный состав, который всегда один и тот же. Мельчайшая частица соединения называется молекулой. Рассмотрим в качестве примера воду. Молекула воды всегда содержит один атом кислорода и два атома водорода. Состав воды выражается химической формулой H2O. Вода не является органическим соединением. Молекула воды всегда имеет такой состав: один атом кислорода и два атома водорода.
Что заставляет атомы молекулы воды «слипаться» вместе? Ответ — химические связи. Химическая связь-это сила, которая удерживает молекулы вместе. Химические связи образуются, когда вещества вступают в реакцию друг с другом. Химическая реакция-это процесс, который превращает одни химические вещества в другие. Для образования соединения необходима химическая реакция. Для разделения веществ в соединении необходима еще одна химическая реакция.
Почему этот элемент главный для жизни
Почему углерод так важен для жизни? Причина — способность образовывать устойчивые связи со многими элементами, в том числе и с самим собой. Это свойство позволяет шестому элементу образовывать огромное разнообразие очень больших и сложных молекул.
Однако миллионы органических соединений можно разделить всего на четыре основных типа: углеводы, липиды (жиры), белки и нуклеиновые кислоты.
Вы можете сравнить четыре типа в таблице ниже:
Элементы | Тип соединений | Состав | Функции | Мономер (повторяющиеся звенья) |
Углеводы | сахар, крахмал | углерод, водород, кислород | снабжает энергией клетки, накапливает энергию, формирует структуры тела | моносахарид |
Липиды (жиры) | жирное масло | накапливает энергию, формирует клеточные мембраны, несет сообщения. | ||
Белки | ферменты, антитела | помогает клеткам сохранять форму, формирует мышцы, ускоряет химические реакции, несет сообщения и материалы. | аминокислота | |
Нуклеиновые кислоты | ДНК-РНК | содержит инструкции для белков, передает инструкции от родителей к потомству, помогает производить белки | нуклеотид Углеводы, белки и нуклеиновые кислоты-это крупные молекулы (макромолекулы), построенные из более мелких молекул (мономеров) в результате реакций дегидратации. В реакции дегидратации вода удаляется по мере соединения двух мономеров. Возникновение «жизненного» элемента углеродаКаждый атом углерода, находящийся на Земле и во Вселенной, возник в ядре красных гигантов при температуре около 100 миллионов градусов. Атомы углерода как сказано выше, являются основой любого живого организма, ибо обладают способностью соединяться в длинные цепочки и создавать сложные органические молекулы. Углеродные атомы, из которых построен человеческий организм и биосфера в целом, возникали в те далекие времена, когда еще не существовали Солнце и Солнечная система, когда не было еще даже полимерной цепи, из которой позднее родилось Солнце и все его семейство. Именно в звездах-гигантах возникали тогда из атомов гелия атомы углерода. Это произошло более семи миллиардов лет тому назад. Из звезд атомы углерода потом попали в межзвездное пространство. Там они смешались с межзвездным веществом, из которого позднее возникли полимерные цепи, включая и создание нашей Солнечной системы. Таким образом, углерод основа жизни которая переместилась из недр старых красных гигантов на нашу планету, а отсюда в земные растения и, наконец, вместе с пищей — в человеческий организм. Именно тогда зародилась жизнь на Земле. Можно сказать, что без красных гигантов, существовавших семь миллиардов лет назад, на Земле не было бы углерода, а, следовательно, и жизни. Итак, с точки зрения астрономии нашими далекими предками являются именно красные гиганты. Углерод — основа жизни на ЗемлеМы посвятили две статьи воздуху, без которого жизнь на нашей планете была бы невозможна. Теперь поговорим об углероде — элементе, который является основой жизни на земле. Ученые, уфологи и фантасты даже ввели в обиход термин «углеродная жизнь». И он вполне справедлив, так как все белки, аминокислоты, жиры, ДНК и РНК построены на основе углеводородных молекул. Углерод — простое неорганическое вещество, элемент таблицы Менделеева. Обозначается буквой «С» (Carboneum). В виде алмазов, графита и древесного угля известен человечеству с древнейших времен. Название carbone (углерод) впервые было введено в химическую науку французскими учеными. А. Лавуазье доказал, что уголь — это элементарное химическое вещество, а не носитель некоего невесомого флюида флогистона, отвечающего за горючие свойства веществ. Он же установил, что алмаз — это кристаллическая форма углерода. Три формы углеродаУглерод — удивительное вещество, физические свойства которого и даже внешний вид описать однозначно просто невозможно. Этот элемент — рекордсмен по количеству аллотропных модификаций. Три формы углерода: Молекулы кристаллического углерода характеризуются правильной кристаллической решеткой. Большинство форм кристаллического углерода отличаются очень высокой твердостью и тугоплавкостью. Алмаз обладает высокой плотностью, почти не проводит тепло и ток. Графит, наоборот, имеет невысокую плотность и слоистое строение; проводит ток, может возгоняться, минуя жидкое состояние. Вещества, относящиеся к аморфным формам, не являются чистой формой углерода, но содержат углерод в очень значительных количествах. Для аморфного углерода характерна высокая теплоемкость, свойства полупроводников, невысокая плотность, относительно невысокая термостойкость — при температуре выше 1600 °С он превращается в графит. Как правило, их основой являются разные формы мелкокристаллического графита в виде неупорядочной структуры. Углеродные кластеры — сложные соединения с очень интересными свойствами. Им, а также другим перспективным материалам на основе углерода, мы посвятим одну из ближайших статей. Химические свойстваС химическими свойствами немного проще. В нормальных условиях углерод практически не вступает в реакции с другими элементами и веществами, инертен к кислотам, щелочам, галогенам. При высоких температурах проявляет сильные восстановительные свойства. Наиболее химически активны аморфные виды углерода, наиболее инертны — кристаллические. Графит по химической активности занимает серединное положение. При высоких температурах углерод окисляется кислородом (горит), образует несколько видов оксидов. Графит и аморфный углерод при высоких температурах реагируют с водородом, азотом, фтором, галогенами, щелочными металлами, солями металлов, серой. В результате реакции с водородом и азотом получается синильная кислота. Взаимодействие большинства металлов, углерода, бора и кремния приводит к образованию карбидов. Углерод восстанавливает оксиды металлов до металлов. При определенных условиях удается преобразовать углерод, содержащийся в твердых видах топлива, в горючие газы (реакция газификации топлив очень важна для промышленности). Главное свойство углерода — способность соединяться в длинные цепи, причем эти цепи могут содержать как атомы углерода, так и другие атомы. Цепи могут замыкаться, разветвляться, образовывать циклы, быть разной длины, соединяться («сшиваться») между собой в разнообразные структуры. Такие углеродно-водородные цепи — основа всей органической химии. Следующая статья будет о содержании углерода в природе, его опасности и сферах применения. Важность углерода в живых существах 8 причинУглерод является ключевым химическим элементом для жизни и природных процессов, происходящих на земле. Это шестой самый распространенный элемент во вселенной, участвующий в формированиях и астрономических реакциях.. Углерода в изобилии на Земле, и его свойства позволяют ему связываться с другими элементами, такими как кислород и водород, образуя молекулярные соединения, имеющие большое значение. Углерод является легким элементом, и его присутствие в живых существах является фундаментальным, так как он используется и управляется энзимами органических систем.. Человеческое тело состоит из 18% углерода, и было подсчитано, что вся органическая жизнь на Земле имеет в качестве основы наличие углерода. Некоторые теории предполагают, что если в другой части Вселенной есть жизнь, то в ее составе также присутствует большое количество углерода.. Углерод является фундаментальным элементом для формирования таких компонентов, как белки и углеводы, а также для физиологического функционирования живого организма.. Несмотря на то, что он является природным элементом, углерод также присутствует в реакциях и химических вмешательствах, которые совершил человек, обеспечивая новые преимущества.. Почему углерод важен для живых существ?Химический состав живых существПоскольку живые существа являются результатом ряда химических реакций в определенный момент времени, и, как уже упоминалось, углерод играет фундаментальную роль в этих реакциях, было бы невозможно представить жизнь без присутствия этого элемента.. Универсальность углерода позволила ему присутствовать в клеточных и микроорганических процессах, которые вызывают жизненно важные компоненты организма: жиры, белки, липиды, которые помогают формированию неврологических систем, и нуклеиновые кислоты, которые хранят ДНК через ДНК. генетический код каждого человека. Он также присутствует во всех тех элементах, которые потребляют живые существа, чтобы получить энергию и гарантировать свою жизнь.. Атмосферное значениеУглерод, в форме углекислого газа, представляет собой газ, присутствующий на атмосферном уровне, естественно. Двуокись углерода препятствует выходу внутренней температуры земли, а ее постоянное присутствие позволяет ее поглощению другими существами выполнять свои циклы питания.. Это ключевой компонент для поддержания различных уровней жизни на планете. Однако на неестественных уровнях, вызванных чрезмерным выбросом человека, он может в конечном итоге содержать слишком много температуры, создавая парниковый эффект. Тем не менее, это будет иметь решающее значение для сохранения жизни в этих новых условиях. Перенос углерода между живыми существамиПорядок питания в экосистемах тесно связан с переносом углерода между живыми существами, которые участвуют в этих взаимодействиях.. Например, животные обычно получают углерод от первичных производителей и передают его всем, кто находится выше в цепи. В конце концов углерод возвращается в атмосферу в виде диоксида углерода, где он участвует в каком-то другом органическом процессе.. Клеточное дыханиеУглерод, наряду с водородом и кислородом, способствует процессу высвобождения энергии через глюкозу в организме, вырабатывая аденозинтрифосфат, который считается источником энергии на клеточном уровне.. Углерод облегчает процесс окисления глюкозы и выделения энергии, превращаясь в сам углекислый газ и выводясь из организма. фотосинтезРезультатом этого процесса является питание растений и продление их жизненного цикла.. Фотосинтез не только гарантирует жизнь растений, но также способствует поддержанию теплового и атмосферного уровня под определенным контролем, а также обеспечивает пищу для других живых существ.. Углерод играет ключевую роль в фотосинтезе, а также в естественном цикле вокруг живых существ.. Дыхание животныхХотя животные не могут получать прямую энергию от Солнца для своей пищи, почти все продукты, которые они могут потреблять, содержат в своем составе высокое содержание углерода.. Такое потребление продуктов на основе углерода вызывает у животных процесс, который приводит к выработке энергии для жизни. Подача углерода животным через пищу обеспечивает непрерывное производство клеток у этих существ.. В конце процесса животные могут выделять углерод в виде отходов в виде углекислого газа, который затем поглощается растениями для осуществления своих собственных процессов.. Естественное разложениеЖивые существа действуют как большие запасы углерода в течение своей жизни; атомы всегда работают над непрерывной регенерацией самых основных компонентов организма. Когда существо умирает, углерод начинает новый процесс, который возвращается в окружающую среду и используется повторно.. Есть некоторые маленькие организмы, называемые дезинтеграторами или разлагающими веществами, которые обнаруживаются как на суше, так и в воде, и несут ответственность за поглощение остатков тела без жизни, а также за хранение атомов углерода, а затем за выброс их в окружающую среду.. Океанический регуляторУглерод также присутствует в больших океанских телах планеты, как правило, в форме бикарбонат-ионов; результат растворения углекислого газа, присутствующего в атмосфере. Углерод подвергается реакции, которая переводит его из газообразного состояния в жидкое и превращается в бикарбонат-ионы.. В океанах бикарбонат-ионы функционируют в качестве регуляторов рН, необходимых для создания идеальных химических условий, способствующих формированию морской флоры и фауны различных размеров, освобождая место для пищевых цепей океанических видов.. Углерод может быть выпущен из океана в атмосферу через поверхность океана; однако эти количества очень малы. Кремниевая и углеродная форма жизни на ЗемлеУглеродная форма жизни на Земле — от слизистых бактерий до разумных людей имеют одну и ту же базовую биохимию. Углерод, по-видимому, является атомом, наилучшим образом подходящим для образования длинноцепочечных молекул, необходимых для жизни. Откуда мы знаем, что другие биохимии невозможны? Возможно, другие виды биологии настолько отличаются от жизни на Земле, что мы не знаем, как их изучать и даже обнаруживать другие формы жизни. Кремниевая форма жизниНапример, элемент кремний (Si) имеет химические свойства, аналогичные свойствам углерода, и поэтому может быть пригоден вместо углерода в качестве основы для некоторых живых организмов. Такая альтернативная биохимия может иметь реальные преимущества, подразумевая, что жизнь на основе кремния может быть выбрана для выживания в странных уголках и трещинах на нашей планете, или, возможно, особенно в чужеродной среде на внеземных телах. Почему нет «кремниевой» жизниПочему же тогда на Земле нет форм жизни, основанных на кремнии, особенно учитывая, что кремний примерно в 135 раз более распространен, чем углерод на нашей планете? Углерод имеет более прочные связиОтвет заключается в том, что, хотя кремний имеет преимущество в интенсивном нагревании, углерод преобладает в типичных средах на поверхности Земли или вблизи нее. То есть при так называемой комнатной температуре 20 градусов углерод связывается с другими атомами более прочно, и особенно с другими атомами. В частности, углерод с его 4 непарными внешними электронами может образовывать плотные химические связи, разделяя эти электроны с другими элементами. Аналогично, хотя кремний является возможной альтернативой углероду, чтобы понять, почему он не так прочен как углерод, рассмотрим следующее. Кремний, расположенный чуть ниже углерода в той же колонке периодической таблицы элементов, также имеет 4 неспаренных электрона на своей внешней орбите. Увы, как отмечалось выше, кремний не может связываться с другими атомами так же, как углерод. Это происходит потому, что 4 неспаренных электрона атома углерода обычно находятся на его второй орбитали и поскольку 8 — это максимальное число электронов, допустимое на второй орбитали любого атома, эта орбиталь становится полной и завершенной, когда углерод связывается с другими атомами со всех 4 сторон. Соответственно, химическая связь углерода является одной из самых сильных. Напротив, 4 неспаренных электрона кремния обычно находятся на его третьей орбитали и здесь максимальное число электронов, разрешенных на третьей орбитали любого атома, составляет 18. Хотя кремний обычно может иметь атомы, связанные с каждой из его 4 сторон, так же, как углерод, Кремниевая связь не так сильна, как углеродная связь, потому что внешняя орбиталь кремния часто не имеет полного набора электронов, даже когда она связана с другими атомами. Как правило, углеродные связи вдвое прочнее кремниевых. Еще более важно то, что углерод наиболее сильно связан с другими атомами углерода. Это особенно верно для алмаза, который состоит из атомов углерода, связанных друг с другом. На самом деле алмаз — самое твердое из известных веществ; твердость обусловлена большой прочностью связи. Кроме того, углеродные связи также не подвержены влиянию воды, что дает углероду еще одно преимущество в наиболее вероятной жидкой среде для жизни. Кремний, с другой стороны, не так хорошо связывается с другими атомами кремния, и совсем не хорошо в присутствии многих жидкостей. Цепи кремния особенно неустойчивы в воде; они распадаются на части. Алмаз является самым твердым из известных веществ. Каждый атом, состоящий из чистых атомов углерода, прочно связан с 4 другими атомами. Тот факт, что связь углерод-углерод сильнее, чем связь кремний-кремний, особенно при погружении в жидкость, является важным фактором, благоприятствующим жизни на основе этого элемента. Образование сложных химических связейДругая причина-нежелание кремния образовывать двойные и тройные связи, которые обычно придают еще большую прочность группе из двух или более атомов. Углерод создает сложный порядок соединения атомов элементов — химическое строение. Кроме того углерод легко образует длинные цепи, и он распространен во всей Вселенной. Реагирование кислорода и углеродаТретий аргумент в пользу углеродной жизни — высокое космическое изобилие кислорода. Когда C химически реагирует с O, в результате образуется углекислый газ CO2. Это газ и поэтому может легко сочетаться с другими соединениями; в нашем случае люди выдыхают углекислый газ после того, как вдыхаемый O реагирует с C в наших телах во время дыхания. Однако, когда кремний (Si) вступает в реакцию с O, в результате получается кварц (SiO2), который является твердым веществом, которое вряд ли легко взаимодействует с другими соединениями. Можете ли вы представить себе живых существ, выдыхающих кварцевые частички каждый раз, когда они делают вдох? Фотосинтез и дыхание основополагающая часть нашей жизни. Поэтому нас не должно удивлять, что кремний не играет никакой биохимической роли на Земле, несмотря на его широкое распространение. Возможные другие типы жизниПри соответствующих условиях на любой планете, как на углеродной, так и на кремниевой основе, может первоначально сформироваться жизнь. Могут возникнуть и другие типы жизни — возможно, на основе редкого элемента Германия, который также имеет 4 электрона на своей внешней (четвертой) орбите, поскольку он также находится в том же столбце периодической таблицы, что и углерод. Однако углеродная форма жизни, несомненно, в конечном счете уничтожит все другие типы жизни. Углерод, очевидно, обладает большей гибкостью и прочностью сцепления и может лучше адаптироваться к изменяющимся сухо-влажным условиям. Таким образом, с химической точки зрения углеродная форма жизни лучше всего подходит для того, чтобы служить основой длинноцепочечных молекул, необходимых для жизни. Несмотря на эти сильные утверждения, мы не должны полностью закрывать свой разум от странных биохимических явлений. Некоторые планеты могут иметь странные физические условия, которые на самом деле благоприятствуют другим типам жизни. Например, тепло приходит на ум как одно из таких свойств, которое, возможно, предпочтет химию кремниевой и углеродной формой жизни. Кремний-кислородные связи могут выдерживать температуру до 300 градусов по Цельсию, а кремний-алюминиевые почти до 600 градусов по Цельсию. Напротив, углеродные связи любого типа разрушаются при таких высоких температурах, что делает жизнь на основе углерода невозможной. Это термостойкое свойство кремния является основной причиной того, что силиконовые компаунды часто используются в качестве промышленных смазок; даже горячее оборудование работает плавно с кремниевой смазкой. Если бы жизнь на основе кремния возникла на горячей планете где-нибудь в Галактике, ее гибкость и приспособляемость все еще были бы сильно ограничены. Это не исключает простых, примитивных типов жизни на основе кремния, живущих в таких чуждых мирах. Но, основываясь на всем, что известно о химии, трудно представить себе что-либо столь сложное, как разумная жизнь, основанная на других элементах.
|