Удельная теплоемкость эфира равна 2350 дж что означает это число
Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)
Представлены таблицы удельной теплоемкости веществ: газов, металлов, жидкостей, строительных и теплоизоляционных материалов, а также пищевых продуктов — более 400 веществ и материалов.
Удельной теплоемкостью вещества называется отношение количества тепла, сообщенного единице массы этого вещества в каком-либо процессе, к соответствующему изменению его температуры.
Удельная теплоемкость веществ зависит от их химического состава, термодинамического состояния и способа сообщения им тепла. В Международной системе единиц эта величина измеряется в Дж/(кг·К).
Необходимо отметить, что экспериментальное определение удельной теплоемкости жидкостей и газов производится при постоянном давлении или при постоянном объеме. В первом случае удельная теплоемкость обозначается Cp, во втором — Cv. Для жидкостей и газов наиболее часто применяется удельная теплоемкость при постоянном давлении Cp.
Для твердых веществ теплоемкости Cp и Cv не различаются. Кроме того, по отношению к твердым телам, помимо удельной массовой теплоемкости применяются также удельная атомная и молярная теплоемкости.
Таблица удельной теплоемкости газов
В таблице приведена удельная теплоемкость газов Cp при температуре 20°С и нормальном атмосферном давлении (101325 Па).
Газы | Cp, Дж/(кг·К) |
---|---|
Азот N2 | 1051 |
Аммиак NH3 | 2244 |
Аргон Ar | 523 |
Ацетилен C2H2 | 1683 |
Водород H2 | 14270 |
Воздух | 1005 |
Гелий He | 5296 |
Кислород O2 | 913 |
Криптон Kr | 251 |
Ксенон Xe | 159 |
Метан CH4 | 2483 |
Неон Ne | 1038 |
Оксид азота N2O | 913 |
Оксид азота NO | 976 |
Оксид серы SO2 | 625 |
Оксид углерода CO | 1043 |
Пропан C3H8 | 1863 |
Сероводород H2S | 1026 |
Углекислый газ CO2 | 837 |
Хлор Cl | 520 |
Этан C2H6 | 1729 |
Этилен C2H4 | 1528 |
Таблица удельной теплоемкости некоторых металлов и сплавов
В таблице даны значения удельной теплоемкости некоторых распространенных металлов и сплавов при температуре 20°С. Значения теплоемкости большинства металлов при других температурах вы можете найти в этой таблице.
Металлы и сплавы | C, Дж/(кг·К) |
---|---|
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Таблица удельной теплоемкости жидкостей
В таблице представлены значения удельной теплоемкости Cp распространенных жидкостей при температуре 10…25°С и нормальном атмосферном давлении.
Жидкости | Cp, Дж/(кг·К) |
---|---|
Азотная кислота (100%-ная) NH3 | 1720 |
Анилин C6H5NH2 | 2641 |
Антифриз (тосол) | 2990 |
Ацетон C3H6O | 2160 |
Бензин | 2090 |
Бензин авиационный Б-70 | 2050 |
Бензол C6H6 | 1050 |
Вода H2O | 4182 |
Вода морская | 3936 |
Вода тяжелая D2O | 4208 |
Водка (40% об.) | 3965 |
Водный раствор хлорида натрия (25%-ный) | 3300 |
Газойль | 1900 |
Гидроксид аммония | 4610 |
Глицерин C3H5(OH)3 | 2430 |
Даутерм | 1590 |
Карборан C2H12B10 | 1720 |
Керосин | 2085…2220 |
Кефир | 3770 |
Мазут | 2180 |
Масло АМГ-10 | 1840 |
Масло ВМ-4 | 1480 |
Масло касторовое | 2219 |
Масло кукурузное | 1733 |
Масло МС-20 | 2030 |
Масло подсолнечное рафинированное | 1775 |
Масло ТМ-1 | 1640 |
Масло трансформаторное | 1680 |
Масло хлопковое рафинированное | 1737 |
Масло ХФ-22 | 1640 |
Молоко сгущенное с сахаром | 3936 |
Молоко цельное | 3906 |
Нефть | 2100 |
Парафин жидкий (при 50С) | 3000 |
Пиво | 3940 |
Серная кислота (100%-ная) H2SO4 | 1380 |
Сероуглерод CS2 | 1000 |
Силикон | 2060 |
Скипидар | 1800 |
Сливки (35% жирности) | 3517 |
Сок виноградный | 2800…3690 |
Спирт метиловый (метанол) CH3OH | 2470 |
Спирт этиловый (этанол) C2H5OH | 2470 |
Сыворотка молочная | 4082 |
Толуол C7H8 | 1130 |
Топливо дизельное (солярка) | 2010 |
Топливо реактивное | 2005 |
Уротропин C6H12N4 | 1470 |
Фреон-12 CCl2F2 | 840 |
Эфир этиловый C4H10O | 2340 |
Таблица удельной теплоемкости твердых веществ
В таблице дана удельная теплоемкость твердых веществ: стройматериалов (песка, асфальта и т.д.), теплоизоляции различных типов и других распространенных материалов в интервале температуры от 0 до 50°С при нормальном атмосферном давлении.
Таблица удельной теплоемкости пищевых продуктов
В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.
Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).
Удельная теплоемкость вещества
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Удельная теплоемкость
Содержание
Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).
В данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.
Удельная теплоемкость вещества
Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.
Единица измерения удельной теплоемкости
Удельная теплоемкость обозначается буквой $c$.
Измеряется удельная теплоемкость вещества в $\frac<Дж><кг \cdot \degree C>$.
Из этого значения мы можем сказать, что:
Табличные значения удельной теплоемкости
Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.
Вещество | $c, \frac<Дж><кг \cdot \degree C>$ | Вещество | $c, \frac<Дж><кг \cdot \degree C>$ |
Золото | 130 | Песок | 820 |
Ртуть | 140 | Стекло | 840 |
Свинец | 140 | Кирпич | 880 |
Олово | 230 | Алюминий | 920 |
Серебро | 250 | Масло подсолнечное | 1700 |
Медь | 400 | Лед | 2100 |
Цинк | 400 | Керосин | 2100 |
Латунь | 400 | Эфир | 2350 |
Железо | 460 | Дерево (дуб) | 2400 |
Сталь | 500 | Спирт | 2500 |
Чугун | 540 | Вода | 4200 |
Графит | 750 | Гелий | 5200 |
Таблица 1. Удельные теплоемкости некоторых веществ.
Удельная теплоемкость и агрегатные состояния вещества
Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.
8 класс
§ 8. Удельная теплоёмкость
Мы узнали, от каких величин зависит количество теплоты и каковы единицы его измерения. Нам известно, что для нагревания тел одинаковой массы, взятых при одинаковой температуре, на одну и ту же величину требуется разное количество теплоты. Так, для нагревания 1 кг воды на 1 °C требуется количество теплоты, равное 4200 Дж. Если нагревать 1 кг серебра на 1 °С, то потребуется 250 Дж.
Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 °С, называется удельной теплоёмкостью вещества.
Удельная теплоёмкость обозначается буквой с и измеряется в (далее будет записано как: Дж / кг • °С).
Так, например, удельная теплоёмкость цинка равна 400 Дж / кг • °С. Это означает, что для нагревания цинка массой 1 кг на 1 °С необходимо количество теплоты, равное 400 Дж. При охлаждении цинка массой 1 кг на 1 °С выделится количество теплоты, равное 400 Дж. Это означает, что если меняется температура цинка массой 1 кг на 1 °С, то он или поглощает, или выделяет количество теплоты, равное 400 Дж.
Таблица 1. Удельная теплоёмкость некоторых веществ
Вещество | с, Дж/кг • °С |
Золото | 130 |
Ртуть | 140 |
Свинец | 140 |
Олово | 230 |
Серебро | 250 |
Медь | 400 |
Цинк | 400 |
Латунь | 400 |
Железо | 460 |
Сталь | 500 |
Чугун | 540 |
Графит | 750 |
Стекло лабораторное | 840 |
Кирпич | 880 |
Алюминий | 920 |
Масло подсолнечное | 1700 |
Лёд | 2100 |
Керосин | 2100 |
Эфир | 2350 |
Дерево (дуб) | 2400 |
Спирт | 2500 |
Вода | 4200 |
Следует помнить, что удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Удельная теплоёмкость воды самая большая — 4200 Дж/кг • °С. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно. Это связано с тем, что зимой вода остывает и отдаёт большое количество теплоты. Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках)и др.
Вопросы:
1. Что называется удельной теплоёмкостью вещества?
2. Что является единицей удельной теплоёмкости вещества?
3. Почему близость водоёмов влияет на температуру воздуха?
4. Почему чаще всего вода используется в системе отопления, для охлаждения двигателей?
Упражнения:
Упражнение № 7
1. Удельная теплоёмкость свинца равна 140 Дж/кг • °С. Что это означает?
2. Для нагревания 1 кг золота на 1 °С требуется 130 Дж. Какова удельная теплоёмкость золота?
Задания:
В таблице 1 найдите жидкости. Какая из жидкостей при одинаковых условиях будет нагреваться быстрее?