У каких веществ наблюдается свойство текучести чем объясняется текучесть
У каких веществ наблюдается свойство текучести чем объясняется текучесть
Основные понятия и определения
Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?
У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части) могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.
Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.
Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.
Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.
Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.
Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой `F_4`.
Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.
Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади `S` этой поверхности: `P=F/S`.
Уточним, что следует понимать под давлением в жидкости или газе.
Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.
Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.
У каких веществ наблюдается свойство текучести чем объясняется текучесть
Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?
Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это – газ.
У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части) могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть. Например, если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.
Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.
Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.
Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.
Давлением называется величина, равная отношению модуля силы F давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади S этой поверхности p = F S :
Уточним, что следует понимать под давлением в жидкости или газе.
Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.
У каких веществ наблюдается свойство текучести чем объясняется текучесть
Учебник Физика 7 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 страниц вышел из печати в июле 2015 г. в пятом издании. Учебник физики 7 класса рассчитан на 2 урока в неделю и содержит 6 тем курса физики, которые перечислены ниже.
Физика. Физическая величина. Измерение физических величин.
Цена делений шкалы прибора. Погрешность прямых и косвенных измерений.
Формулы и вычисления по ним. Единицы физических величин.
Метод построения графика.
Явление тяготения и масса тела. Свойство инертности и масса тела.
Плотность вещества. Таблицы плотностей некоторых веществ.
Средняя плотность тел и их плавание.
Метод научного познания.
Сила и динамометр. Виды сил.
Уравновешенные силы и равнодействующая.
Сила тяжести и вес тела. Сила упругости и сила трения.
Закон Архимеда. Вычисление силы Архимеда.
Простые механизмы. Правило равновесия рычага.
Определение давления. Давление жидкости. Закон Паскаля. Давление газа.
Атмосферное давление. Барометр Торричелли. Барометр-анероид.
Вакуумметры. Манометры: жидкостные и деформационные.
Пневматические и гидравлические механизмы.
Механическая работа. Коэффициент полезного действия. Мощность.
Энергия. Кинетическая и потенциальная энергия.
Механическая энергия. Внутренняя энергия.
Взаимные превращения энергии.
Температура и термометры. Количество теплоты и калориметр.
Теплота плавления/кристаллизации и парообразования/конденсации.
Первый закон термодинамики. Двигатель внутреннего сгорания.
Теплота сгорания топлива и КПД тепловых двигателей.
Теплообмен. Второй закон термодинамики.
Учебник Физика 8 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в четвёртом издании. Учебник физики 8 класса рассчитан на 2 урока в неделю и содержит 5 тем курса физики, которые перечислены ниже.
Из истории МКТ. Частицы вещества. Движение частиц вещества.
Взаимодействие частиц вещества. Систематизирующая роль МКТ.
Кристаллические тела. Аморфные тела. Жидкие тела. Газообразные тела.
Агрегатные превращения. Насыщенный пар. Влажность воздуха.
Строение атомов и ионов. Электризация тел и заряд.
Объяснение электризации. Закон сохранения электрического заряда.
Электрическое поле. Электрический конденсатор. Электрический ток.
Электропроводность жидкостей, газов и полупроводников.
Электрическая цепь. Сила тока. Электрическое напряжение. Работа тока.
Закон Ома для участка цепи. Сопротивление соединений проводников.
Закон Джоуля-Ленца. Электронагревательные приборы.
Полупроводниковые приборы. Переменный ток.
Магнитное поле. Соленоид и электромагнит. Постоянные магниты.
Действие магнитного поля на ток. Электродвигатель на постоянном токе.
Электромагнитная индукция. Электротрансформатор. Передача электроэнергии.
Электродвигатель на переменном токе.
Период, частота и амплитуда колебаний. Нитяной и пружинный маятники.
Механические волны. Свойства механических волн. Звук.
Электромагнитные колебания. Излучение и прием электромагнитных волн.
Свойства электромагнитных волн. Принципы радиосвязи и телевидения.
Учебник Физика 9 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в третьем издании. Учебник физики 9 класса рассчитан на 2 урока в неделю и содержит 4 темы курса физики, которые перечислены ниже.
Для перехода к параграфам кликайте нумерацию 01 02 03 04 05 и т.д. вверху страницы. Параграфы каждой темы курса физики снабжены интерактивными вопросами и заданиями.