У фенола кислотные свойства выражены чем у этанола

Кислотно-основные свойства спиртов и фенолов

У фенола кислотные свойства выражены чем у этанола

Гидроксилпроизводные углеводородов (спирты и фенолы) содержат группу ОН, которая может являться как донором, так и акцептором протона.

Кислотные свойства гидроксилпроизводного, т. е. легкость разрыва связи О-Н, будут определяться полярностью и энергией диссоциации этой связи. Чем выше полярность связи О-Н и чем ниже ее энергия диссоциации, тем легче идет разрыв связи, тем выше кислотность.

Электроноакцепторные заместители (ЭА), связанные с ОН-груп­пой, повышают полярность связи О-Н, снижают энергию ее диссоциации и в целом повышают кислотность соединения. Электронодонорные заместители (ЭД), наоборот, снижают полярность, увеличивают энергию диссоциации связи О-Н и снижают кислотные свойства соединения.

Основные свойства гидроксилсодержащих соединений обусловлены наличием неподеленной электронной пары на атоме кислорода. Чем выше электронная плотность на атоме кислорода, тем легче присоединяется протон, тем выше основность соединения. Поэтому электронодонорные заместители, увеличивающие электронную плотность на О, повышают основные свойства соединения, а электроноакцепторные понижают.

Исходя из вышесказанного, представим ряд кислотно-основных свойств гидроксилпроизводных:

У фенола кислотные свойства выражены чем у этанола

Реакции, иллюстрирующие кислотные свойства

Спиртов и фенолов

Спирты являются более слабыми кислотами, чем вода, и обнаружить их кислотность в водных растворах невозможно, рН водного раствора спиртов равно 7. Подтвердить кислотность спиртов можно только в реакциях с активными металлами или очень сильными основаниями в отсутствие воды:

У фенола кислотные свойства выражены чем у этанола

Реакции с активными металлами и их амидами являются качественными на ОН-группу, так как сопровождаются бурным выделением газов.

У многоатомных спиртов кислотность по сравнению с одноатомными возрастает, особенно в случае вицинальных диолов и полиолов. В отличие от одноатомных спиртов, они могут проявлять кислотные свойства не только в реакциях с активными металлами и сильными основаниями, но и в реакциях с гидроксидами тяжелых металлов. В частности, с медь(II)-гидроксидом в щелочной среде вицинальные многоатомные спирты образуют растворимую в воде комплексную соль, окрашенную в темно-синий цвет. Это качественная реакция на вицинальную диольную группу:

У фенола кислотные свойства выражены чем у этанола

Фенолы. Благодаря наличию в молекулах фенолов +М-эффекта, электронная плотность на атоме кислорода понижается, полярность связи О-Н увеличивается и снижается энергия ее диссоциации. Поэтому фенолы, в отличие от спиртов, являются достаточно сильными кислотами и способны образовывать соли даже с водными растворами щелочей:

У фенола кислотные свойства выражены чем у этанола.

При наличии в бензольном кольце двух и более электроноакцепторных заместителей кислотность фенольного гидроксила увеличивается настолько, что становятся возможными реакции с солями угольной кислоты:

У фенола кислотные свойства выражены чем у этанола

Кислотные свойства фенолов проявляются также в реакции с железо(III)-хлоридом. При взаимодействии с ионами Fe 3+ образуется комплексная соль фенола, окрашенная в интесивный фиолетовый цвет. Поэтому реакция фенолов с FeCl3 является качественной и используется для обнаружения фенольного гидроксила.

У фенола кислотные свойства выражены чем у этанола

У фенола кислотные свойства выражены чем у этанола

У фенола кислотные свойства выражены чем у этанола

Решение

1. Располагаем пентан-2,3-диол; метанол; 2,4-дибромфенол; 2-метил­фенол в порядке возрастания их кислотных свойств.

У фенола кислотные свойства выражены чем у этанола

2. Приводим уравнения реакций, которые иллюстрируют кислот­ные свойства данных веществ:

У фенола кислотные свойства выражены чем у этанола

Для наиболее сильного основа­нияприводим уравнение реакции образования оксониевой соли с H2SO4.

У фенола кислотные свойства выражены чем у этанола

Пример решения задачи 23

Для решения данного задания необходимо изучить основные химические свойства спиртов, фенолов и простых эфиров.

Источник

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

У фенола кислотные свойства выражены чем у этанола

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами.

У фенола кислотные свойства выражены чем у этанола

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

У фенола кислотные свойства выражены чем у этанола

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al2O3), при этом образуются алкоголяты металлов и выделяется водород:

У фенола кислотные свойства выражены чем у этанола

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

У фенола кислотные свойства выражены чем у этанола

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

У фенола кислотные свойства выражены чем у этанола

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al2O3) могут быть получены первичные, вторичные или третичные амины:

У фенола кислотные свойства выражены чем у этанола

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

У фенола кислотные свойства выражены чем у этанола

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

У фенола кислотные свойства выражены чем у этанола

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH3-O-CH3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

У фенола кислотные свойства выражены чем у этанола

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

У фенола кислотные свойства выражены чем у этанола

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

У фенола кислотные свойства выражены чем у этанола

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

У фенола кислотные свойства выражены чем у этанола

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al2O3); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

У фенола кислотные свойства выражены чем у этанола

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Большая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

У фенола кислотные свойства выражены чем у этанола

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

У фенола кислотные свойства выражены чем у этанола

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

У фенола кислотные свойства выражены чем у этанола

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

У фенола кислотные свойства выражены чем у этанола

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

У фенола кислотные свойства выражены чем у этанола

Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

У фенола кислотные свойства выражены чем у этанола

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

У фенола кислотные свойства выражены чем у этанола

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

У фенола кислотные свойства выражены чем у этанола

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

У фенола кислотные свойства выражены чем у этанола

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

У фенола кислотные свойства выражены чем у этанола

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

У фенола кислотные свойства выражены чем у этанола

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов:

Источник

Фенолы

Номенклатура фенолов

Нумерацию атомов углерода в молекуле фенола начинают в такой последовательности, чтобы заместители получили наименьшие номера (идут кратчайшим путем). В основе названия принято сохранять тривиальное название «фенол».

У фенола кислотные свойства выражены чем у этанола

Напомню, что гидроксильная группа является ориентантом I порядка (орто-, пара-ориентант). Поэтому реакции галогенирования, нитрования протекают в орто- и пара-положениях.

Получение фенолов

При гидролизе галогенбензолов происходит обмен: гидроксогруппа встает на место атома галогена.

У фенола кислотные свойства выражены чем у этанола

Этим способом получают 95% всего производимого фенола. В ходе этой реакции кумол (изопропилбензол) подвергают окислению, в результате получается фенол и ацетон.

У фенола кислотные свойства выражены чем у этанола

Химические свойства фенолов

У фенола кислотные свойства выражены чем у этанола

У фенола кислотные свойства выражены чем у этанола

У фенола кислотные свойства выражены чем у этанола

При гидрировании разрываются двойные связи бензольного кольца, образуется циклогексанол.

У фенола кислотные свойства выражены чем у этанола

В промышленности получила широкое распространение реакция поликонденсации фенола с формальдегидом, приводящая к образованию смолообразных полимеров (фенолформальдегидные смолы) и воды.

У фенола кислотные свойства выражены чем у этанола

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Фенолы

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

У фенола кислотные свойства выражены чем у этанола

Спирты это гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где m n.

Классификация фенолов

По числу гидроксильных групп:

У фенола кислотные свойства выражены чем у этанола

Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты:

У фенола кислотные свойства выражены чем у этанола

Строение фенолов

В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.

У фенола кислотные свойства выражены чем у этанола

Химические свойства фенолов

Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.

Отличия:

1. Кислотные свойства фенолов

Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается.

Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.

1.1. Взаимодействие с раствором щелочей

В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.

Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия

У фенола кислотные свойства выражены чем у этанола

Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:

У фенола кислотные свойства выражены чем у этанола

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.

У фенола кислотные свойства выражены чем у этанола

2. Реакции фенола по бензольному кольцу

Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце.

2.1. Галогенирование

Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол).

У фенола кислотные свойства выражены чем у этанола

2.2. Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.

Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол (пикриновая кислота):

У фенола кислотные свойства выражены чем у этанола

3. Поликонденсация фенола с формальдегидом

С формальдегидом фенол образует фенолоформальдегидные смолы.

У фенола кислотные свойства выражены чем у этанола

4. Взаимодействие с хлоридом железа (III)

При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.

5. Гидрирование (восстановление) фенола

Присоединение водорода к ароматическому кольцу.

Продукт реакции – циклогексанол, вторичный циклический спирт.

У фенола кислотные свойства выражены чем у этанола

Получение фенолов

1. Взаимодействие хлорбензола с щелочами

При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.

У фенола кислотные свойства выражены чем у этанола

При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.

У фенола кислотные свойства выражены чем у этанола

2. Кумольный способ

Фенол в промышленности получают из каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

У фенола кислотные свойства выражены чем у этанола

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

У фенола кислотные свойства выражены чем у этанола

Суммарное уравнение реакции:

У фенола кислотные свойства выражены чем у этанола

3. Замещение сульфогруппы в бензол-сульфокислоте

Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:

У фенола кислотные свойства выражены чем у этанола

Получается фенолят натрия, из которого затем выделяют фенол:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *