У чего теплопроводность больше

Теплопроводность материалов. Как считают? Сравнительная таблица на сайте Недвио

У чего теплопроводность больше

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

У чего теплопроводность больше

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

У чего теплопроводность больше

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Теплопроводность [Вт / (м · К)]

Войлок, маты и плиты из минеральной ваты

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Н ержавеющая сталь

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

У чего теплопроводность больше

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

У чего теплопроводность больше

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

У чего теплопроводность больше

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

У чего теплопроводность больше

У чего теплопроводность больше

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Источник

Что такое теплоизоляционные материалы: сравнительные характеристики теплопроводности

У чего теплопроводность больше

Теплоизоляционный материал — это продукция, которую применяют для теплоизоляции зданий, сооружений и оборудования. В специализированных магазинах изоляторы представлены в широком ассортименте. При выборе теплоизоляции важно знать информацию о качествах материала.

Утеплители бывают бытового и промышленного типа. Имеют различия по форме выпуска, по происхождению, типу сырья. А также имеют отличительные особенности по своим характеристикам. К характеристикам теплоизоляции относится гигроскопичность.

Анализ гигроскопичности теплоизоляции

Все теплоизоляционные материалы обладают общим минусом. У них есть способность впитывать влагу из воздуха. Эта способность называется гигроскопичностью теплоизоляции. Такой недостаток необходимо ликвидировать, чтобы эффективность утеплителя оставалась на высоком уровне. Гигроскопичность измеряется процентным соотношением массы поглощенной влаги к массе веса материала.

Наименование продуктаВодопоглощение,% от массы
Минвата1.5
Пенопласт3
Эковата1
Пеноизол18

Из данной таблицы видно, что у пеноизола высокий процент поглощения влаги. Но при этом пеноизол способен равномерно распределять и выводить воду. А это значит, что он не теряет своих свойств. Минеральная вата, напротив, имеет низкий процент гигроскопичности. Но если влага попадет в ее волокна, то удерживается внутри. Коэффициент теплопроводности понижается.

Таблица теплопроводности материалов и утеплителей

Теплопроводность основное свойство теплоизоляции. Это качество материала передавать тепло. Обозначается коэффициент теплопроводности символом «лямбда». Если данный коэффициент имеет низкое значение, эффективность утеплителя возрастает.

Для поддержания в помещении комфортного климата, показатели теплопроводности рассчитаны для каждого региона.

Теплопроводность утеплителей таблица

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Каменная минеральная вата 25-50 кг/м30.0360.0420.045
Каменная минеральная вата 40-60 кг/м30.0350.0410.044
Каменная минеральная вата 80-125 кг/м30.0360.0420.045
Каменная минеральная вата 140-175 кг/м30.0370.0430.0456
Каменная минеральная вата 180 кг/м30.0380.0450.048
Стекловата 15 кг/м30.0460.0490.055
Стекловата 17 кг/м30.0440.0470.053
Стекловата 20 кг/м30.040.0430.048
Стекловата 30 кг/м30.040.0420.046
Стекловата 35 кг/м30.0390.0410.046
Стекловата 45 кг/м30.0390.0410.045
Стекловата 60 кг/м30.0380.040.045
Стекловата 75 кг/м30.040.0420.047
Стекловата 85 кг/м30.0440.0460.05
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0.0290.030.031
Пенобетон, газобетон на цементном растворе, 600 кг/м30.140.220.26
Пенобетон, газобетон на цементном растворе, 400 кг/м30.110.140.15
Пенобетон, газобетон на известковом растворе, 600 кг/м30.150.280.34
Пенобетон, газобетон на известковом растворе, 400 кг/м30.130.220.28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30.073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30.0290.0310.05
Пенополиуретан (ППУ) 60 кг/м30.0350.0360.041
Пенополиуретан (ППУ) 80 кг/м30.0410.0420.04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0.026
Ксенон0.0057
Аргон0.0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0.05
Вермикулит0,064-0,074
Вспененный каучук0.033
Пробка листы 220 кг/м30.035
Пробка листы 260 кг/м30.05
Базальтовые маты, холсты0,03-0,04
Пакля0.05
Перлит, 200 кг/м30.05
Перлит вспученный, 100 кг/м30.06
Плиты льняные изоляционные, 250 кг/м30.054
Полистирол бетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30.038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30.078
Пробка техническая, 50 кг/м30.037

В таблице приведены показатели нормативных документов.

Так как материалы разных производителей отличаются по характеристикам, необходимо обращать на это внимание при покупке.

Теплопроводность зависит от толщины строительных материалов. Чем тоньше продукция, тем меньше теплоизоляции потребуется, чтобы осуществить монтаж.

Сравнение теплопроводности строительных материалов по толщине

У чего теплопроводность больше

Сравнение утеплителей по виду и свойствам

Минеральная вата имеет низкую теплопроводность. Это качество дает данному материалу преимущество перед большинством современных утеплителей. Компания “ТехноНиколь” предлагает разнообразный ассортимент минваты для теплоизоляции и отделки помещений.

Плиты «Роклайт»

Роклайт это теплоизоляционные плиты из каменной ваты для тепло-, звукоизоляционного покрытия. Этот вид плит применяется в частном домостроении. Идеально подходит для теплоизоляции кровель и других конструкций. Является одним из лучших теплоизоляционных материалов.

Основные плюсы «Роклайт»

Плиты «Техноблок»

Изолятор в виде плит из минеральной ваты. Материал средней плотности от 40 до 50 кг/м3. Поэтому этот вид не выдерживает высоких нагрузок и применяется в строительстве малоэтажный зданий. Применяется в отделке фасадов домов, под сайдинг. Можно использовать утеплитель укладывая его в два слоя.

Достоинства «Техноблок»:

«Техноруф»

Негорючие плиты из каменной ваты, для создания теплоизоляционного слоя.Изделия «Техноруф» устойчивы к деформации, поэтому прекрасно сохраняют свои качества. Плиты устойчивы к воздействию влаги, поэтому предотвращает появление сырости внутри помещения.

Назначение:

Изделия сформированы из тесно переплетенных тонких волокон ваты происхождения. Имеют высокий уровень звукоизоляции, что способствует снижению воздушного и ударного уровня шума.

Качество:

«Техновент»

«Техновент» – утеплители нового поколения на основе минеральной базальтовой ваты.

В ассортименте 3 линейки материала:

Различие этих материалов состоит:

Все три разновидности материла предназначаются для утепления вентилируемых фасадных конструкций, причем оптимизированы для создания однослойной защитной теплоизоляции.

Высокие показатели по:

«Технофлор»

«Технофлор» это материал, который предназначен для тепловой и звуковой изоляции пола. Панель из жесткой минеральной ваты используются для поверхностей, испытывающих большие нагрузки. Энергосберегающий материал, который не подвергается перепадам температурного режима. Обеспечивает изоляцию звука на 100%.

Огнестойкий, не гниет и не поддается негативным воздействиям окружающей среды. Незаменим для утепления полов спортивного типа, на который оказывается весовая механическая нагрузка. Используется для утепление полов плавающего типа, для теплого пола с методом укладки ваты на грунт либо с монтажом ваты на бетонное основание.

Продукт «Технофлор» производится в листах размерами: 1000х500х40мм и 1200х600х200мм. Сроки эксплуатации данного продукта из серии «ТехноНиколь», достигает 80 лет.

«Техноакустик»

Экологически чистый материал, предназначенный для использования в качестве звукоизоляции:

Обладает способностью удерживать и поглощать шумы до 60 дБ. В связи с этим обеспечивает высокий уровень акустической защиты стен.

«Теплоролл»

«Теплоролл» — это рулонная теплоизоляция нового поколения. Выпускается в виде матов. Маты обладают высокой прочностью. Обеспечивают высокие теплоизоляционные и звукоизоляционные качества. Используется в утеплении и изоляции кровли, перегородок и перекрытий. Широко используется в строительстве частных домов.

Особенности:

Теплоизоляция имеет хороший уровень заглушки шумов. Удобна в монтаже за счет небольшой длины.

«Техно Т»

Это жесткие плиты из каменной ваты, которые используют в гражданском и промышленном строительстве для тепловой термоизоляции. За счет этого этот материал имеет ограничения в использовании. Выдерживает широкий диапазон температур от −180 С до +750 С.

Это является особенностью материала и главным отличием от обычной строительной изоляции. Позволяет осуществлять монтаж тепловой изоляции воздуховодов, газоходов, промышленных печей.

Плиты могут выпускаться обработанные алюминиевой фольгой или стеклохолстом с одной стороны. Фольгированная изоляция дает ряд преимуществ. Фольгированное покрытие утеплителя не позволяет влаге попасть под покрытие, тем самым обеспечивает проникновение влаги. Фольга не пропускает холодный воздух и не выпускает тепло. Благодаря высокому коэффициенту теплообмена выдерживает перепады температур. Способна отражать ультрафиолетовые лучи.

Источник

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

У чего теплопроводность больше Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

У чего теплопроводность больше Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

У чего теплопроводность больше Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводностиНазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

У чего теплопроводность больше Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

У чего теплопроводность больше Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *