Тяга двигателя кгс что это
Удельная тяга
Удельный импульс — характеристика реактивного двигателя, равная отношению создаваемого им импульса (количества движения) к расходу (обычно массовому, но может соотноситься и, например, с объемом) топлива.
Размерность величины совпадает с размерностью скорости, в системе единиц СИ это метр в секунду. Формула приближенного расчета удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит, как:
Iy = sqrt(16641 (Tk [1-
Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс. Более точную формулу можно посмотреть здесь Ы-формула
Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Он показывает, сколько топлива надо потратить, чтобы летательный аппарат получил заданный импульс. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.
Двигатель | Удельный импульс | |
---|---|---|
м/с | с | |
Газотурбинный реактивный двигатель | 30000 | 3000 |
Твердотопливный ракетный двигатель | 2000 | 200 |
Жидкостный ракетный двигатель | 4500 | 450 |
Ионный двигатель | 30000 | 3000 |
Плазменный двигатель | 290000 | 30000 |
См. также
Полезное
Смотреть что такое «Удельная тяга» в других словарях:
УДЕЛЬНАЯ ТЯГА — показатель рабочих качеств двигателя, выражается отношением тяги (см. (1)) двигателя к его массе, объёму или др. параметру … Большая политехническая энциклопедия
УДЕЛЬНАЯ ТЯГА — отношение тяги двигателя к его массе, объёму или к др. параметру; показатель совершенства двигателя. У. т. воздушно реактивного двигателя отношение тяги к секундному массовому расходу воздуха. У ракетных двигателей тяга, отнесённая к секундному… … Большой энциклопедический политехнический словарь
Удельная тяга — ракетного двигателя, отношение тяги, развиваемой ракетным двигателем, к секундному массовому расходу топлива; показатель эффективности двигателя в (н․сек)/кг [(кгс․сек)/кг]. У. т. лучших жидкостных ракетных двигателей (1976) достигает 4,5 … Большая советская энциклопедия
удельная тяга — воздушно реактивного двигателя отношение тяги ВРД к секундному расходу воздуха. Максимальное значение У. т. составляет 1250 Н·с/кг в ТРДДФ при максимальном форсаже. У. т. нефорсированного ТРД может достигать 1000 Н·с/кг. ТРДД дозвуковых… … Энциклопедия «Авиация»
удельная тяга — воздушно реактивного двигателя отношение тяги ВРД к секундному расходу воздуха. Максимальное значение У. т. составляет 1250 Н·с/кг в ТРДДФ при максимальном форсаже. У. т. нефорсированного ТРД может достигать 1000 Н·с/кг. ТРДД дозвуковых… … Энциклопедия «Авиация»
удельная тяга ГТД — удельная тяга Отношение тяги ГТД к секундному расходу воздуха. [ГОСТ 23851 79] Тематики двигатели летательных аппаратов Синонимы удельная тяга … Справочник технического переводчика
Удельная тяга воздушно-реактивного двигателя — отношение тяги ВРД к секундному расходу воздуха. Максимальное значение У. т. составляет 1250 Н(·)с/кг в ТРДДФ при максимальном форсаже. У. т. нефорсированного ТРД может достигать 1000 Н(·)с/кг. ТРДД дозвуковых пассажирских самолётов имеют У. т.… … Энциклопедия техники
удельная тяга винта — Отношение эффективной тяги винта к мощности, затрачиваемой на его вращение. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей … Справочник технического переводчика
удельная тяга двигателя — Тяга, развиваемая двигателем, отнесенная к секундному весовому расходу воздуха через двигатель … Политехнический терминологический толковый словарь
Воздушно-реактивный двигатель — (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… … Википедия
Сила тяги, помогите разобраться.
Новичок
Приветствую завсегдатых. Вопрос, на самом деледовольно тривален и возможно вызовет у Вас даже улыбку, однако так как я человек из совершенно иной области который пока чисто с теоритической точки зрегия заинтересовался авицией, это должно быть прастительно. Интересует не только ответ, но еще и матиматическое объяснение в идеале.
Опишу покасвои разсуждения:
Из физики, Вес тела (на поверхности земли), можно приравнять к его масс умноженной на ускорение свободного падения:
Вес = mg.
Для невесомости (динамометр), на тело должно действовать та же противодействующая сила, т.е. что бы просто зависнуть без опоры над землей, нам нужна сила приложенная прямо пропорционально веса объекта и равная его весу. Получается что нам нужно так же приложить силу равную mg для того что бы пребывать в уравновешенном состоянии.
mg(вес тела) = mg(вес противодействия).
Соответственно, если добавить к противодействующей силе какое либо дополнительное ускорение, допустим то же g, то наш объект с масой m, будет подниматься над поверхностью земли с константным ускорением g.
Имею ввиду mg^2 = постоянный подъем тела массой m (и соответсвенно весом mg) с ускорением g.
Принебреджем тем фактом, что g будет становиться меньче по мере удаления от поверхности земли, допустим это действительно константа.
Получается что одля равномерного вертикального подъема тела, требуется противодействие, равное весу данного тела + даже самое малое небольшое ускорение, верно?
Старожил
Приветствую завсегдатых. Вопрос, на самом деледовольно тривален и возможно вызовет у Вас даже улыбку, однако так как я человек из совершенно иной области который пока чисто с теоритической точки зрегия заинтересовался авицией, это должно быть прастительно. Интересует не только ответ, но еще и матиматическое объяснение в идеале.
Опишу покасвои разсуждения:
Из физики, Вес тела (на поверхности земли), можно приравнять к его масс умноженной на ускорение свободного падения:
Вес = mg.
Для невесомости (динамометр), на тело должно действовать та же противодействующая сила, т.е. что бы просто зависнуть без опоры над землей, нам нужна сила приложенная прямо пропорционально веса объекта и равная его весу. Получается что нам нужно так же приложить силу равную mg для того что бы пребывать в уравновешенном состоянии.
mg(вес тела) = mg(вес противодействия).
Соответственно, если добавить к противодействующей силе какое либо дополнительное ускорение, допустим то же g, то наш объект с масой m, будет подниматься над поверхностью земли с константным ускорением g.
Имею ввиду mg^2 = постоянный подъем тела массой m (и соответсвенно весом mg) с ускорением g.
Принебреджем тем фактом, что g будет становиться меньче по мере удаления от поверхности земли, допустим это действительно константа.
Получается что одля равномерного вертикального подъема тела, требуется противодействие, равное весу данного тела + даже самое малое небольшое ускорение, верно?
Тяга ракетного двигателя
Тяга ракетного двигателя
Создание реактивной тяги есть назначение всякого ракетного двигателя; поэтому величина тяги является важнейшей характеристикой двигателя.
Тяга современных ракетных двигателей колеблется от нескольких килограммов до десятков тонн, в зависимости от назначения и размеров двигателя.
Двигатели тяжелых дальнобойных ракет развивают тягу, превышающую тягу наиболее мощных паровозов, с могучей силой увлекающих за собой железнодорожные составы в тысячи тонн.
Фиг. 7. Принципиальная схема ракетного двигателя.
Как определить величину реактивной тяги? Обратимся для этой цели к фиг. 7, на которой представлена принципиальная схема ракетного двигателя.
Тяга образуется потому, что из двигателя вытекают газы. Чтобы вытолкнуть газы, двигатель должен действовать на них с какой-то силой; обратная сила — сила воздействия газов на двигатель — и есть реактивная тяга. Поэтому направление тяги обратно скорости вытекающих газов, а величина тяги равна силе, с которой выталкиваются газы. Очевидно, что величина этой силы зависит от количества вытекающих газов и их скорости. Механика учит, что эта сила, а следовательно, и сила тяги, равна произведению массы выталкиваемых в секунду газов на скорость их истечения.
Так как масса равна весу, деленному на ускорение земного притяжения (g=9,81 м/сек 2 ), то для определения силы тяги служит следующая простая формула:
Каждый килограмм вытекающих в секунду газов создает тягу, численно равную, очевидно, 1/10 от скорости истечения. Эта тяга, носящая название удельной тяги или удельного импульса (размерность удельной тяги кг сек/кг), является основной характеристикой любого ракетного двигателя. Чем больше удельная тяга, т. е. чем большую тягу создает каждый килограмм газа, вытекающего в секунду из двигателя, тем совершеннее двигатель.
В современных ракетных двигателях скорость истечения колеблется от 1500 до 2500 м/сек, вследствие чего удельная тяга равна 150–250 кг сек/кг.
Какими же способами можно увеличить скорость истечения и вместе с нею удельную тягу проектируемого ракетного двигателя?
Скорость истечения газов из двигателя зависит от топлива, давления газов в двигателе и его конструкции.
Влияние топлива на скорость истечения сказывается в основном в том, что скорость истечения тем больше, чем больше теплотворная способность топлива, т. е. тепло, которое выделяет при сгорании каждый килограмм топлива.
Чтобы отчетливее представить себе влияние на скорость истечения теплотворной способности топлива, попробуем повнимательнее присмотреться к явлениям, происходящим в любом ракетном двигателе, т. е. к рабочему процессу двигателя.
Пусть в двигателе произошла химическая реакция (будем считать для определенности — сгорание), в результате которой выделилось какое-то количество тепла.
Вследствие этого газообразные продукты реакции — пары углекислоты, пары воды, азот и др. — сильно нагреваются, так что температура их достигает 2500 °C и более. Мы знаем из физики, что температура газа есть мера скорости движения его молекул; когда газ очень нагрет, то молекулы его движутся с очень большими скоростями. Однако непосредственно эту скорость движения молекул газа использовать для создания реактивной тяги нельзя, потому что молекулы внутри двигателя движутся беспорядочно, неорганизованно, во всех направлениях; имеет место так называемое тепловое движение молекул. Каждая молекула, отражаясь от стенок двигателя, создает, конечно, микроскопическую реактивную силу, но суммарная равнодействующая — результат бесчисленного множества таких молекулярных ударов, равна нулю. Благодаря хаотичности движения молекул давление на все стенки двигателя одинаково и никакого реактивного эффекта не получается.
Чтобы создать реактивную силу, необходимо обеспечить упорядоченное, организованное истечение молекул газа из двигателя в одном направлении; тогда реактивный эффект всех вытекающих молекул суммируется, давая в результате нужную нам реактивную силу. Поэтому всякий ракетный двигатель по идее представляет собой машину для извержения молекул газа с максимально возможной скоростью в одном, общем для всех молекул, направлении, следовательно, машину для преобразования химической энергии топлива сначала в тепловую энергию беспорядочного движения молекул, а затем в скоростную (кинетическую) энергию их упорядоченного истечения из двигателя.
Таким образом первая часть рабочего процесса ракетного двигателя заключается в преобразовании химической энергии топлива в тепловую. Это преобразование осуществляется в ходе химической реакции внутри двигателя, в той его части, которую называют камерой сгорания, и происходит обычно при постоянном давлении.
Вторая часть рабочего процесса двигателя заключается в преобразовании тепловой энергии хаотического движения молекул в скоростную энергию их организованного истечения, т. е. в скоростную энергию реактивной струи газов, вытекающих из двигателя. Это преобразование осуществляется в процессе расширения газов от давления, имеющего место в камере сгорания двигателя, до атмосферного давления, т. е. до давления на выходе из двигателя, и обычно происходит в той его части, которая носит название сопла.
В современных ракетных двигателях указанный выше рабочий процесс происходит непрерывно, хотя возможны двигатели прерывного действия, в которых подача топлива в камеру сгорания и все последующие процессы происходят периодически.
Таким образом общим результатом рабочего процесса ракетного двигателя является преобразование химической энергии топлива в скоростную энергию струи газов, вытекающих из сопла в атмосферу. Однако при этом далеко не вся химическая энергия топлива (теплотворная способность) переходит в скоростную энергию струи, а только определенная часть ее. Чем совершеннее рабочий процесс, тем больше эта полезно используемая часть теплотворной способности топлива. В современных; ракетных двигателях в скоростную энергию струи газов переходит меньше половины тепла, заключенного в топливе[2]. Большая часть (до 2/3) этого тепла представляет собой потери рабочего процесса. Часть тепла теряется из-за неполного сгорания топлива, а другая, большая, теряется вместе с газами, выходящими из двигателя, так как их температура очень высока (1000–1500 °C). Уменьшение этих потерь рабочего процесса приводит к увеличению скорости истечения и, следовательно, увеличению тяги. Однако, как учит термодинамика — наука о преобразовании тепла в работу, — все тепло не может перейти в скоростную энергию газов. Некоторая часть этого тепла представляет собой неизбежные потери.
Теперь ясно, как теплотворная способность топлива влияет на скорость истечения. Чем больше теплотворная способность, тем больше тепловой энергии, при данной степени совершенства рабочего процесса двигателя, переходит в скоростную энергию газов, т. е. тем больше скорость истечения. И физически очевидно, что чем больше скорость теплового движения молекул после сгорания, тем больше и скорость истечения газов из двигателя.
С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.
Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.
Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.
Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.
Особенно важным является то, что тяга остается постоянной при изменении скорости полета.
Читайте также
ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ РАЗЛИЧНЫХ ТИПОВ РАКЕТ И РАКЕТНОГО ВООРУЖЕНИЯ. ВЕЛИКОБРИТАНИЯ
ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ РАЗЛИЧНЫХ ТИПОВ РАКЕТ И РАКЕТНОГО ВООРУЖЕНИЯ. ВЕЛИКОБРИТАНИЯ О разработках ракет и реактивных снарядов в Великобритании почти нет опубликованных данных. Однако нужно признать, что сделано не многое. Официально сообщается, что все разработки
КЛАССИФИКАЦИЯ РАКЕТНОГО ОРУЖИЯ
Неисправности двигателя
Неисправности двигателя Якорь стартера не вращается при включении замка зажигания Неисправности системы пуска Проверить работу стартера одним из трех способов:1. Убедиться в надежности кабельных соединений наконечников на клеммах аккумуляторной батареи. Освободить
Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов
Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного
2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ
2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ Основные свойства ракетного двигателя мы уже знаем.Первое свойство заключается в отсутствии специального движителя, назначение которого выполняет сам двигатель. Это оказывается возможным потому, что тяга представляет собой реакцию
Мощность ракетного двигателя
Мощность ракетного двигателя Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической
Экономичность ракетного двигателя
Экономичность ракетного двигателя Наряду с мощностью важнейшей характеристикой каждого двигателя является его экономичность. Если речь идет о тепловом двигателе, то экономичность его определяется расходом топлива на единицу мощности, т. е. на 1 л. с. Экономичный
Крепление двигателя
Крепление двигателя Картер – это основание, на котором крепят основные детали двигателя. Картер изготавливают из алюминиевого сплава. Кривошипной камерой называется место картера, в котором вращается шатун и щеки коленчатого вала. Крепление двигателя к раме или
Промывка двигателя
Промывка двигателя Если масло в вашем двигателе, после пробега автомобилем нескольких тысяч километров, остается чистым и прозрачным, это должно навести вас на мысль, что масло не слишком качественное и не обладает необходимыми «моющими» свойствами и его необходимо
Килограмм-сила
Килограмм-сила (кгс или кГ) равна силе, сообщающей телу массой один килограмм ускорение 9,80665 м/с² (нормальное ускорение свободного падения, принятое 3-й Генеральной конференцией по мерам и весам, 1901). Единица силы системы единиц МКГСС.
Килограмм-сила примерно равна силе, с которой тело массой один килограмм давит на весы на поверхности Земли (примерно, потому что вес немного зависит от широты, так как от неё зависит ускорение силы тяжести g ввиду не шарообразной формы Земли, которое имеет разное значение на полюсах и экваторе).
В ряде европейских государств для килограмм-силы официально принято название килопонд (обозначается kp).
Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг, поэтому человеку легко представить, например, что такое сила 5 кгс.
1 кгс = 9,80665 ньютонов (точно [1] ) ≈ 10 Н 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс
Реже применяются кратные единицы:
Раньше килограмм-силу обозначали кГ (kG), в отличие от килограмм-массы — кг (kg); аналогично, грамм-силу обозначали Г (G), а грамм-массу — г (g), тонна-силу обозначали Т (T), а тонна-массу — т (t).
Метрическая лошадиная сила определяется как 1 л. с. = 75 кгс·м/с.
100 кгс/м 2 ≈ 1 кПа = 1 кН/м 2 — связь с другими величинами (такой перевод часто используется в строительстве при расчётах, т. к. до сих пор кгс используется в СНиП)
Примечания
Полезное
Смотреть что такое «Килограмм-сила» в других словарях:
КИЛОГРАММ-СИЛА — (кгс или кГ, kgf или kG), единица силы МКГСС системы единиц. 1 кгс=9,80665 ньютона. В ряде европ. гос в (ГДР, ФРГ, Австрия, Швеция и др.) для К. с. официально принято название килопонд (kp). Физический энциклопедический словарь. М.: Советская… … Физическая энциклопедия
КИЛОГРАММ-СИЛА — единица силы МКГСС системы единиц, обозначается кгс. 1 кгс = 9,80655 Н. В некоторых европейских государствах (Германии, Австрии, Швеции и др.) для килограмм силы принято название килопонд … Большой Энциклопедический словарь
килограмм-сила — килограмм сила, килограмм силы … Орфографический словарь-справочник
килограмм-сила — сущ., кол во синонимов: 1 • единица (830) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
килограмм-сила — единица силы МКГСС системы единиц, обозначается кгс. 1 кгс = 9,80655 Н. В некоторых европейских государствах (Германии, Австрии, Швеции и др.) для килограмм силы принято название килопонд. * * * КИЛОГРАММ СИЛА КИЛОГРАММ СИЛА, единица силы МКГСС… … Энциклопедический словарь
килограмм-сила — jėgos kilogramas statusas T sritis Standartizacija ir metrologija apibrėžtis Nesisteminis jėgos matavimo vienetas: 1 kgf = 9,80665 N (tiksliai). atitikmenys: angl. kilogram force vok. Kilopond, n rus. килограмм сила, f pranc. kilogramme force, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas
килограмм-сила — jėgos kilogramas statusas T sritis Energetika apibrėžtis Kilogramas, lygus jėgai, kuri 1 kilogramo masei suteikia 9,80665 m/s² pagreitį.1 kgf (kG) – 9,80665 N. atitikmenys: angl. kilogram force vok. Kilogramm Kraft, n rus. килограмм сила, m pranc … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
Килограмм-сила — единица силы МКГСС системы единиц (См. МКГСС система единиц); сокращённые обозначения: русское кгс или кГ, международное kgf или kG. К. с. сила, сообщающая массе, равной массе международного прототипа Килограмма, ускорение 9,80665 м/сек2… … Большая советская энциклопедия
килограмм-сила — килограмм сила, килограмм силы, килограмм силы, килограмм сил, килограмм силе, килограмм силам, килограмм силу, килограмм силы, килограмм силой, килограмм силою, килограмм силами, килограмм силе, килограмм силах (Источник: «Полная… … Формы слов
ВНИМАНИЕ. Обновите свой браузер! Наш сайт некорректно работает с IE 8 и более старыми версиями.
Так вот мы все спорим, мнениями делимся, все считаем сколько же килограмм тяги можно выжать с одной Л/С и ведь умножаем и на цифры смотрим потом удивляемся что грустно получается и как то не правильно а так ли все на самом деле?
И ведь как ни странно сам производитель заявляет что при 7200 об/мин двигателя с винтом 126 мм и при указанных в таблице условиях тяга должна быть 86кг.
(значит 86/3=28.8 л/с) Во как!
Дальше я в этот же пост добавлю другую информацию для обсуждения касаемую ВВ.
не забываем что тяга с лошади зависит от кпд винта и редуктора (до 10% разницы!) и еще сильнее от диаметра винта. если сюда прибавить то, что температура 2 градуса и влажность 45% у нас практически не встречаются, то не так уж сильно нас обманывают.
пересечение графиков момента и мощности физического смысла не имеет вообще, потому как по вертикальной оси отложены разные единицы.
Виктор! будь любезен, объясни физический смысл точки пересечения. ну обороты в этой точке одни и те же. что еще общего у 2-х графиков? а если поменять масштаб одной шкалы? на приведенном тобой графике три точки пересечения. что у них общего?
Вообще создается впечатление что эти таблицы и графики нарисовали не для того что бы отразить действительные результаты испытаний моторчика, а что бы украсить сайт и придать значимости, неточности просто добивают.
Кстати встретил два измерения Л/С одна из них английская
В СССР, России и некоторых других странах 1 лошадиная сила (1 PS, 1 CV) = 75 кгс м/сек = 735,49875 ватт (точно).
В США, Великобритании и других странах 1 hp = 550 фут фунт/сек = 745,69987158227022 ватт (точно).
выходит у русской лошади меньше ваттов.
шутка. ето не так важно.
а что за единица л/с
я думал что лошадинная сила ето л.с.
О таком двигатели кто нибудь что нибудь слышал/видел?
охрененно полезная формула в контексте определения тяги конкретной установки
чтобы при увеличении подводимой к винту мощности сохранить соотношение тяги к мощности необходимо увеличивать диаметр винта пропорционально квадратному корню из увеличения мощности.
т.е. если мы снимаем 45 кг с 15 л.с. при диаметре винта 1 м, то то чтобы снять 75 кг с 25 л.с. потребуется винт уже примерно 1,3м.
MAX ROTATION 8100 rpm
IGNITION : Electronic
STARTER: Electric starter
TRASMISSION : Belt 508 PV 14G
REDUCTION : 1/2,6 1/2,8 1/3
FUEL : Unleaded NC 623-02 R.O.N. 95
addition 2% oil syntetich
TOTAL WEIGHT: engine complete 14,5 KG
Дальше второй родственник Джипикса
HE paramotores R220 Mono