Тэс что это в энергетике
Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.
Определение
ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.
Какие существуют разновидности ТЭС
Классифицироваться станции этого типа могут по двум основным признакам:
В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как «конденсационная электростанция».
ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как «теплоэнергоцентраль».
Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:
ТЭС и ТЭЦ: различия
Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.
Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.
Какие предъявляются требования к ТЭС
ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:
Принцип работы ТЭС
Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.
Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.
Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.
Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.
Деаэ рированная вода подогревается и подается в котел.
Преимущества ТЭС
ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:
Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.
Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.
Недостатки ТЭС
Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.
Какие еще виды ТЭС существуют
Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:
Примеры станций
Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться люба я ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.
Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.
Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.
Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.
ТЭЦ-26 «Мосэнерго» (1800 МВт).
Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.
Вместо заключения
Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.
Тепловая электростанция ТЭС
1 | Cooling tower | Градирня |
2 | Cooling water pump | Насос водяного охлаждения; Циркуляционный насос |
3 | Transmission line (3-phase) | Линия электропередачи (3-х фазная) |
4 | Step-up transformer (3-phase) | Повышающий трансформатор |
5 | Electrical generator (3-phase) | Электрогенератор; Электромашинный генератор |
6 | Low pressure steam turbine | Паровая турбина низкого давления |
7 | Condensate pump | Конденсатный насос |
8 | Surface condenser | Поверхностный конденсатор |
9 | Intermediate pressure steam turbine | Паровая турбины среднего давления |
10 | Steam control valve | Клапан регулировки подачи пара |
11 | High pressure steam turbine | Паровая турбина высокого давления |
12 | Deaerator | Деаэратор |
13 | Feedwater heater | Подогреватель питательной воды |
14 | Coal conveyor | Транспортёр угля |
15 | Coal hopper | Бункер угля |
16 | Coal pulverizer | Углеразмольная мельница; Мельница для измельчения угля |
17 | Boiler drum | Барабан котла |
18 | Bottom ash hopper | Шлаковый бункер |
19 | Superheater | Пароперегреватель; Перегреватель пара |
20 | Forced draught (draft) fan | Дутьевой вентилятор; Тягодутьевой вентилятор |
21 | Reheater | Промежуточный пароперегреватель |
22 | Combustion air intake | Заборник первичного воздуха; Заборник воздуха в топку |
23 | Economiser | Экономайзер |
24 | Air preheater | Предварительный воздухоподогреватель |
25 | Precipitator | Золоуловитель |
26 | Induced draught (draft) fan | Дымосос; Вытяжной вентилятор |
27 | Flue-gas stack | Дымовая труба |
28 | Feed pump | Питательный насос |
Уголь транспортируется (14) из внешней шахты и измельчается в очень мелкий порошок крупными металлическими сферами в мельнице (16).
Там он смешивается с предварительно подогретым воздухом (24), нагнетаемым вентилятором поддува (20).
Горячая воздушно-топливная смесь принудительно, при высоком давлении, попадает в котел, где быстро воспламеняется.
Вода поступает вертикально вверх по трубчатым стенкам котла, где превращается в пар и поступает в барабан котла (17), в котором пар отделяется от оставшейся воды.
Пар проходит через коллектор в крышке барабана в подвесной подогреватель (19), где его давление и температура быстро возрастают до 200 бар и 570°С, достаточных для того, чтобы стенки труб светились тускло-красным цветом.
Затем пар поступает в турбину высокого давления (11), первую из трех в процессе генерации электроэнергии.
Клапан регулировки подачи пара (10) обеспечивает как ручное управление турбиной, так и автоматическое по заданным параметрам.
Пар выпускается из турбины высокого давления как со снижением давления, так температуры, после чего он возвращается на подогрев в промежуточный пароперегреватель (21) котла.
В промышленно развитых странах этот показатель доходит до 80%.
Для получения тепла органическое топливо сжигают в котлоагрегатах ТЭС.
В качестве топлива используется:
1.2.Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)
3.Электростанции на базе парогазовых установок
4.Электростанции на основе поршневых двигателей
Принцип работы и устройство тепловой электростанции (ТЭС/ТЭЦ)
Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.
Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.
И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.
Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.
Принцип работы
Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.
Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.
Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.
Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.
Теплоснабжение
Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.
Как работают ТЭС на газе
По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.
Новые технологии сжигания угля
КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.
Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.
Чистое сжигание угля (Clean Coal)
Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.
Метод «oxyfuel capture»
Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.
Метод «pre-combustion»
Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.
Пятерка самых мощных теплоэлектростанций мира
Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.
Если на свой дом вы поставите ветряк вас линчуют соседи. В Новосибирске есть фанат альтернативной энергии, на участке собрал все варианты. Вот от ветряка ему пришлось отказаться по выше указанной причине.
Короче,владельцы электростанций хают во всю зеленые технологии.Ведь столько денег которые собирают с населения они не дополучат.Но вместо того чтобы сделать по уму как некоторые когда владельцы электростанций которые вкладывают свои средства в производство этих самых солнечных батарей и тем самым отбывают свои доходы.У нас как обычно все по другому.Что например мешает у нас господину Ахматову чтобы вложить деньги в производство и обслуживание солнечных батарей или ветряков вместо того чтобы употреблять свое влияние на противоположные действия. Ведь иностранное оборудование стоит еще очень дорого,а возвращение экономики ВВП Украины к довоенному уровню прогнозируют только через 3-4 года.И то того не факт.
Стоимость киловатта энергии от солнечной панели в 4-5 раз дороже чем из розетки даже с учетом эксплуатации в течении 15 лет. Поэтому ее экономично использовать на удаленных объектах, так как электроэнергия от дизеля будет еще дороже.
Видел в на некоторых ресурсах что российские чиновники хотят отделить российский интернет от мирового,да и границу прикрыть.Так что возможно вам и не будет с кем спорить.Избавитесь от моей прямоты,которая как луч фонарика светит прямо в глаза.Что бывает неудобно.Короче не будет кому высвечивать,светить.
Интересная особенность природы. Порядка 2% от населения нервно нестабильные люди. Даже если их устранить (вспомните, уничтожение психбольных при Гитлере) очень скоро этот процент восстанавливается. Съежают с катушек еще вчера нормальные люди. Так что, как бы вы не хотели, уважаемый «иксперт» массовых расстрелов не будет, а вот с свободным местом в дурдоме будут проблемы.
,,Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.»
Автор в курсе,сколько углекислого газа выделяется на ТЭС,работающей на угле?По весу это 48/14=3.42 во столько раз больше,чем вес сожжённого угля.Это не большая ТЭС,мощностью 10000 квт будет производить за год около 30 тысяч тонн углекислоты,которую необходимо сжать и захоронить.И сколько ж будет стоить энергия,полученная таким способом?Автор может привести,хоть один пример ТЭС,работающей подобным образом?
Да, совсем забыл упомянуть, в Питере вроде вроде (в новостях показывали) ребята нашли очень дешовый способ перевода тепловой энергии напрямую в электрическую энергию и абсолютно без всякого вреда для экологии. Только, думаю «замылят» эту тему надолго, а не то спекулянты обанкротятся, а люди вдруг станут жить лучше, разве можно такое допустить!)
Вот нашел, совсем свежее решение с высоким КПД, дешево и безопасно. https://media.spbstu.ru/news/research/307/
Жил недалеко от такой ТЭЦ. Давно подозреваю что ТЭЦ работают на ядерных таблетках Уран-235 (обогащение 3,3%). Одна такая эквивалентна 400кг каменного угля. Ни черного дыма в больших количествах от ТЭЦ ни длинных процессий грузовиков или вагонов к|от никогда не наблюдал.
Не надо рассказывать сказки про дороговизну солнечной энергии. да каждый отдельный элемент солнечной электростанции дорог: инвертор контролер аккумулятор и сама панель кстати сами солнечные панели относительно дёшевы да всё враз это стоит дорого но это разовые затраты после установки солнечная станция начинает давать халявное электричество. остаётся лишь менять аккумуляторы но их срок службы несколько лет так что от смены до смены оных мы получаем даровую энергию я у себя дома установил такую да на покупку всего оборудования пришлось расеошелиться особенно на инвертор но теперь она не требует вложений и работает исключетельно на халяву. зелёные не правы только в одном да сами по себе солнечные панели маломощные и без наворотов не способны питать мощные потребители и полностью заменить тэц
когда спорят зелёные и не зелёные на самом деле правы и те и другие:зелёные правы когда говорят что дороговизна солнечноветровой энергии сильно преувеличена они правы что солнце и ветер бесплатные единожды заплатив мы далее начинаем получать даровое электричество но вот наступает долгая зимняя безветренная ночь и вот тут правота зелёных заканчивантся и наступает правота не зелёных ибо поступление энергии от солнца и ветра заканчивается и нагрузка ложится на хрупкие плечи аккумуляторов но это главная загвоздка сохранить энергию до наступления условий когда выработка энергии от солнца и ветра возобновиться что весьма проблематично всилу несовершества современных аккумуляторов☝️ и тут наступет пора тэц☝️так что вывод прост: солнечно ветровая энергетика не может полностью заменить традиционную однако сильно подсобить сократить расходы на горючее и уменьшить вредные выбросы в атмосферу очень даже может. поэтому однозначно солнечно ветровой энергетике БЫТЬ. ☀️
Централизованные системы энергоснабжения до сегодняшнего дня требовались для контроля над денежными потоками и толпой людей!
Современные технологии позволяют контролировать и финансы и людей через автоматизированные системы управления на базе ИИ.
Поэтому в ближайшие 5 лет, после окончательного разрушения старого технологического и финансового укладов, будет разрешено рассекретить все технологии и патенты по альтернативным и портативным источникам энергии.
Не скажу, что будет счастье для всех, но точно перейдем от стим-панка к кибер-панку))
Теплоэлектростанция
Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС
Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС, устройство ТЭС
Содержание
Содержание
— Использование тепла мини-ТЭЦ
— Топливо для мини-ТЭЦ
— Мини-ТЭЦ и экология
— Влияние на окружающую среду
Теплова́яэлектроста́нция это (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.
Основными узлами тепловой электрической станции являются:
— двигатели — силовые агрегаты тепловой электро станции
Градирня
Гради́рня (нем. gradieren — сгущать соляной раствор; первоначально градирни служили для добычи соли выпариванием) — устройство для охлаждения большого количества воды направленным потоком атмосферного воздуха. Иногда градирни называют также охладительными башнями.
В настоящее время градирни в основном применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях, ТЭЦ). В гражданском строительстве градирни используются при кондиционировании воздуха, например, для охлаждения конденсаторов холодильных установок, охлаждения аварийных электрогенераторов. В промышленности градирни используются для охлаждения холодильных машин, машин-формовщиков пластических масс, при химической очистке веществ.
Процесс охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха. При испарении 1 % воды, температура оставшейся понижается на 5,48 °C.
Как правило, градирни используют там, где нет возможности использовать для охлаждения большие водоёмы (озёра, моря). Кроме того, данный способ охлаждения экологически более чистый.
Простой и дешёвой альтернативой градирням являются брызгальные бассейны, где вода охлаждается простым разбрызгиванием.
Характеристики
Основной параметр градирни — величина плотности орошения — удельная величина затраты воды на 1 мІ площади орошения.
Основные конструктивные параметры градирен определяются технико-экономическим расчётом в зависимости от объёма и температуры охлаждаемой воды и параметров атмосферы (температуры, влажности и т. д.) в месте установки.
Использование градирен в зимнее время, особенно в суровых климатических условиях, может быть опасно из-за вероятности обмерзания градирни. Происходит это чаще всего в том месте, где происходит соприкосновение морозного воздуха с небольшим количеством теплой воды. Для предотвращения обмерзания градирни и, соответственно, выхода её из строя следует обеспечивать равномерное распределение охлаждаемой воды по поверхности оросителя и следить за одинаковой плотностью орошения на отдельных участках градирни. Нагнетательные вентиляторы тоже часто подвергаются обледенению из-за неправильного использования градирни.
Классификация
В зависимости от типа оросителя, градирни бывают:
По способу подачи воздуха:
вентиляторные (тяга создаётся вентилятором);
башенные (тяга создаётся при помощи высокой вытяжной башни);
открытые (атмосферные), использующие силу ветра и естественную конвекцию при движении воздуха через ороситель.
Вентиляторные градирни наиболее эффективны с технической точки зрения, так как обеспечивают более глубокое и качественное охлаждение воды, выдерживают большие удельные тепловые нагрузки (однако требуют издержек электрической энергии для привода вентиляторов).
Типы
Конденсационные электростанции (ГРЭС)
Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)
Электростанции на базе парогазовых установок
Электростанции на основе поршневых двигателей
С воспламенением от сжатия (дизель)
C воспламенением от искры
Теплоелектроцентраль
Теплоэлектроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов). Как правило, ТЭЦ должна работать по теплофикационному графику, то есть выработка электрической энергии зависит от выработки тепловой энергии.
При размещении ТЭЦ учитывается близость потребителей тепла в виде горячей воды и пара.
Мини-ТЭЦ
Мини-ТЭЦ — малая теплоэлектроцентраль.
Устройство мини-ТЭЦ
Мини-ТЭЦ — это теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, независимо от вида оборудования. В настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике следующие установки: противодавленческие паровые турбины, конденсационные паровые турбины с отбором пара, газотурбинные установки с водяной или паровой утилизацией тепловой энергии, газопоршневые, газодизельные и дизельные агрегаты с утилизацией тепловой энергии различных систем этих агрегатов. Термин когенерационные установки используется в качестве синонима терминов мини-ТЭЦ и ТЭЦ, однако он является более широким по значению, так как предполагает соместное производство (co — совместное, generation — производство) различных продуктов, которыми могут быть, как электрическая и тепловая энергия, так и другие продукты, например, тепловая энергия и углекислый газ, электрическая энергия и холод и т. д. Фактически термин тригенерация, предполагающий производство электричества, тепловой энергии и холода также является частным случаем когенерации. Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35 % при отсутствии теплового приобретателя. Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.
Модуль мини-ТЭЦ включает газопоршневой, газотурбинный или дизельный двигатель, генератор электричества, теплообменник для утилизации тепла от воды при охлаждении двигателя, масла и выхлопных газов. К мини-ТЭЦ обычно добавляют водогрейный котел для компенсации тепловой нагрузки в пиковые моменты.
Назначение мини-ТЭЦ
Основное предназначение мини-ТЭЦ является выработка электрической и тепловой энергии из различных видов топлива.
Концепция строительства мини-ТЭЦ в непосредственной близости к приобретателю имеет ряд преимуществ (в сравнении с большими ТЭЦ):
позволяет избежать расходов на строитпреимуществогостоящих и опасных высоковольтных линий электропередач (ЛЭП);
исключаются потери при передаче энергии;
отпадает необходимость финансовых издержек на выполнение технических условий на подключение к сетям
бесперебойное снабжение электричеством приобретателя;
электроснабжение качественной электричеством, соблюдение заданных значений напряжения и частоты;
возможно, получение прибыли.
В современном мире строительство мини-ТЭЦ набирает обороты, преимущества очевидны.
Использование тепла мини-ТЭЦ
Значимую часть энергии сгорания топлива при выработке электричества составляет тепловая энергия.
Существует варианты использования тепла:
непосредственное использование тепловой энергии конечными потребителями (когенерация);
горячее водоснабжение (ГВС), отопление, технологические нужды (пар);
частичное преобразование тепловой энергии в энергию холода (тригенерация);
холод вырабатывается абсорбционной холодильной машиной, потребляющей не электрическую, а тепловую энергию, что дает возможность достаточно эффективно использовать тепло летом для кондиционирования помещений или для технологических нужд;
Топливо для мини-ТЭЦ
Виды используемого топлива
газ: Природный газ магистральный, Природный газ сжиженный и другие горючие газы;
жидкое топливо: нефть, мазут, дизтопливо, биодизель и другие горючие жидкости;
твердое топливо: уголь, древесина, торф и прочие разновидности биотоплива.
Наиболее эффективным и недорогим топливом в Российской Федерации является магистральный Природный газ, а так же попутный газ.
Мини-ТЭЦ и экология
Использование в практических целях отработавшего тепла двигателей электростанций, является отличительной особенностью мини-ТЭЦ и носит название когенерация (теплофикация).
Замена котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, мини-ТЭЦ способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению общего экологического состояния.
Источник энергии для газопоршневых и газотурбинных мини-ТЭЦ, как правило, Природный газ. Природный или попутный газ органическое топливо, не загрязняющее атмосферу твёрдыми выбросами
Газотурбинный двигатель
Газотурбинный двигатель (ГТД, ТРД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.
Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, образует большое количество продуктов сгорания под высоким давлением. Затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струёй газа лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.
Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.
Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.
Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрПреимуществогрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.
Парогазовая установка
Парогазовая установка — электрогенерирующая станция, служащая для производства тепло- и электричества. Отличается от паросиловых и газотурбинных установок повышенным КПД.
Принцип действия
Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как Природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газотурбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.
Преимущества
Парогазовые установки имеют электрический КПД порядка 51—58 %, в то время как у работающих отдельно паросиловых или газотурбинных установок он колеблется в районе 35—38 %. Благодаря этому не только снижается затрата топлива, но и уменьшается выброс парниковых газов.
Поскольку парогазовая установка более эффективно извлекает тепло из продуктов сгорания, можно сжигать топливо при более высоких температурах, в результате уровень выбросов оксида азота в атмосферу ниже чем у установок других типов.
Относительно низкая стоимость производства.
Распространение
Несмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком Христиановичем, этот тип энергогенерирующих установок не получил в Российской Федерации широкого применения. В СССР были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. В последние годы в Российской Федерации введены в эксплуатацию ряд мощных парогазовых энергоблоков. Среди них:
2 энергоблока мощностью 450 МВт каждый на Северо-западной ТЭЦ в Санкт-Петербурге;
1 энергоблок мощностью 450 МВт на Калининградской ТЭЦ-2;
1 ПГУ мощностью 220 МВт на Тюменской ТЭЦ-1;
2 ПГУ мощностью 450 МВт на ТЭЦ-27 и 1 ПГУ на ТЭЦ-21 в Москве;
1 ПГУ мощностью 325 МВт на Ивановской ГРЭС;
2 энергоблока мощностью 39 МВт каждый на Сочинской ТЭС
По состоянию на сентябрь 2008 г. в Российской Федерации в различных стадиях проектирования или строительства находятся несколько ПГУ.
В Европе и США подобные установки функционируют на большинстве тепловых электростанций.
Конденсационная электростанция
Конденсационная электростанция (КЭС) — тепловая электростанция, производящая только электрическую энергию. Исторически получила наименование «ГРЭС» — государственная районная электростанция. С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. Однако следует учитывать, что не все станции, имеющие в своём названии аббревиатуру «ГРЭС», являются конденсационными, некоторые из них работают как теплоэлектроцентрали.
История
Первая ГРЭС «Электропередача», сегодняшняя «ГРЭС-3», сооружена под Москвой в г. Электрогорске в 1912—1914 гг. по инициативе инженера Р. Э. Классона. Основное топливо — торф, мощность — 15 МВт. В 1920-х планом ГОЭЛРО предусматривалось строительство нескольких тепловых электростанций, среди которых наиболее известна Каширская ГРЭС.
Принцип работы
Вода, нагреваемая в паровом котле до состояния перегретого пара (520—565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.
Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).
Конденсационная электростанция как правило работает по циклу Ренкина.
Основные системы
КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:
система золо- и шлакоудаления, очистки дымовых газов;
техническое водоснабжение (для отвода избыточного тепла);
система химической очистки и подготовки воды.
При проектировании и строительстве КЭС ее системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).
Котельная установка располагается в котельном отделении главного корпуса. В южных районах Российской Федерации котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».
Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В нее входят:
паровые турбины с электрическим генератором на одном валу;
конденсатор, в котором пар, прошедший турбину, конденсируется с образованием воды (конденсата);
конденсатные и питательные насосы, обеспечивающие возврат конденсата (питательной воды) к паровым котлам;
рекуперативные подогреватели низкого и высокого давления (ПНД и ПВД) — теплообменники, в которых питательная вода подогревается отборами пара от турбины;
деаэратор (служащий также ПНД), в котором вода очищается от газообразных примесей;
трубопроводы и вспомогательные системы.
Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:
размораживающее устройство (т. н. «тепляк», или «сарай») для оттаивания угля в открытых полувагонах;
разгрузочное устройство (как правило, вагоноопрокидыватель);
угольный склад, обслуживаемый краном-грейфером или специальной перегрузочной машиной;
дробильная установка для предварительного измельчения угля;
конвейеры для перемещения угля;
системы аспирации, блокировки и другие вспомогательные системы;
система пылеприготовления, включая шаровые, валковые, или молотковые углеразмольные мельницы.
Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи — вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.
Топливное хозяйство КЭС на Природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут, поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где мазут применяется для растопки котлов. В мазутное хозяйство входят:
мазутохранилище со стальными или железобетонными резервуарами;
мазутная насосная станция с подогревателями и фильтрами мазута;
трубопроводы с запорно-регулирующей арматурой;
противопожарная и другие вспомогательные системы.
Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак — негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.
Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90—99 % твердых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.
Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6—24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения без образования электрической дуги.
Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8—12 °C, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.
В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.
Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.
Влияние на окружающую среду
Воздействие на атмосферу. При горении топлива потребляется большое количество кислорода, а также происходит выброс значительного количества продуктов сгорания таких как: летучая зола, газообразные окислы серы азота, часть которых имеет большую химическую активность.
Воздействие на гидросферу. Прежде всего сброс воды из конденсаторов турбин, а также промышленные стоки.
Воздействие на литосферу. Для захоронения больших масс золы требуется много места. Данные загрязнения снижаются использованием золы и шлаков в качестве строительных материалов.
Современное состояние
В настоящее время в Российской Федерации работают типовые ГРЭС мощностью 1000—1200, 2400, 3600 МВт и несколько уникальных, используются агрегаты по 150, 200, 300, 500, 800 и 1200 МВт. Среди них следующие ГРЭС (входящие в состав ОГК):
Верхнетагильская ГРЭС — 1500 МВт;
Ириклинская ГРЭС — 2430 МВт;
Каширская ГРЭС — 1910 МВт;
Нижневартовская ГРЭС — 1600 МВт;
Пермская ГРЭС — 2400 МВт;
Уренгойская ГРЭС — 24 МВт.
Псковская ГРЭС — 645 МВт;
Серовская ГРЭС — 600 МВт;
Ставропольская ГРЭС — 2400 МВт;
Сургутская ГРЭС-1 — 3280 МВт;
Троицкая ГРЭС — 2060 МВт.
Гусиноозёрская ГРЭС — 1100 МВт;
Костромская ГРЭС — 3600 МВт;
Печорская ГРЭС — 1060 МВт;
Харанорская ГРЭС — 430 МВт;
Черепетская ГРЭС — 1285 МВт;
Южноуральская ГРЭС — 882 МВт.
Берёзовская ГРЭС — 1500 МВт;
Смоленская ГРЭС — 630 МВт;
Сургутская ГРЭС-2 — 4800 МВт;
Шатурская ГРЭС — 1100 МВт;
Яйвинская ГРЭС — 600 МВт.
Конаковская ГРЭС — 2400 МВт;
Невинномысская ГРЭС — 1270 МВт;
Рефтинская ГРЭС — 3800 МВт;
Среднеуральская ГРЭС — 1180 МВт.
Киришская ГРЭС — 2100 МВт;
Красноярская ГРЭС-2 — 1250 МВт;
Новочеркасская ГРЭС — 2400 МВт;
Рязанская ГРЭС (блоки № 1-6 — 2650 МВт и блок № 7 (вошедшая в состав Рязанской ГРЭС бывшая ГРЭС-24 — 310 МВт) — 2960 МВт;
Череповецкая ГРЭС — 630 МВт.
Верхнетагильская ГРЭС
Верхнетаги́льская ГРЭС — тепловая электростанция в Верхнем Тагиле (Свердловская область), работающая в составе «ОГК-1». В эксплуатации с 29 мая 1956 года.
Станция включает 11 энергоблоков электрической мощностью 1497 МВт и тепловой — 500 Гкал/ч. Топливо станции: Природный газ (77 %), уголь (23 %). Численность персонала — 1119 человек.
Строительство станции проектной мощностью 1600 МВт началось в 1951 году. Целью строительства было обеспечение тепловой и электрической энергией Новоуральского электрохимического комбината. В 1964 году электростанция достигла проектной мощности.
С целью улучшения теплоснабжения городов Верхний Тагил и Новоуральск была произведена модернизация станции:
Четыре конденсационных турбоагрегата К-100-90(ВК-100-5)ЛМЗ были заменены на теплофикационные турбины Т-88/100-90/2,5.
На ТГ-2,3,4 установлены сетевые подогреватели типа ПСГ-2300-8-11 для нагрева сетевой воды в схеме теплоснабжения Новоуральска.
На ТГ-1,4 установлены сетевые подогреватели для теплоснабжения Верхнего Тагила и промплощадки.
Все работы выполнялись по проекту ХФ ЦКБ.
В ночь с 3 на 4 января 2008 года на Сургутской ГРЭС-2 произошла авария: частичное обрушение кровли над шестым энергоблоком мощностью 800 МВт привело к остановке двух энергоблоков. Ситуацию осложняло то, что ещё один энергоблок (№ 5) был на ремонте: В итоге были остановлены энергоблоки № 4, 5, 6. Эту аварию удалось локализовать к 8 января. Весь этот период времени ГРЭС работала в особенно напряжённом режиме.
В срок соответственно до 2010 года и 2013 года планируется строительство двух новых энергоблоков (топливо — Природный газ).
На ГРЭС существует проблема выбросов в окружающую среду. «ОГК-1» подписала контракт с «Инженерным центром энергетики Урала» на 3,068 млн рублей, который предусматривает разработку проекта реконструкции котла Верхнетагильской ГРЭС, который приведёт к снижению выбросов для соблюдения нормативов ПДВ.
Каширская ГРЭС
Каши́рская ГРЭС имени Г. М. Кржижановского в городе Кашира Московской области, на берегу Оки.
Историческая станция, построена под личным контролем В. И. Ленина по плану ГОЭЛРО. На момент ввода в строй станция мощностью 12 МВт была второй по мощности электростанцией в Европе.
Станция была построена по плану ГОЭЛРО, строительство велось под личным контролем В. И. Ленина. Строилась в 1919—1922 годах, для строительства на месте села Терново возведён рабочий посёлок Новокаширск. Пущена 4 июня 1922 года, стала одной из первых советских районных ТЭС.
Псковская ГРЭС
Псковская ГРЭС — государственная районная электростанция, расположена в 4,5 километрах от поселка городского типа Дедовичи — районного центра Псковской области, на левом берегу реки Шелонь. С 2006 года является филиалом ОАО «ОГК-2».
Высоковольтные ЛЭП связывают Псковскую ГРЭС с Белоруссией, Латвией и Литвой. Материнская организация считает это преимуществом: существует канал экспортирования энергоресурсов, который активно используется.
Установленная мощность ГРЭС 430 МВт, она включает в себя два высоко маневренных энергоблока по 215 МВт. Эти энергоблоки построены и введены в эксплуатацию в 1993 и 1996 годах. Первоначальпреимуществомрвой очереди включал в себя строительство трёх энергоблоков.
Основной вид топлива — Природный газ, он поступает на станцию через ответвление магистрального экспортного газопровода. Энергоблоки были изначально созданы для работы на фрезерном торфе; они были реконструированы по проекту ВТИ для сжигания Природного газа.
Издержка электричества на собственные нужды составляет 6,1 %.
Ставропольская ГРЭС
Ставропольская ГРЭС — тепловая электростанция Российской Федерации. Находится в городе Солнечнодольск Ставропольского края.
Загрузка электростанции позволяет осуществлять экспортные поставки электричества за рубеж: в Грузию и в Азербайджан. При этом гарантируется поддержание перетоков в системообразующей электрической сети Объединенной энергосистемы Юга на допустимых уровнях.
Входит в состав Оптовой генерирующей организации № 2 (ОАО «ОГК-2»).
Издержка электричества на собственные нужды станции составляет 3,47 %.
Основным топливом станции является Природный газ, но в качестве резервного и аварийного топлива станцией может использоваться мазут. Топливный баланс по состоянию на 2008 год: газ — 97 %, мазут — 3 %.
Смоленская ГРЭС
Смоленская ГРЭС — тепловая электростанция Российской Федерации. Входит в состав Оптовой генерирующей фирмы № 4 (ОАО «ОГК-4») с 2006.
12 января 1978 был введён в эксплуатацию первый блок ГРЭС, проектирование которой началось в 1965, а строительство — в 1970. Станция расположена в посёлке Озёрный Духовщинского района Смоленской области. Первоначально предполагалось использовать в качестве топлива торф, но по причине отставания строительства торфодобывающих предприятий использовались другие виды топлива (подмосковный уголь, интинский уголь, сланец, хакасский уголь). Всего сменилось 14 видов топлива. С 1985 окончательно установлено, что энергию будут получать из Природного газа и угля.
Сегодняшняя установленная мощность ГРЭС составляет 630 МВт.
Источники
Рыжкин В. Я. Тепловые электрические станции. Под ред. В. Я. Гиршфельда. Учебник для вузов. 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 328 с.
Полезное
Смотреть что такое «Теплоэлектростанция» в других словарях:
теплоэлектростанция — теплоэлектростанция … Орфографический словарь-справочник
теплоэлектростанция — сущ., кол во синонимов: 1 • электростанция (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
теплоэлектростанция — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN heat and power station Power station which produces both electricity and hot water for the local population. A CHP (Combined Heat and Power Station) plant may operate on almost … Справочник технического переводчика
теплоэлектростанция — šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas
теплоэлектростанция — теплоэлектростанция, теплоэлектростанции, теплоэлектростанции, теплоэлектростанций, теплоэлектростанции, теплоэлектростанциям, теплоэлектростанцию, теплоэлектростанции, теплоэлектростанцией, теплоэлектростанциею, теплоэлектростанциями,… … Формы слов
Теплоэлектростанция — … Википедия
теплоэлектростанция — теплоэлектрост анция, и … Русский орфографический словарь
теплоэлектростанция — (1 ж), Р., Д., Пр. теплоэлектроста/нции; мн. теплоэлектроста/нции, Р. теплоэлектроста/нций … Орфографический словарь русского языка
теплоэлектростанция — теплоэлектроста/нция, и … Слитно. Раздельно. Через дефис.
теплоэлектростанция — и; ж. Предприятие, вырабатывающее электрическую энергию и тепло … Энциклопедический словарь