сколькими способами можно разместить пять различных книг на полке

КОМБИНАТОРИКА РАЗБИЕНИЙ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.

сколькими способами можно разместить пять различных книг на полке

КОМБИНАТОРИКА РАЗБИЕНИЙ. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Поскольку в данной формулировке полки не различимы, то речь идет о неупорядоченном разбиении множества книг на три подмножества мощности 2, 3 и 3. Параметры m 1 = 1, m 2 = 2, поэтому число разных способов расставить книги так, как это требуется в условии задачи, равно

Приведенные выше примеры показывают, как важно для решения задачи выбрать наиболее подходящую комбинаторную схему, правильно определить, какие именно комбинаторные операции требуется выполнить над исходным множеством. Иногда формулировка задачи допускает неоднозначное понимание того, какие результаты комбинаторной операции считаются одинаковыми, а какие – разными. В таких случаях нужно самостоятельно сделать необходимые уточнения.[24]

Задача 5.2. одинаковых шариков случайным образом рассыпаются по 4 лункам (в одну лунку может поместиться любое число шаров). Сколько существует различных способов распределения 7 шариков по 4 лункам?[11]

Задача 5.3. Стадион имеет 4 входа. Сколькими способами болельщик может войти на стадион в один вход, а выйти через другой?[12]

Решение. Воспользуемся формулой о разбиениях (3), число способов равно = 12.

Задача 5.4. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать? [11]

Решение. Это задача о разделе 28 костей между 4 игроками по 7 костей.

Используя формулу для числа способов такого раздела (3)

Задача 5.5. Сколькими способами можно разместить 4 книги на полке?[16]

Задача 5.6. Сколькими способами можно поставить в ряд 6 человек для выполнения их группового портрета? Сколькими способами можно это сделать, если поставить трех человек в переднем ряду и трех во втором?[12]

Задача 5.7. Сколько различных «слов» можно составить, переставляя буквы слова «лодка»?[12]

Задача 5.8. Сколько различных «слов» можно составить, переставляя буквы слова «математика»?[20]

Решение. Слово «математика» состоит из 10 повторяющихся букв: 3 буквы «а», 2 буквы «м», 2 буквы «т». Значит можно воспользоваться формулой (3), число различных «слов» будет = = 151200.

Задача 5.9. Сколько различных слов можно составить, переставляя буквы слова «комбинаторика»?[11]

Решение. Слово «комбинаторика» состоит из 13 повторяющихся букв: 2 буквы «к», 2 буквы «о», 2 буквы «и», 2 буквы «а». Значит можно воспользоваться формулой (3), число различных «слов» будет = = 389188800.

Задача 5.10. В классе изучают 10 предметов. В понедельник 6 уроков, причем все уроки разные. Сколькими способами можно составить расписание на понедельник?[13]

Задача 5.11. Сколькими способами можно выбрать трех делегатов на студенческую конференцию из группы в 20 человек?[21]

Задача 5.12. Сколькими способами можно расставить 40 различных книг по шести полкам так, чтобы не было пустых полок, если на полку помещаются все 40 книг?

Задача 5.13. Рассеянный почтальон должен разнести
12 писем по 12 адресам. Сколькими способами он может разложить письма по почтовым ящикам так, чтобы

а) ни один адресат не получил адресованное ему письмо;

б) ровно 5 человек получили адресованные им письма;

в) хоть один адресат получил адресованное ему письмо;

г) ровно один адресат получил адресованное ему письмо?

г) Очевидно, что такой ситуации быть не может.

Задача 5.15. Контрольную работу по дискретной математике, содержащую три задачи, писали 105 студентов III курса. Первую задачу решили 70 человек, вторую – 59, а третью – 62. С первой и второй задачами справились – 39 студентов, со второй и третьей – 32, с первой и третьей – 41. Шесть человек не решили ни одной задачи. Сколько студентов полностью справились с контрольной работой?

Задача 5.16. Имеются цветы трех видов: 10 васильков, 15 незабудок, 12 ромашек. Требуется разложить их на 2 букета.[11]

Задача 5.17. Из группы в 15 человек нужно отобрать бригаду, в которую должно входить не менее 5 человек. Сколько имеется вариантов выбора?

Решение. Подсчитаем число неблагоприятных комбинаций выбора, т. е. со ставим варианты бригад из 1, 2, 3, 4 человек. Их количество равно:

А общее количество бригад равно 2 15 – 1. Разность дает число благо приятных комбинаций.[17]

Задача 5.18. Трое мальчиков собрали 40 яблок. Сколько имеется способов раздела яблок между ними?

Решение. Напишем 40 единиц и 2 нуля, выполняющих как и ранее функции раз делителя, и затем начнем их переставлять всеми возможными спосо бами. Каждой перестановке будет соответствовать некоторый способ раздела 40 яблок на 3 кучки. Каждому способу раздела будет соответствовать некоторый код, содержащий 40 единиц и 2 нуля. Поэтому коли чество способов раздела:

Задача 5.19. В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: В задаче речь идёт о выборке из 4 деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

сколькими способами можно разместить пять различных книг на полке

сколькими способами можно разместить пять различных книг на полке

2365 способами можно взять 4 детали из ящика.

Ответ: 1365 способами

В данном примере множество из восьми книг разбивается на три непересекающихся подмножества мощности 1, 3 и 4. Согласно формуле (3) количество различных вариантов выполнить такое разбиение равно

Источник

Комбинаторика. Перестановки. Решение задач

сколькими способами можно разместить пять различных книг на полке

сколькими способами можно разместить пять различных книг на полке
сколькими способами можно разместить пять различных книг на полке
сколькими способами можно разместить пять различных книг на полке
Перестановки. Формула для числа перестановок

Пусть множество Х состоит из n элементов.

Определение. Размещение без повторений из n элементов множества X по n называется перестановкой из n элементов.

Число всех перестановок из n элементов обозначается символом сколькими способами можно разместить пять различных книг на полке.

Так как перестановки – это частный случай размещений без повторений при сколькими способами можно разместить пять различных книг на полке, то формулу для нахождения числа сколькими способами можно разместить пять различных книг на полкеполучим из формулы (2), подставляя в неё сколькими способами можно разместить пять различных книг на полке:

сколькими способами можно разместить пять различных книг на полке

сколькими способами можно разместить пять различных книг на полке(3)

Пример. Сколькими способами можно разместить на полке 5 книг?

Решение. Способов размещения книг на полке существует столько, сколько существует различных перестановок из пяти элементов: сколькими способами можно разместить пять различных книг на полкеспособов.

Замечание. Формулы (1)-(3) запоминать не обязательно: задачи на их применение всегда можно решить с помощью правила произведения. Если у учащихся существуют проблемы с составлением комбинаторных моделей задач, то лучше сделать более узким множество используемых формул и правил (чтобы было меньше возможности ошибиться). Правда, задачи, в которых используются перестановки и формула (3), обычно решаются без особых проблем.

1. Ф. Сколькими способами могут встать в очередь в билетную кассу: 1) 3 человека; 2) 5 человек?

Различные варианты расположения п человек в очереди отличаются один от другого только порядком расположения людей, т. е. являются различными перестановками из п элементов.

Три человека могут встать в очередь Р3 = 3! = 6 различными способами.

Ответ: 1) 6 способов; 2) 120 способов.

2. Т. Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Количество человек равно количеству мест на скамейке, поэтому количество способов размещения равно числу перестановок из 4 элементов: Р4 = 4! = 24.

Ответ: 24 способами.

М- задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

4. Ф. Сколько различных правильных (с точки зрения русского языка) фраз можно составить, изменяя порядок слов в предложении: 1) «Я пошел гулять»; 2) «Во дворе гуляет кошка»?

Во втором предложении предлог «во» должен всегда стоять перед существительным «дворе», к которому он относится. Поэтому, считая пару «во дворе» за одно слово, можно найти количество различных перестановок трех условных слов: Р3 = 3! = 6. Таким образом, и в этом случае можно составить 6 правильных предложений.

5. Сколькими способами можно с помощью букв К, L, М, Н обозначить вершины четырехугольника?

Будем считать, что вершины четырехугольника пронумерованы, за каждой закреплен постоянный номер. Тогда задача сводится к подсчету числа разных способов расположения 4 букв на 4 местах (вершинах), т. е. к подсчету числа различных перестановок: Р4 = 4! =24 способа.

6. Ф. Четыре друга купили билеты в кино: на 1-е и 2-е места в первом ряду и на 1-е и 2-е места во втором ряду. Сколькими способами друзья могут занять эти 4 места в кинотеатре?

Четыре друга могут занять 4 разных места Р4 = 4! = 24 различными способами.

7. Т. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать?

Под маршрутом следует понимать порядок посещения курьером учреждений. Пронумеруем учреждения номерами от 1 до 7, тогда маршрут будет представляться последовательностью из 7 Цифр, порядок которых может меняться. Количество маршрутов равно числу перестановок из 7 элементов: Р7= 7! = 5 040.

Ответ: 5 040 маршрутов.

8. Т. Сколько существует выражений, тождественно равных произведению abcde, которые получаются из него перестановкой множителей?

Дано произведение пяти различных сомножителей abcde, порядок которых может меняться (при перестановке множителей произведение не меняется).

Всего существует Р5 = 5! = 120 различных способов расположения пяти множителей; один из них (abcde) считаем исходным, остальные 119 выражений тождественно равны данному.

Ответ: 119 выражений.

9. Т. Ольга помнит, что телефон подруги оканчивается цифрами 5, 7, 8, но забыла, в каком порядке эти цифры следуют. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге.

Три последних цифры телефонного номера могут быть расположены в одном из Р3 =3! =6 возможных порядков, из которых только один верный. Ольга может сразу набрать верный вариант, может набрать его третьим, и т. д. Наибольшее число вариантов ей придется набрать, если правильный вариант окажется последним, т. е. шестым.

10. Т. Сколько шестизначных чисел (без повторения цифр) можно составить из цифр: а) 1,2, 5, 6, 7, 8; б) 0, 2, 5, 6, 7, 8? Решение.

а) Дано 6 цифр: 1, 2, 5, 6, 7, 8, из них можно составлять разные шестизначные числа, только переставляя эти цифры местами. Количество различных шестизначных чисел при этом равно Р6 = 6! = 720.

б) Дано 6 цифр: 0, 2, 5, 6, 7, 8, из них нужно составлять различные шестизначные числа. Отличие от предыдущей задачи состоит в том, что ноль не может стоять на первом месте.

Ответ: а) 720; б) 600 чисел.

11. Т. Сколько среди четырехзначных чисел (без повторения цифр), составленных из цифр 3, 5, 7, 9, таких, которые: а) начинаются с цифры 3;

а) Из цифр 3, 5, 7, 9 составляем четырехзначные числа, начинающиеся с цифры 3.

Фиксируем цифру 3 на первом месте; тогда на трех оставшихся местах в произвольном порядке могут располагаться цифры 5, 7 9 Общее количество вариантов их расположения равно Р 3 = 3!=6. Столько и будет разных четырехзначных чисел, составленных из данных цифр и начинающихся с цифры 3.

б) Заметим, что сумма данных цифр 3 + 5 + 7 + 9 = 24 делится на 3, следовательно, любое четырехзначное число, составленное из этих цифр, делится на 3. Для того, чтобы некоторые из этих чисел делились на 15, необходимо, чтобы они заканчивались цифрой 5.

Фиксируем цифру 5 на последнем месте; остальные 3 цифры можно разместить на трех местах перед 5 Рз = 3! = 6 различными способами. Столько и будет разных четырехзначных чисел, составленных из данных цифр, которые делятся на 15.

Ответ: а) 6 чисел; б) 6 чисел.

12. Т. Найдите сумму цифр всех четырехзначных чисел, которые можно составить из цифр 1, 3, 5, 7 (без их повторения).

Каждое четырехзначное число, составленное из цифр 1, 3, 5, 7 (без повторения), имеет сумму цифр, равную 1+3 + 5 + 7=16.

Из этих цифр можно составить Р4 = 4! = 24 различных числа, отличающихся только порядком цифр. Сумма цифр всех этих чисел будет равна

16 сколькими способами можно разместить пять различных книг на полке= 384.

13. Т. Семь мальчиков, в число которых входят Олег и Игорь, становятся в ряд. Найдите число возможных комбинаций, если:

а) Олег должен находиться в конце ряда;

в) Олег и Игорь должны стоять рядом.
Решение.

а) Всего 7 мальчиков на 7 местах, но один элемент фиксирован, не переставляется (Олег находится в конце ряда). Число возможных комбинаций при этом равно числу перестановок 6 мальчиков, стоящих перед Олегом: Р6=6!=720.

пару как единый элемент, переставляемый с другими пятью элементами. Число возможных комбинаций тогда будет Р6 = 6! = 720.

Пусть теперь Олег и Игорь стоят рядом в порядке ИО. Тогда получим еще Р6 = 6! = 720 других комбинаций.

Общее число комбинаций, в которых Олег и Игорь стоят рядом (в любом порядке) равно 720 + 720 = 1 440.

Ответ: а) 720; б) 120; в) 1 440 комбинаций.

1 сколькими способами можно разместить пять различных книг на полке=362 880, или сколькими способами можно разместить пять различных книг на полкеР 9 = 9! = 362 880.

15. М. Сколькими способами можно обозначить вершины куба буквами А, В, С, D, E, F, G, K?

16. Т. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Всего 6 уроков, из них два урока математики должны стоять рядом.

«Склеиваем» два элемента (алгебра и геометрия) сначала в порядке АГ, затем в порядке ГА. При каждом варианте «склеивания» получаем Р5 = 5! = 120 вариантов расписания. Общее число способов составить расписание равно120 (AГ) +120 (ГА) = 240.

Ответ: 240 способов.

17. Т. Сколько существует перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом?

Дано 5 букв, из которых три буквы должны стоять рядом. Три буквы К, О, Н могут стоять рядом одним из Р3 = 3! = 6 способов. Для каждого способа «склеивания» букв К, О, Н получаем Р3 = 3! = 6 способов перестановки букв, «склейка», У, С. Общее число различных перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом, равно 6 • 6 = 36 перестановок- анаграмм.

Каждый вариант расположения мальчиков может сочетаться с каждым из вариантов расположения девочек, поэтому по правилу произведения общее число способов рассадить детей в этом случае равно 120 сколькими способами можно разместить пять различных книг на полке20= 14400.

Ответ: 3 628 800 способов; 14 400 способов.

19. Т. Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать?

Каждый способ размещения девочек может сочетаться с каждым способом размещения мальчиков, поэтому по правилу произведения общее число способов равно: Р4 сколькими способами можно разместить пять различных книг на полке20 = 2 880 способов.

Ответ: 2 880 способов.

20. Ф. Разложить на простые множители числа 30 и 210. Сколькими способами можно записать в виде произведения продых множителей число: 1) 30; 2) 210?

Разложим данные числа на простые множители:

30 = 2 сколькими способами можно разместить пять различных книг на полке; 210 = 2 сколькими способами можно разместить пять различных книг на полке.

Число 30 можно записать в виде произведения простых множителей

Р 3 = 3! = 6 разными способами (переставляя множители).

Число 210 можно записать в виде произведения простых
множителей Р 4 = 4! = 24 разными способами.

Ответ: 1) 6 способов; 2) 24 способа.

21. Ф. Сколько различных четных четырехзначных чисел с неповторяющимися цифрами можно записать, используя цифры 1, 2, 3, 5?

Чтобы число было четным, оно должно заканчиваться четной цифрой, т. е. 2. Зафиксируем двойку на последнем месте, остальные три цифры должны стоять перед ней в произвольном порядке. Количество различных перестановок из 3 цифр равно P3 = 3! = 6; следовательно, различных четных четырехзначных чисел будет также 6 (к каждой перестановке из трех цифр добавляется цифра 2).

22. Ф. Сколько различных нечетных пятизначных чисел, в которых нет одинаковых цифр, можно записать с помощью Цифр 1,2, 4, 6, 8?

Чтобы составленное число было нечетным, необходимо, чтобы оно оканчивалось нечетной цифрой, т. е. единицей. Остальные 4 Цифры можно переставлять местами, располагая каждую перестановку перед единицей.

Общее число нечетных пятизначных чисел равно числу перестановок: Р4 = 4! =24.

23. Ф. Сколько различных шестизначных чисел с неповторяющимися цифрами можно записать с помощью цифр 1; 2 3, 4, 5, 6, если: 1) число должно начинаться с 56; 2) цифры 5 и 6 в числе должны стоять рядом?

Две цифры 5 и 6 фиксируем в начале числа и дописываем к ним различные перестановки из 4 оставшихся цифр; количество различных шестизначных чисел равно: Р4 = 4! = 24.

Условно будем считать пару 56 одной цифрой и переставлять ее с четырьмя остальными цифрами; получим Р5 = 5! = 120 различных чисел из 5 цифр, среди которых одна условная, двойная.

Если считать условной цифрой пару 65, то получим еще Р5 = 5! = = 120 различных чисел.

Общее количество различных шестизначных чисел, в которых цифры 5 и 6 стоят рядом (в любом порядке), равно 120 + 120 = 240 чисел. (Варианты 56 и 65 несовместны, не могут реализоваться одновременно; применяем комбинаторное правило суммы.)

Ответ: 1) 24 числа; 2) 240 чисел.

24. Ф. Сколько различных четных четырехзначных чисел, в записи которых нет одинаковых цифр, можно составить из цифр 1,2,3,4?

Четное число должно оканчиваться четной цифрой. Фиксируем на последнем месте цифру 2, тогда 3 предшествующие цифры можно переставить Р3 = 3! = 6 различными способами; получим 6 чисел с двойкой на конце. Фиксируем на последнем месте цифру 4, получим Р3 = 3! = 6 различных перестановок трех предшествующих цифр и 6 чисел, оканчивающихся цифрой 4.

Общее количество четных четырехзначных чисел будет 6 + 6 = 12 различных чисел.

Замечание. Общее количество вариантов мы находим, пользуясь комбинаторным правилом суммы (6 вариантов чисел, оканчивающихся двойкой, 6 вариантов чисел, оканчивающихся четверкой; способы построения чисел с двойкой и с четверкой на конце являются взаимоисключающими, несовместными, поэтому общее количество вариантов равно сумме числа вариантов с двойкой на конце и числа вариантов с 4 на конце). Запись 6 + 6 = 12 лучше отражает основания наших действий, чем запись Р сколькими способами можно разместить пять различных книг на полке.

25. Ф. Сколькими способами можно записать в виде произведения простых множителей число 1) 12; 2) 24; 3) 120?

Особенностью этой задачи является то, что в разложении каждого из данных чисел есть одинаковые, повторяющиеся множители. При образовании различных перестановок из множителей мы не получим новую перестановку, если поменяем местами какие-нибудь два одинаковых множителя.

1) Число 12 разлагается на три простых множителя, два из которых одинаковы: 12 = сколькими способами можно разместить пять различных книг на полке сколькими способами можно разместить пять различных книг на полке.

Если бы все множители были различны, то их можно было бы переставить в произведении Р3 = 3! = 6 различными способами. Чтобы перечислить эти способы, условно «различим» две двойки, подчеркнем одну из них: 12 = 2 сколькими способами можно разместить пять различных книг на полке.

Тогда возможны следующие 6 вариантов разложения на жители: сколькими способами можно разместить пять различных книг на полкесколькими способами можно разместить пять различных книг на полке

Но на самом деле подчеркивание цифр не имеет в математике никакого значения, поэтому полученные 6 перестановок в обычной записи имеют вид:

сколькими способами можно разместить пять различных книг на полкесколькими способами можно разместить пять различных книг на полке

т. е. фактически мы получили не 6, а 3 различные перестановки Количество перестановок уменьшилось в два раза за счет того, что мы не должны учитывать перестановки двух двоек между собой.

Можно рассуждать иначе, основываясь только на комбинаторном правиле произведения.

Чтобы составить произведение из трех множителей, сначала выберем место для множителя 3; это можно сделать одним из трех способов. После этого оба оставшихся места заполняем двойками; это можно сделать 1 способом. По правилу произведения общее число способов равно: 3-1 =3.

сколькими способами можно разместить пять различных книг на полкеОтсюда сколькими способами можно разместить пять различных книг на полке

Чтобы составить произведение из четырех множителей, сначала выберем место для множителя 3; это можно сделать одним из четырех способов. После этого все три оставшихся места заполним двойками; это можно сделать 1 способом (двойки неразличимы между собой, поэтому просто пишем на каждое свободное место по двойке). По правилу произведения получим 4 сколькими способами можно разместить пять различных книг на полке1=4 различных записи произведения.

3) Число 120 разлагается на 5 простых множителей (2,2,2,3,5), из которых три- одинаковые. В этом случае сколькими способами можно разместить пять различных книг на полке, Р х =20.

Второй способ. Составляя произведение из пяти множителей, сначала выберем место для пятерки (5 способов), затем для тройки (4 способа), а оставшиеся 3 места заполним двойками (1 способ); по правилу произведения 5 • 4 • 1 = 20.

Ответ: 1) 3; 2) 4; 3) 20.

26. Ф. Сколькими способами можно закрасить 6 клеток таким образом, чтобы 3 клетки были красными, а 3 оставшиеся были закрашены (каждая своим цветом) белым, черным или зеленым?

Ответ: 120 способов.

27.Т. Пешеход должен пройти один квартал на север и три квартала на запад. Выпишите все возможные маршруты пешехода.

Количество различных маршрутов равно Р4 = сколькими способами можно разместить пять различных книг на полкесколькими способами можно разместить пять различных книг на полке

Иначе: выбираем одно место из 4 для буквы с; количество вариантов равно сколькими способами можно разместить пять различных книг на полке= 4.

б) В 9 «А» классе в среду 5 уроков: алгебра, геометрия, физкультура, русский язык, английский язык. Сколько можно составить вариантов расписания на этот день?

в) Сколькими способами четыре вора могут разбежаться по одному на все четыре стороны?

г) Адъютант должен развезти пять копий приказа генерала пяти полкам. Сколькими способами он может выбрать маршрут доставки копий приказа?

г) Под маршрутом будем понимать последовательность, посещения полков. Первым можно

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *