покажите как можно записать в виде обыкновенной дроби периодическую десятичную дробь
Как перевести периодическую дробь
Определение дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Переход к периодической десятичной дроби
Рассмотрим обыкновенную дробь вида a/b. Разложим ее знаменатель на простые множители. Тут есть два варианта:
Чтобы задать периодическую десятичную дробь, нужно найти ее периодическую и непериодическую часть. Чтобы это сделать нужно привести дробь в неправильную, а затем разделить числитель на знаменатель столбиком.
Что будет происходить в процессе:
Повторяющиеся цифры после десятичной точки нужно обозначить периодической частью, а то, что стоит спереди — непериодической.
Пример. Перевести обыкновенные дроби в периодические десятичные:
Все дроби без целой части, поэтому просто делим числитель на знаменатель уголком:
Определение периодической дроби
Периодическая дробь — это бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр.
Периодическая часть дроби — это набор повторяющихся цифр, из которых состоит значащая часть.
В краткой записи периодической дроби повторяющиеся цифры пишут в скобках и называют периодом дроби. Например, вместо 1,555… записывают 1,(5) и читают «одна целая и пять в периоде».
Остальной отрезок значащей части, который не повторяется, называется непериодической частью.
Виды периодических дробей: чистые и смешанные.
Чистая периодическая десятичная дробь — это десятичная дробь, в записи которой сразу после запятой следует период. Например: 1,(4); 4,(25); 21,(693).
Смешанная периодическая десятичная дробь — это десятичная дробь, в записи которой после запятой через одну или несколько цифр начинается период. Например: 3,5(1); 0,02(89); 7,0(123) и т.д.
Рассмотрим примеры дробей, чтобы научиться определять части и период.
Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.
Читаем так: ноль целых три в периоде.
7/12 = 0,583333. = 0,58(3)
Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.
Читаем так: ноль целых пятьдесят восемь сотых и три в периоде.
17/11 = 1,545454. = 1,(54)
Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.
Читаем так: одна целая пятьдесят четыре сотых в периоде.
25/39 = 0,641025 641025. = 0,(641025)
Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6.
Читаем так: ноль целых шестьсот сорок одна двадцать пять миллионных в периоде.
пятьдесят четыре сотых в периоде.
9200/3 = 3066,666. = 3066,(6)
Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.
Читаем так: три тысячи шестьдесят шесть целых и шесть в периоде.
Перевод периодической дроби в обыкновенную
Давайте разберемся, как перевести периодическую десятичную дробь в обыкновенную дробь.
Если период дроби равен нулю, значит решение будет быстрым. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.
Пример. Преобразуем периодическую дробь 1,32(0) в обыкновенную.
Для этого отбросим нули справа и получим конечную десятичную дробь 1,32. Далее следуем алгоритму из предыдущих пунктов:
Рассмотрим пример, в котором период дроби отличен от нуля.
Как записать периодическую дробь 10,0219(37) в виде обыкновенной:
В нашем примере k = 2.
Если вначале, до первой значащей цифры, идут нули, то отбрасываем их. Обозначим полученное число — a.
Теперь осталось подставить все найденные значения в формулу и получить ответ:
Вот так мы справились с задачей представить бесконечную периодическую дробь в виде обыкновенной.
Есть еще один способ преобразовать периодическую дробь в обыкновенную. Для этого нужно рассматреть периодическую часть как сумму членов геометрический прогрессии, которая убывает. Например, вот так:
Для суммы членов бесконечной убывающей геометрической прогрессии есть формула. Если первый член прогрессии равен b, а знаменатель q таков, что 0
Перевод чистой периодической дроби в обыкновенную
Напомним: отличие чистой периодической десятичной дроби в том, что в ней сразу после запятой следует период.
Чтобы обратить чистую периодическую дробь в обыкновенную, достаточно записать числителем ее период, а в знаменателе записать столько девяток, сколько цифр в периоде. Вот так:
Перевод смешанной периодической дроби в обыкновенную
Отличие смешанной периодической десятичной дроби в том, что после запятой через одну или несколько цифр начинается период.
Чтобы записать смешанную периодическую дробь в виде обыкновенной, нужно из числа, которое стоит до второго периода вычесть число, стоящее до первого периода, и записать результат в числителе.
А в знаменатель нужно поставить число, которое содержит столько девяток, сколько цифр в периоде, нулей в конце и сколько цифр между запятой и периодом.
Например, запишем 2,34(2) в виде обыкновенной дроби:
Как перевести дробь в десятичную и наоборот
Что такое дробь: понятие
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.
Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как «пять целых одна четвертая», а записывается — 5 1\4.
Что такое десятичная дробь
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
В краткой записи периодической дроби повторяющиеся цифры пишут в скобках и называют периодом дроби. Например, вместо 1,555… записывают 1,(5) и читают «одна целая и пять в периоде».
Свойства десятичных дробей
Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
Как перевести обычную дробь в десятичную
Прежде чем узнать, как от обычной записи перейти к десятичной, вспомним различия двух видов дробей и сформулируем важное правило.
Обыкновенную дробь можно перевести в конечную десятичную дробь только при условии, что её знаменатель можно разложить на простые множители 2 и 5 любое количество раз. Например:
Дробь 11/40 можно преобразовать в конечную десятичную, потому что знаменатель раскладывается на множители 2 и 5.
Дробь 17/60 нельзя преобразовать в конечную десятичную дробь, потому что в её знаменателе кроме множителей 2 и 5, есть 3.
А теперь перейдем к самому главному вопросу: рассмотрим несколько алгоритмов перевода обыкновенной дроби в десятичную.
Способ 1. Превращаем знаменатель в 10, 100 или 1000
Чтобы превратить дробь в десятичную, нужно числитель и знаменатель умножить на одно и то же число так, чтобы в знаменателе получилось 10, 100, 1000 и т.д. Но прежде, чем приступать к вычислениям, нужно проверить, можно ли вообще превратить данную дробь в десятичную.
Для примера возьмем дробь 3/20. Ее можно привести в конечную десятичную, потому что её знаменатель раскладывается на множители 2 и 5.
Мы можем получить в нижней части 100: достаточно умножить 20 на 5. Про верхнюю часть тоже не забываем: получаем 15.
Теперь запишем числитель отдельно. Отсчитываем справа столько же знаков, сколько нулей стоит в знаменателе, и ставим запятую. В нашем примере в знаменателе 100 (у него два нуля), значит ставим запятую после отсчета двух знаков и получаем 0,15. Преобразование готово.
Способ 2. Делим числитель на знаменатель
Чтобы перевести обыкновенную дробь в десятичную, достаточно разделить ее верхнюю часть на нижнюю. Проще всего это сделать, конечно же, на калькуляторе — но на контрольных им пользоваться не разрешают, поэтому учимся по-другому.
Для примера возьмем дробь 78/100. Убедимся, что дробь можно привести в конечную десятичную.
Делим столбиком числитель на знаменатель — преобразование готово:
Если при делении уголком стало ясно, что процесс не заканчивается и после запятой выстраиваются повторяющиеся цифры — эту дробь нельзя перевести в конечную десятичную. Ответ можно записать в виде периодической дроби — для этого нужно записать повторяющееся число в скобки, вот так: 1/3 = 0,3333.. = 0,(3).
Для удобства мы собрали табличку дробей со знаменателями, которые чаще всего встречаются в заданиях по математике. Скачайте ее на гаджет или распечатайте и храните в учебнике как закладку:
Как перевести десятичную дробь в обыкновенную
Не будем придумывать велосипед. По сути, алгоритм превращения десятичной дроби в обыкновенную противоположен тем, что мы разобрали в предыдущей части. Вот, как это выглядит в обратную сторону:
Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!
Еще алгоритм: как преобразовать десятичную дробь в обыкновенную Вот и всё! Эта схема значительно проще и быстрее. Проверим:
Как видим, в дроби 0,55 после запятой стоит две цифры — 5 и 5. Поэтому n = 2. Если убрать запятую и нули слева, то получим число 55. Переходим ко второму шагу: 10n = 102 = 100, поэтому в знаменателе стоит 100. Остается сократить числитель и знаменатель. Вот и ответ: 11/20. Как перевести периодическую десятичную дробь в обыкновеннуюЛюбую бесконечную периодическую десятичную дробь можно перевести в обыкновенную. Разберем на примерах. Если период дроби равен нулю, значит решение будет быстрым. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби. Преобразуем периодическую дробь 1,32(0) в обыкновенную. Для этого отбросим нули справа и получим конечную десятичную дробь 1,32. Далее следуем алгоритму из предыдущих пунктов:
Если период дроби отличен от нуля — рассматриваем периодическую часть как сумму членов геометрический прогрессии, которая убывает. Поясним на примере: Для суммы членов бесконечной убывающей геометрической прогрессии есть формула. Если первый член прогрессии равен b, а знаменатель q таков, что 0 Десятичные дробиПонятие десятичной дробиПрежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними. Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи: В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление. В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так: Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено. Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой. Свойства десятичных дробейГлавное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например: Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны: Как записать десятичную дробьДавайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части. Пример 1. Перевести обыкновенную дробь 16/10 в десятичную. Пример 2. Перевести 37/1000 в десятичную дробь. Ответ: 37/1000 = 0,037. Как читать десятичную дробьЧтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:
Сохраняй наглядную картинку, чтобы быстрее запомнить. Преобразование десятичных дробейЧтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся! Как перевести десятичную дробь в процентыУже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %. Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше. А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере: Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило. 2/5 = 0,4 8/25 = 0,32 Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник: Преобразование десятичных дробейДесятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой. Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой). Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся! Пример 1. Перевести 5,4 в смешанное число. Пример 2. Перевести 4,005 в смешанное число. Ответ: 4,005 = 4 1/200. Пример 3. Перевести 5,60 в смешанное число. Как перевести десятичную дробь в обыкновеннуюНе будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать: Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка! Действия с десятичными дробямиС десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах. Как разделить десятичную дробь на натуральное числоПример 2. Разделить 183,06 на 45. Ответ: 183,06 : 45 = 4,068. Как разделить десятичную дробь на обыкновеннуюЧтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь. Пример 1. Разделить 0,25 на 3/4. Пример 2. Разделить 2,55 на 1 1/3. Ответ: 2,55 : 1 1/3 = 1 73/80. Как умножить десятичную дробь на обыкновеннуюЧтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем. Пример 1. Умножить 2/5 на 0,8. Пример 2. Умножить 0,28 на 6 1/4. Ответ: 0,28 ∗ 6 1/4 = 0,8. Перевод десятичной дроби в обыкновеннуюВ данной публикации мы рассмотрим, каким образом конечную или бесконечную десятичную дробь можно перевести в обыкновенную (простую). Также разберем решение примеров для лучшего понимания изложенного материала. Правило перевода десятичной дроби в обыкновеннуюЧтобы перевести десятичную дробь в простую, придерживаемся следующих правил: 1. Целая часть десятичной дроби – это то же самое, что и целая часть обыкновенной дроби, которая в данном случае будет являться смешанной. 2. Цифры после запятой (дробная часть) в десятичной дроби пишем в числителе дробной части обыкновенной дроби. При этом, отбрасываем все нули. 3. В знаменателе дробной части простой дроби пишем единицу и количество нулей, равное количеству цифр после запятой в десятичной дроби. Чтобы превратить бесконечную десятичную дробь в обыкновенную сначала ее следует округлить и только после этого выполнить перевод. Для перевода бесконечных периодических десятичных дробей в простые дроби есть отдельная инструкция. ПримерыКонечные дробиПример 1 Т.к. после запятой всего одна цифра, значит пишем один ноль после единицы в знаменателе, а в числитель переносим цифру 2. Пример 2 Т.к. после запятой две цифры, значит пишем два нуля после единицы в знаменателе. А в числитель переносим только цифры, отличные от нуля. Пример 3 Т.к. нули после цифр в дробной части десятичной дроби можно отбросить, следовательно, остаются только две цифры, а значит – всего два нуля с единицей в знаменателе. Числитель, как и в примере выше, будет содержать только одну цифру 2. Пример 4 Целую часть десятичной дроби переписываем в целую часть простой смешанной дроби, а дробную часть представляем в виде числителя и знаменателя. Полученную дробь, также, можно записать как неправильную. Перевод десятичной дроби в обыкновеннуюЛюбую десятичную дробь можно представить в виде обыкновенной дроби. Для этого надо просто записать её со знаменателем. Главное правило в переводе десятичной дроби в обыкновенную — как читается десятичная дробь, так и пишется обыкновенная. Например: 2,3 — две целых три десятых. Так как дробь имеет целую часть, то перевести её мы можем или в смешанное число или в неправильную дробь:
Если у десятичной дроби нет целой части, например: 0,75 — ноль целых семьдесят пять сотых, то её можно сразу перевести в правильную обыкновенную дробь и, если нужно (по необходимости), сократить:
Перевод обыкновенной дроби в десятичнуюНе любую обыкновенную дробь можно перевести в десятичную, так как чтобы записать обыкновенную дробь в виде десятичной, надо привести её к знаменателю, представляющему собой единицу с одним или несколькими нулями, например: 10, 100, 1000 и т. д. Если разложить такой знаменатель на простые множители, то получится одинаковое количество двоек и пятёрок: 100 = 10 · 10 = 2 · 5 · 2 · 5; 1000 = 10 · 10 · 10 = 2 · 5 · 2 · 5 · 2 · 5. Никаких других простых множителей эти разложения не содержат, следовательно: Обыкновенную дробь можно представить в виде десятичной только в том случае, если её знаменатель не содержит никаких других множителей, кроме 2 и 5. При разложении её знаменателя на простые множители получается произведение 2 · 2: Если домножить его на две пятёрки, чтобы уравнять количество пятёрок с двойками, то получится один из нужных знаменателей — 100. Чтобы получить дробь равную данной, то числитель тоже надо будет умножить на произведение двух пятёрок:
Рассмотрим ещё одну дробь: При разложении её знаменателя на простые множители получается произведение 2 · 7, содержащее число 7: Множитель 7 будет присутствовать в знаменателе, на какие бы целые числа его ни умножали, поэтому произведение, содержащее только двойки и пятёрки никогда не получится. Значит данную дробь нельзя привести ни к одному из нужных знаменателей: 10, 100, 1000 и так далее. То есть её нельзя представить в виде десятичной. Обыкновенную несократимую дробь нельзя представить в виде десятичной, если её знаменатель содержит хотя бы один простой множитель, отличный от 2 и 5. Обратите внимание, что в правиле написано только о несократимых дробях, потому что некоторые дроби после сокращения, можно представить в виде десятичных. Рассмотрим две дроби: Первая дробь является несократимой и, как мы уже выяснили, её нельзя представить в виде десятичной. Во второй дроби числитель и знаменатель можно сократить на 7, то есть на тот простой множитель, который мешает в первой дроби:
Теперь осталось только умножить оба члена дроби на 5, чтобы получить 10 в знаменателе, и можно будет переводить дробь в десятичную:
|