остаточные деформации грунта можно не учитывать

Остаточные деформации грунта можно не учитывать

Дисперсный грунт – это:
грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом

Явления просадки в основном характерны для:
лёссовых грунтов

Скальный грунт – это:
грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа

Поперечный размер глинистых твердых частиц составляет:
17

Показатель текучести определяется по формуле:
IL = (W – Wp) / Ip

Влажность грунта определяют высушиванием при температуре и времени:
(105±2)оС, 8 часов для глинистых, 4 часа для песчаных

По какой из формул определяется консистенция грунта?
Wn = Wt – Wp

Крупнообломочные и песчаные грунты являются насыщенными водой при степени влажности Sr
Sr > 0,8

Метод квартования используют для:
подготовки проб грунта к исследованию

Что называется объемным весом грунта?
вес единицы объема грунта естественной влажности

Удельный вес грунта – это:
отношение веса твердых частиц грунта к их объему

По числу пластичности устанавливают:
вид глинистого грунта

Песчаные грунты находятся в рыхлом состоянии при плотности сложения D:
0 ≤ D ≤ 1/3

Монолит грунта – это:
уплотненный грунт с созданием монолитной структуры

Физические характеристики грунта делятся на:
основные, производные и классификационные

По показателю текучести устанавливают:
состояние глинистого грунта

Коэффициент пористости определяется по формуле:
= (ρs – ρd) / ρd = ρs / ρd – 1

Оптимальная влажность при уплотнении – это:
влажность, при которой достигается наибольшая плотность скелета грунта

Число пластичности определяется по формуле:
Ip = WL – Wp

МОДУЛЬ 3
Модуль деформации грунта можно определить
в лабораторных условиях по компрессионной кривой
в полевых условиях с помощью штампов
по таблицам СНиП 2.02.01–83*

При изучении водонепроницаемости фильтрацией называют:
движение свободной воды в порах грунта

Что выражает компрессионная кривая?
относительное изменение коэффициента пористости от приложенного давления

Для оценки фильтрационных свойств грунтов используются:
Кф – коэффициент фильтрации, i – гидравлический градиент

Для учета бокового расширения грунта используется коэффициент:
Пуассона

Лучшими строительными свойствами обладает грунт с характеристиками:
φ = 28° e = 0,45 E = 25 МПа

Закон уплотнения грунта описывается зависимостью:
de = – m0 ∙dp

Деформации грунта вызываются
действующими в грунте напряжениями

Грунтовые воды называются агрессивными, если они:
способны разрушать цементные растворы и бетоны

Грунтовые воды – это:
воды первого от поверхности постоянного водоносного горизонта, залегающие на выдержанном водоупорном горизонте

Для оценки прочностных свойств грунтов используются:
φ – угол внутреннего трения, с – коэффициент сцепления

Основными закономерностями, рассматриваемыми в механических свойствах грунтов, являются:
закон уплотнения, закон сопротивления сдвигу, закон фильтрации

Как определяется сцепление глинистого грунта?
по графику зависимости сдвиговых напряжений от уплотняющей нагрузки

Сдвиг грунта – это:
процесс изменения расположения частиц грунта под действием внешних сил

Для оценки деформативных свойств грунта используются:
m0 – коэффициент сжимаемости; E0 – модуль деформации

МОДУЛЬ 4
Распределение напряжений в грунтовом массиве рассматривается в фазе:
Уплотнения

Фаза сдвигов характеризуется:
уровнем напряжений, не намного превышающих структурную прочность грунта

Дополнительное уплотнение для недоуплотненных и разуплотнение для переуплотненных грунтов называется:
Дилатансией

Напряжения при действии любой распределенной нагрузки определяются по методу:
элементарного суммирования

Грунт находящийся ниже уровня грунтовых вод испытывает:
Все ответы верны

Удельный вес грунта, залегающего ниже уровня грунтовых вод, определяется по формуле:
γsb=(γs – γw)/(1+e)

Расчетная модель линейно-деформируемой среды характеризуется:
модулем деформации при нагрузке и модулем упругости при разгрузке

Фаза упругих деформаций характеризуется:
уровнем напряжений, не превышающих структурной прочности грунта

При использовании решений теории упругости применительно к грунту принимают следующее:
грунт является сплошным линейно-деформированным телом, испытывающим одноразовое загружение

При определенных допущениях решения теории упругости применимы в фазе:
упругих деформаций и выпора

Модуль деформации грунта учитывает:
упругие и остаточные деформации грунта

Бытовыми давлениями называются:
вертикальные напряжения от собственного веса грунта

Решение задачи Буссинеска основано на следующей гипотезе:
нормальные напряжения, лежащие в вертикальной плоскости, на площадках, нормальных к сферической поверхности с центром в точке приложения силы, равны нулю
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, прямо пропорциональны косинусу угла видимости и обратно пропорциональны квадрату радиуса сферы
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, являются главными напряжениями

Расчетная модель упругопластической среды характеризуется:
функциональной зависимостью деформаций от напряжений

Напряжения при действии равномерно распределенного давления в произвольной точке массива грунта определяются по методу:
угловых точек

Остаточные деформации грунта можно не учитывать:
при одноразовом загружении

МОДУЛЬ 5
Неравномерные осадки в период эксплуатации могут вызываться:
изменением положения уровня грунтовых вод, динамическими воздействиями

Особенности деформирования различных типов грунтов существенно зависят от:
состояния грунта и интенсивности действующих нагрузок

Деформации набухания вызываются:
проявлением расклинивающего эффекта в результате действия электромолекулярных сил

В зависимости от ширины подошвы фундамента в наибольшие деформации возникают при:
в

— правильный ответ IL=(W-wp)/Wt-Wp)

Разновидность скальных грунтов по прочности устанавливается:
по пределу прочности на одноосное (растяжение) сжатие.

Как его еще можно найти, если не известно WL? За ранее благодарна.

Первый вариант был верным:

Причины развития неравномерных осадок в период эксплуатации

1. Уплотнение грунтов после начала эксплуатации Sэкспл.сооружения:

деформации ползучести грунта и процесс фильтрационной консолидации;
постепенное увеличение полезной нагрузки до проектной;
увеличение нагрузки сверх проектной.

2. Изменением положения уровня грунтовых вод.

3. Ослабление грунтов основания подземными и котлованными выработками.

4. Динамические воздействия и активность геологических процессов.

1. Слой грунта, на который непосредственно опирается подошва фундамента, называется:
Несущим

2. Фундамент – это:
Подземная часть сооружения, предназначенная для передачи нагрузки от сооружения грунту

3. Для общих расчетов устойчивости основания, откосов и склонов, определения давления грунта на ограждения используются модель теории:
Предельного напряженного состояния грунта

4. Явления просадки в основном характерны для:
Вечномерзлых грунтов

Источник

Остаточные деформации грунта можно не учитывать

остаточные деформации грунта можно не учитывать

Дисперсный грунт – это:
грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом

Явления просадки в основном характерны для:
лёссовых грунтов

Скальный грунт – это:
грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа

Поперечный размер глинистых твердых частиц составляет:
17

Показатель текучести определяется по формуле:
IL = (W – Wp) / Ip

Влажность грунта определяют высушиванием при температуре и времени:
(105±2)оС, 8 часов для глинистых, 4 часа для песчаных

По какой из формул определяется консистенция грунта?
Wn = Wt – Wp

Крупнообломочные и песчаные грунты являются насыщенными водой при степени влажности Sr
Sr > 0,8

Метод квартования используют для:
подготовки проб грунта к исследованию

Что называется объемным весом грунта?
вес единицы объема грунта естественной влажности

Удельный вес грунта – это:
отношение веса твердых частиц грунта к их объему

По числу пластичности устанавливают:
вид глинистого грунта

Песчаные грунты находятся в рыхлом состоянии при плотности сложения D:
0 ≤ D ≤ 1/3

Монолит грунта – это:
уплотненный грунт с созданием монолитной структуры

Физические характеристики грунта делятся на:
основные, производные и классификационные

По показателю текучести устанавливают:
состояние глинистого грунта

Коэффициент пористости определяется по формуле:
= (ρs – ρd) / ρd = ρs / ρd – 1

Оптимальная влажность при уплотнении – это:
влажность, при которой достигается наибольшая плотность скелета грунта

Число пластичности определяется по формуле:
Ip = WL – Wp

МОДУЛЬ 3
Модуль деформации грунта можно определить
в лабораторных условиях по компрессионной кривой
в полевых условиях с помощью штампов
по таблицам СНиП 2.02.01–83*

При изучении водонепроницаемости фильтрацией называют:
движение свободной воды в порах грунта

Что выражает компрессионная кривая?
относительное изменение коэффициента пористости от приложенного давления

Для оценки фильтрационных свойств грунтов используются:
Кф – коэффициент фильтрации, i – гидравлический градиент

Для учета бокового расширения грунта используется коэффициент:
Пуассона

Лучшими строительными свойствами обладает грунт с характеристиками:
φ = 28° e = 0,45 E = 25 МПа

Закон уплотнения грунта описывается зависимостью:
de = – m0 ∙dp

Деформации грунта вызываются
действующими в грунте напряжениями

Грунтовые воды называются агрессивными, если они:
способны разрушать цементные растворы и бетоны

Грунтовые воды – это:
воды первого от поверхности постоянного водоносного горизонта, залегающие на выдержанном водоупорном горизонте

Для оценки прочностных свойств грунтов используются:
φ – угол внутреннего трения, с – коэффициент сцепления

Основными закономерностями, рассматриваемыми в механических свойствах грунтов, являются:
закон уплотнения, закон сопротивления сдвигу, закон фильтрации

Как определяется сцепление глинистого грунта?
по графику зависимости сдвиговых напряжений от уплотняющей нагрузки

Сдвиг грунта – это:
процесс изменения расположения частиц грунта под действием внешних сил

Для оценки деформативных свойств грунта используются:
m0 – коэффициент сжимаемости; E0 – модуль деформации

МОДУЛЬ 4
Распределение напряжений в грунтовом массиве рассматривается в фазе:
Уплотнения

Фаза сдвигов характеризуется:
уровнем напряжений, не намного превышающих структурную прочность грунта

Дополнительное уплотнение для недоуплотненных и разуплотнение для переуплотненных грунтов называется:
Дилатансией

Напряжения при действии любой распределенной нагрузки определяются по методу:
элементарного суммирования

Грунт находящийся ниже уровня грунтовых вод испытывает:
Все ответы верны

Удельный вес грунта, залегающего ниже уровня грунтовых вод, определяется по формуле:
γsb=(γs – γw)/(1+e)

Расчетная модель линейно-деформируемой среды характеризуется:
модулем деформации при нагрузке и модулем упругости при разгрузке

Фаза упругих деформаций характеризуется:
уровнем напряжений, не превышающих структурной прочности грунта

При использовании решений теории упругости применительно к грунту принимают следующее:
грунт является сплошным линейно-деформированным телом, испытывающим одноразовое загружение

При определенных допущениях решения теории упругости применимы в фазе:
упругих деформаций и выпора

Модуль деформации грунта учитывает:
упругие и остаточные деформации грунта

Бытовыми давлениями называются:
вертикальные напряжения от собственного веса грунта

Решение задачи Буссинеска основано на следующей гипотезе:
нормальные напряжения, лежащие в вертикальной плоскости, на площадках, нормальных к сферической поверхности с центром в точке приложения силы, равны нулю
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, прямо пропорциональны косинусу угла видимости и обратно пропорциональны квадрату радиуса сферы
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, являются главными напряжениями

Расчетная модель упругопластической среды характеризуется:
функциональной зависимостью деформаций от напряжений

Напряжения при действии равномерно распределенного давления в произвольной точке массива грунта определяются по методу:
угловых точек

Остаточные деформации грунта можно не учитывать:
при одноразовом загружении

МОДУЛЬ 5
Неравномерные осадки в период эксплуатации могут вызываться:
изменением положения уровня грунтовых вод, динамическими воздействиями

Особенности деформирования различных типов грунтов существенно зависят от:
состояния грунта и интенсивности действующих нагрузок

Деформации набухания вызываются:
проявлением расклинивающего эффекта в результате действия электромолекулярных сил

В зависимости от ширины подошвы фундамента в наибольшие деформации возникают при:
в

— правильный ответ IL=(W-wp)/Wt-Wp)

Источник

Остаточные деформации и устойчивость массивов грунтов при сейсмических воздействиях

Авторы: Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Николаев А.П.
Статья опубликована в научно-техническом журнале «Вестник МГСУ» №2 2008 г., стр. 41-47.

остаточные деформации грунта можно не учитывать

При сейсмических воздействиях в грунтовых массивах, служащих основанием или средой для самых различных сооружений, возникает сложное и неоднородное напряжённо-деформированное состояние (НДС). В зависимости от интенсивности сейсмического воздействия, геологического строения и рельефа массива грунта в нём могут образоваться области предельного равновесия различного размера и формы, которые в конечном итоге могут привести к остаточным перемещениям или к потере местной устойчивости.

Важным фактором, влияющим на характер формирования НДС в массиве, является форма его рельефа. Известно, что наибольшее влияние сейсмическое воздействие оказывает на склоны или откосы, т.к. они являются концентраторами НДС. Кроме того в условиях естественного залегания во внутренних областях склонов и откосов преобладают касательные напряжения, которые определяют степень приближения массива к предельному состоянию.

Сейсмическое воздействие на склоне и откосе увеличивает степень приближения к предельному состоянию и может служить спусковым механизмом, способствующим переходу массива в состояние предельного равновесия, т.е. переходу к катастрофической фазе (оползню). Если же этого не происходит, то неизбежно возникают остаточные перемещения или трещины, в том числе на поверхности массива. Поэтому количественное прогнозирование НДС массивов грунтов на склонах и откосах с определением остаточных перемещений и коэффициента устойчивости является одной из важных задач сейсмостойкого строительства в горно-складчатых областях, в том числе черноморского побережья.

В настоящей работе приводятся теоретические основы численного моделирования НДС неоднородных массивов грунтов ограниченных размеров и формы при сейсмическом воздействии с учётом линейной и нелинейной моделей грунтов. Приводятся результаты расчётов НДС склонов, позволяющие определить остаточные перемещения и их устойчивость.

Общая деформация грунта ε состоит из упругого ε е и пластического ε ρ составляющих, т.е.

остаточные деформации грунта можно не учитывать

Для краткости не будем останавливаться на изложении математических основ численного моделирования НДС массива. На эту тему имеются многочисленные публикации. Они, как правило, включают общеизвестные уравнения равновесия, неразрывности и физические уравнения. Приводятся также методы численного решения систем этих уравнений, которые сводятся к рассмотрению системы алгебраических уравнений.

Важным этапом количественного прогнозирования НДС массивов ограниченных размеров является выбор граничных условий. Очевидно, что размеры расчётной области при сейсмическом воздействии будут больше чем, при рассмотрении статической задачи. С ростом расчётной области, вмещающей рассматриваемый массив (склон, основание сооружения и пр.) расчётная геомеханическая модель ближе будет соответствовать условиям распространения сейсмической волны. При большой длине сейсмической волны по сравнению с размерами расчётной области (откоса, плотины склона) выбор модели в виде массива ограниченных размеров становится более обоснованным. Однако в случае фиксированных граничных условий возникает проблема отражённых волн (эффект коробки), который искажает НДС массива. Если же задавать граничные условия в напряжениях (поглощающие граничные условия), этого эффекта удаётся избежать при этом оказывается возможным сократить размеры расчётной области и сократить время расчёта НДС.

В настоящей работе при рассмотрении НДС массивов грунтов приняты граничные условия поглощающего типа. В качестве примера рассмотрены НДС однородного склона и неоднородного основания, взаимодействующего с сооружением, имеющего конечную жёсткость. Сейсмическое воздействие задаётся акселерограммой исходя из динамического метода расчёта. Расчёты НДС проводились для двух случаев. В первом случае рассматривалось НДС в упругой постановке, а во втором в упруго-пластической постановке. Во обоих случаях на первом этапе решалась статическая задача НДС после чего занулялись деформации. На втором этапе на массив через его основание прикладывалась сейсмическая нагрузка с помощью акселерограммы. Таким образом, можно получить деформации от действия только сейсмической нагрузки, при этом напряжения суммируются.

остаточные деформации грунта можно не учитывать

остаточные деформации грунта можно не учитывать

Рис. 2. Изолинии горизонтальных фазовых перемещений uxx (м) в однородном откосе при сейсмическом воздействии:
а) упруго-пластическая модель; б) упругая модель

остаточные деформации грунта можно не учитывать

остаточные деформации грунта можно не учитывать

Рис. 3. Изолинии вертикальных фазовых перемещений uyy (м) в однородном откосе при сейсмическом воздействии:
а) упруго-пластическая модель; б) упругая модель

остаточные деформации грунта можно не учитывать

Рис. 4. График зависимости горизонтальных перемещений Uxx во времени (рис. 2)

остаточные деформации грунта можно не учитывать

Рис. 5. Конечно-элементная расчётная схема неоднородного массива грунта, взаимодействующего с сооружением конечной жёсткости

Таким образом поставленная задача полностью решена. Показана принципиальная возможность количественной оценки НДС однородных и неоднородных массивов грунтов при статическом и сейсмическом воздействиях в линейной и нелинейной постановке в рамках плоской задачи (плоская деформация). Она позволяет дать количественную оценку остаточным перемещениям и устойчивости массивов, служащих основанием и средой различных сооружений.

остаточные деформации грунта можно не учитывать

остаточные деформации грунта можно не учитывать

Рис. 6. Графики зависимости горизонтальных Uxx (а) и вертикальных Uyy (б) перемещений во времени в точках А, B, C в массиве (рис. 5)

остаточные деформации грунта можно не учитывать

остаточные деформации грунта можно не учитывать

Рис. 7. Изолинии коэффициента относительной прочности грунта в склоне (а) и в неоднородном основании (б)

Литература
1. Временные нормы и правила проектирования планировки и застройки участков территории высотных зданий и высотных градостроительных комплексов. МГСН 1.04-2005.
2. Гурьев В.В., Дорофеев В.М. Особенности диагностики технического состояния.

Источник

Остаточные деформации грунта можно не учитывать

Дисперсный грунт – это:
грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом

Явления просадки в основном характерны для:
лёссовых грунтов

Скальный грунт – это:
грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа

Поперечный размер глинистых твердых частиц составляет:
17

Показатель текучести определяется по формуле:
IL = (W – Wp) / Ip

Влажность грунта определяют высушиванием при температуре и времени:
(105±2)оС, 8 часов для глинистых, 4 часа для песчаных

По какой из формул определяется консистенция грунта?
Wn = Wt – Wp

Крупнообломочные и песчаные грунты являются насыщенными водой при степени влажности Sr
Sr > 0,8

Метод квартования используют для:
подготовки проб грунта к исследованию

Что называется объемным весом грунта?
вес единицы объема грунта естественной влажности

Удельный вес грунта – это:
отношение веса твердых частиц грунта к их объему

По числу пластичности устанавливают:
вид глинистого грунта

Песчаные грунты находятся в рыхлом состоянии при плотности сложения D:
0 ≤ D ≤ 1/3

Монолит грунта – это:
уплотненный грунт с созданием монолитной структуры

Физические характеристики грунта делятся на:
основные, производные и классификационные

По показателю текучести устанавливают:
состояние глинистого грунта

Коэффициент пористости определяется по формуле:
= (ρs – ρd) / ρd = ρs / ρd – 1

Оптимальная влажность при уплотнении – это:
влажность, при которой достигается наибольшая плотность скелета грунта

Число пластичности определяется по формуле:
Ip = WL – Wp

МОДУЛЬ 3
Модуль деформации грунта можно определить
в лабораторных условиях по компрессионной кривой
в полевых условиях с помощью штампов
по таблицам СНиП 2.02.01–83*

При изучении водонепроницаемости фильтрацией называют:
движение свободной воды в порах грунта

Что выражает компрессионная кривая?
относительное изменение коэффициента пористости от приложенного давления

Для оценки фильтрационных свойств грунтов используются:
Кф – коэффициент фильтрации, i – гидравлический градиент

Для учета бокового расширения грунта используется коэффициент:
Пуассона

Лучшими строительными свойствами обладает грунт с характеристиками:
φ = 28° e = 0,45 E = 25 МПа

Закон уплотнения грунта описывается зависимостью:
de = – m0 ∙dp

Деформации грунта вызываются
действующими в грунте напряжениями

Грунтовые воды называются агрессивными, если они:
способны разрушать цементные растворы и бетоны

Грунтовые воды – это:
воды первого от поверхности постоянного водоносного горизонта, залегающие на выдержанном водоупорном горизонте

Для оценки прочностных свойств грунтов используются:
φ – угол внутреннего трения, с – коэффициент сцепления

Основными закономерностями, рассматриваемыми в механических свойствах грунтов, являются:
закон уплотнения, закон сопротивления сдвигу, закон фильтрации

Как определяется сцепление глинистого грунта?
по графику зависимости сдвиговых напряжений от уплотняющей нагрузки

Сдвиг грунта – это:
процесс изменения расположения частиц грунта под действием внешних сил

Для оценки деформативных свойств грунта используются:
m0 – коэффициент сжимаемости; E0 – модуль деформации

МОДУЛЬ 4
Распределение напряжений в грунтовом массиве рассматривается в фазе:
Уплотнения

Фаза сдвигов характеризуется:
уровнем напряжений, не намного превышающих структурную прочность грунта

Дополнительное уплотнение для недоуплотненных и разуплотнение для переуплотненных грунтов называется:
Дилатансией

Напряжения при действии любой распределенной нагрузки определяются по методу:
элементарного суммирования

Грунт находящийся ниже уровня грунтовых вод испытывает:
Все ответы верны

Удельный вес грунта, залегающего ниже уровня грунтовых вод, определяется по формуле:
γsb=(γs – γw)/(1+e)

Расчетная модель линейно-деформируемой среды характеризуется:
модулем деформации при нагрузке и модулем упругости при разгрузке

Фаза упругих деформаций характеризуется:
уровнем напряжений, не превышающих структурной прочности грунта

При использовании решений теории упругости применительно к грунту принимают следующее:
грунт является сплошным линейно-деформированным телом, испытывающим одноразовое загружение

При определенных допущениях решения теории упругости применимы в фазе:
упругих деформаций и выпора

Модуль деформации грунта учитывает:
упругие и остаточные деформации грунта

Бытовыми давлениями называются:
вертикальные напряжения от собственного веса грунта

Решение задачи Буссинеска основано на следующей гипотезе:
нормальные напряжения, лежащие в вертикальной плоскости, на площадках, нормальных к сферической поверхности с центром в точке приложения силы, равны нулю
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, прямо пропорциональны косинусу угла видимости и обратно пропорциональны квадрату радиуса сферы
нормальные напряжения на площадках, касательных к сферической поверхности с центром в точке приложения силы, являются главными напряжениями

Расчетная модель упругопластической среды характеризуется:
функциональной зависимостью деформаций от напряжений

Напряжения при действии равномерно распределенного давления в произвольной точке массива грунта определяются по методу:
угловых точек

Остаточные деформации грунта можно не учитывать:
при одноразовом загружении

МОДУЛЬ 5
Неравномерные осадки в период эксплуатации могут вызываться:
изменением положения уровня грунтовых вод, динамическими воздействиями

Особенности деформирования различных типов грунтов существенно зависят от:
состояния грунта и интенсивности действующих нагрузок

Деформации набухания вызываются:
проявлением расклинивающего эффекта в результате действия электромолекулярных сил

В зависимости от ширины подошвы фундамента в наибольшие деформации возникают при:
в

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *