на сколько направлений можно разделить содержание математического развития дошкольника
Требования к содержанию и уровню математической подготовки детей дошкольного возраста
Юлиана Кожурова Гаврильевна
Требования к содержанию и уровню математической подготовки детей дошкольного возраста
Методическая папка на тему: «Требования к содержанию и уровню математической подготовки детей дошкольного возраста»
Содержание:
3. Требования к содержанию и уровню математической подготовки детей дошкольного возраста.
1. Понятие преемственности в математическом развитии детей ДОУ и школы.
2. Показатели готовности детей к изучению математики в первом классе.
Требования к содержанию и уровню математической подготовки детей дошкольного возраста
Вхождение детей в мир математики начинается уже в дошкольном возрасте. Математика является универсальным методом познании окружающего и предметного мира и ее роль в современной науке постоянно возрастет. Изменение концептуальных подходов к определению содержания и выбору методик обучения математике в школе, широкое использование современных образовательных технологий обусловило и требования к математической подготовке детей дошкольного возраста.
Сегодня «Математика – это больше, чем наука, это – язык». Математика является универсальным и мощным методом познания. Изучение математики совершенствует общую культуру мышления, приучает детей логически рассуждать, воспитывает у них точность обстоятельность высказываний. Она развивает такие интеллектуальные качества, как способность к абстрагированию, общению, способность мыслить анализировать, критиковать. Упражнение математикеспособствует приобретению рациональных качеств мысли и ее выражение: порядок, точность, ясность,сжатость: требует выражение интуиции.
После принятия ФГОС ДО, основополагающего документа, регламентирующего деятельность дошкольных образовательных организаций, наступил достаточно сложный период. В первую очередь в сложной ситуации оказались воспитатели, которые должны реализовать положения Стандарта и перестроить образовательный процесс в соответствии с целями, задачами, обозначенными в качестве приоритетных в данном документе.
Область «Познавательное развитие» Элементарные математические представления
— предполагает развитие интересов и познавательной мотивации;
— формирование познавательных действий,становление сознания:
— развития воображения и творческой активности:
— формирование первичных представлений о себе, других людях, объект окружающего мира
Программное содержание раздела «Формирование элементарных математических представлений» должно быть «вплетено» в образовательный процесс и реализовываться через привлекательные виды детской деятельности.
Система обучения в детском саду была построена таким образом, что каждое занятие строго регламентировано по времени, и по месту и по частоте. Дети привыкают воспринимать математику как занятие, которое бывает 1-2 раза в неделю.
Дошкольник всегда должен видеть и воспринимать применяемость своих знаний и умений значимой для него деятельности.
В качестве таковой могут выступать:
3. детское экспериментирование, конструктивная деятельность любых видов,
4. художественно – изобразительная и музыкально – двигательная деятельность,
5. литературно – языковая деятельность, общение, физическая двигательная деятельность и разнообразная трудовая деятельность.
Например: при знакомстве с геометрическими фигурами мы обращаем внимание на метрическую структуру каждой из них (наличие сторон, углов, вершин, объема и пр). Зная эти характерные особенности, ребенок сможет отличать геометрические фигуры, правильно их дифференцировать и обобщать по ключевым признакам. С этой целью мы можем предъявлять детям геометрические фигуры не в стандартном общепринятом виде, а со сдвигом оси.
Таким образом, и будут решаться приоритетные задачи непрерывного образования детей.
Вывод: таким образом, можно выделить следующие требования к математическому развитию детей: развитие познавательных интересов; интеллектуального развитие; развитие исследовательской деятельности ребенка; развитие умения анализировать; развитие умения устанавливать ассоциативные связи; развитие логического мышления, а именно умения устанавливать простейшие закономерности; формирование предпосылок учебной деятельности.
Понятие преемственности в математическом развитии детей ДОУ и школы
Создание единой системы воспитания и образования подрастающего поколения предусматривает неразрывную связь, логическую преемственность в работе всех звеньев этой системы, в данном случае в детском саду и школе.
Обучение дошкольников как начальное звено образования ориентируется на возможности детей этого возраста, а также на требования современного начального обучения. Оба эти условия определяют содержание, организационные формы, методы и средства обучения.
Дети учатся обозначать размеры предметов непосредственно сравнением, а также с помощью измерений условной мерой и линейкой, чертить отрезки определенной длины.Они знакомятся с многоугольниками и их элементами: сторонами, углами, вершинами, должны уметь свободно ориентироваться на листе бумаги, в тетради, книге, во времени и в окружающем пространстве.
Однако современную школу не удовлетворяет формальное усвоение этих знаний и умений. Дальнейшее обучение в школе обычно зависимо от качества усвоенных знаний, их осознанности, гибкости и прочности. Поэтому современная дошкольная дидактика направлена на отработку путей оптимизации обучения с целью повышения этих качеств. Выпускники дошкольных учреждений должны осознанно, с пониманием сути явлений уметь использовать приобретенные знания и навыки не только в обычной, стереотипной, но и в измененной ситуации, в новых, необычных обстоятельствах (игра, труд).
Одно из главных требований начального обучения к математической подготовке заключается в дальнейшем развитии мышления дошкольников. Математика — это глубоко логическая наука. Введение ребенка даже в начальную элементарную математику абсолютно невозможно без достаточного уровня развития логического мышления.
Таким образом, достижение высокого уровня готовности детей к обучению в школе предусматривает усовершенствование прежде всего содержания, форм и методов учебно-воспитательной работы в детском саду, в частности в обучении их математике.
Показатели готовности детей к изучению математики в первом классе
Сформировать готовность к обучению в школе означает создать условия для успешного усвоения детьми учебной программы и нормального вхождения их в ученический коллектив. Одним из важных показателей специальной (математической)готовности является наличие у дошкольников определенных знаний, умений и навыков. Как показывает анализ педагогической работы, уровень усвоения этих знаний, умений и навыков зависит от возраста, индивидуальных особенностей детей, а также от состояния учебно-воспитательного процесса в детском саду.
Для воспитателя подготовительной группы особое значение приобретает выявление этого уровня перед поступлением детей в школу. Этому способствуют индивидуальные беседы, дидактические игры и упражнения с детьми, выполнение ими специальных заданий и т. д.При этом следует ориентироваться на такие показатели:
• объем математических знаний и умений в соответствии с программой воспитания в детском саду;
• качество математических знаний: осознанность, прочность, запоминание, возможность использования их в самостоятельной деятельности;
• уровень умений и навыков учебной деятельности;
• степень развития познавательных интересов и способностей;
• особенности развития речи (усвоение математической терминологии);
• положительное отношение к школе и учебной деятельности в целом;
• уровень познавательной активности.
Важный показатель при обследовании— продуктивность внимания (по адаптированным корректурным таблицам, особенности умственного развития и учебной деятельности. Индивидуальное обследование дает возможность воспитателю создать представление об особенностях речи детей, общем уровне знаний и специальной математической подготовке.
Дополнительная образовательная программа по экологии «Зернышко» для детей 6–7 лет (требования к уровню образования детей) 2.6. Иные характеристики содержания Программы Требования к уровню образования воспитанников Высокий уровень Ребёнок знает представителей.
Мастер-класс для родителей, воспитателей по созданию математической сенсорной коробки для детей Мастер-класс проводится с целью развития профессионального самосознания, раскрытия творческого потенциала личности, развития коммуникативной.
Проблемы подготовки детей к школе в детском саду Положительное отношение к школе включает в себя как интеллектуальные, так и эмоционально-волевые компоненты, стремление занять новое социальное.
Проблемы подготовки детей к школе в детском саду Положительное отношение к школе включает в себя как интеллектуальные, так и эмоционально-волевые компоненты, стремление занять новое социальное.
Проект «Журналисты» для детей старшего дошкольного возраста на тему «Здоровье и безопасность детей дошкольного возраста» Цель: Формирование основ безопасного поведения в быту, социуме, природе. Задачи: Закреплять умение соблюдать правила пребывания в детском.
Психологические требования к цветовому оформлению интерьера ДОУ Психологические требования к цветовому оформлению интерьера ДОУ. Дорогие мои коллеги, добрый вечер! Предлагаю вам интересную информацию.
Стихотворения для детей от 4 до 11 лет для подготовки тематики «Космическое путешествие и мечта» Здравствуйте уважаемые воспитатели и педагоги начальных классов. Современный человек не может не иметь понятия о мире космоса. Понятия начинают.
СОДЕРЖАНИЕ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДОШКОЛЬНИКОВ
Содержание математического развития дошкольников отражено в разделе программы «Формирование элементарных математических представлений», который относится к образовательной области «Познавательное развитие».
Содержание математического развития дошкольников условно можно разделить на три таких направления
-представления и понятия;
-зависимости и отношения;
-математические действия.
Анализ различных программ по математическому развитию детей позволяет заключить, что основным в их содержании является достаточно разнообразный кругпредставлений и понятий:«количество», «число», «множество», «подмножество», «величина», «мера», «форма предмета», «геометрические фигуры»; представления о пространстве и времени.
Каждое математическое понятие формируется поэтапно, по линейно-концентрическому принципу. Разные математические понятия тесно связаны между собой. В дошкольном возрасте основные математические понятия вводятся описательно, без всяких определений и даже описания этих понятий.
Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими.
Вторым направлением в формировании математических представлений у дошкольников является ознакомление детей с рядом математических зависимостей и отношений. Так, дети осваивают некоторые отношения между предметными множествами (равночисленность – неравночисленность), отношение порядка в натуральном ряду, пространственные отношения, временные отношения; зависимости между свойствами геометрических фигур, между величиной, мерой и результатом измерения и др.
Третьим направлением в формировании математических представлений у дошкольников является освоение определенных математических действий: накладывание, прикладывания, пересчитывания, отсчитывания, измерения и т.д.
Именно овладение действиями оказывает наибольшее влияние на развитие.
В методике выделяются две группыматематических действий:
—основные(счет, измерение, вычисления);
—дополнительные, пропедевтические, сконструированные в дидактических целях (практическое сравнение, наложение, приложение; уравнивание и комплектование; сопоставление.
Весь процесс формирования математических представлений у дошкольников непосредственно связан с усвоением специальной терминологии.
Содержание математического развития детей представлено в программных документах «От рождения до школы», «Радуга», «Детство» и др.
Проведем краткий анализ раздела «Формированиеэлементарных математических представлений» наиболее распространенных комплексных программ дошкольного образования.
1. Основная общеобразовательная программа дошкольного образования«От рождения до школы». /Под редакцией Н.Е Вераксы, Т.С. Комаровой, М.А. Васильевой.
Цель программы (см.стр.67)по элементарной математике — формирование элементарных математических представлений, первичных представлений об основных свойствах и отношениях объектов окружающего мира: форме, цвете, размере, количестве, числе, части и целом, пространстве и времени.
Программа предполагает формирование математических представлений у детей, начиная со второй группы раннего возраста (от 2 до 3 лет). Однако на первом и втором году жизни программа предусматривает создание развивающей среды, позволяющей создавать базовые математические представления. (см.стр.45)
В программе выделяются разделы «Количество и счет», Величина», «Форма», «Ориентировка в пространстве», «Ориентировка во времени».
Особенности математического развития детей в ДОО
Елена Чупина
Особенности математического развития детей в ДОО
Математическое развитие детей дошкольного возраста по прежнему остаётся одной из актуальных проблем дошкольного образования. В соответствии с ФГОС дошкольного образования данное направление работы осуществляется в рамках решения задач образовательной области «познавательное развитие». Формирование математических представлений у детей дошкольного возраста должно осуществляться в разных видах детской деятельности и связано с познанием окружающих предметов. Сам процесс обучения должен способствовать не только приобретению и закреплению математических представлений, но и развитию мыслительных операций (анализ, синтез, обобщение, группировка, сериация и др., мелкой моторики рук.
В соответствии ФГОС в рамках образовательной области Познавательное развитие предполагает развитие интересов детей, любознательности и познавательной мотивации; формирование познавательных действий, становление сознания; развитие воображения и творческой активности; формирование первичных представлений о себе, других людях, объектах окружающего мира, о свойствах и отношениях объектов окружающего мира (форме, цвете, размере, материале, звучании, ритме, темпе, количестве, числе, части и целом, пространстве и времени, движении и покое, причинах и следствиях и др., о малой родине и Отечестве, представлений о социокультурных ценностях нашего народа, об отечественных традициях и праздниках, о планете Земля как общем доме людей, об особенностях ее природы, многообразии стран и народов мира[1].
В процессе формирования элементарных математическихпредставлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые.
Виды методов Описание
Наглядные методы демонстрация, иллюстрация, рассматривание и др.
Практические методы предметно-практические и умственные действия, дидактические игры и упражнения и др.
Словесные методы объяснение, беседа, инструкция, вопросы и др.
Игровые методы Дидактические игры, словесные игры, игры с предметами и настольно-печатные игры.
Таб. 3 Методы организации и осуществления учебно-познавательной деятельности
Особенности практического метода
Выполнение разнообразных предметно-практических и умственных действий;
широкое использование дидактического материала;
возникновение математических представлений в результате действия с дидактическим материалом;
выработка специальных математических навыков (счета, измерения, вычислений и др.);
использование математических представлений в быту, игре, труде и др.
Особенности наглядного метода
Виды наглядного материала:
демонстрационный и раздаточный;
сюжетный и бессюжетный;
объемный и плоскостной;
специально-счетный (счетные палочки, абак, счеты и др.); фабричный и самодельный.
Методические требования к применению наглядного материала:
• новую программную задачу лучше начинать с сюжетного объемного материала;
по мере усвоения учебного материала переходить к сюжетно-плоскостной и бессюжетной наглядности;
одна программная задача объясняется на большом разнообразии наглядного материала;
новый наглядный материал лучше показать детям заранее.
Особенности словесного метода
Вся работа построена на диалоге воспитатель — ребенок.
Требования к речи воспитателя:
эмоциональная; грамотная; доступная; четкая;
достаточно громкая; приветливая;
в младших группах тон загадочный, сказочный, таинственный, темп небыстрый, многократные повторения;
в старших группах тон заинтересовывающий, с использованием проблемных ситуаций, темп достаточно быстрый, приближающийся к ведению урока в школе…
Особенности игрового метода В играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции.
Занятия по математике проводятся в игровой форме, понятной и интересной детям. С каждым занятием дети всё больше втягиваются в обучающий процесс, но при этом занятия остаются игрой, сохраняя свою притягательность. Помимо обучения и развития, математика для дошкольников позволяет ребенку легче адаптироваться к занятиям в школе, и родителям не придется переживать, когда он пойдёт в первый класс. Математика для дошкольников позволит в полной мере раскрыть потенциал ребенка и развить математические способности. Присутствие игровых персонажей на занятии побуждает детей к математической деятельности, преодолению интеллектуальных трудностей.
Таб. 4 Виды детской деятельности в соответствии с ФГОС дошкольного образования формирование математических представлений у детей дошкольного возраста.
Деятельность Виды деятельности
—дидактические по содержанию: математические, по дидактическому материалу: игры с предметами, настольно-печатные.
—развивающие;
—компьютерные (основанные на сюжетах художественных произведений; стратегии; обучающие)
Познавательно-исследовательская деятельность — форма активности ребенка, направленная на познание свойств и связей объектов и явлений, освоение способов познания, способствующая формированию целостной картины мира Экспериментирование, исследование;моделирование:
—деятельность с использованием моделей; —по характеру моделей (предметное, знаковое, мысленное)
Конструирование из различных материалов — форма активности ребенка, которая развивает у него пространственное мышление, формирует способность предвидеть будущий результат, дает возможность для развития творчества,обогащает речь Конструирование:
—из строительных материалов;
—из коробок, катушек и другого бросового материала;
—из природного материала.
—конструирование из бумаги
Рис. 1 Формы обучения ФЭМП.
№ Форма обучения Организация обучения
1. Индивидуальная форма. Организация обучения позволяет индивидуализировать обучение (содержание, методы, средства, однако требует от ребенка больших нервных затрат;
создает эмоциональный дискомфорт; неэкономичность обучения;
ограничение сотрудничества с другими детьми.
2. Групповая форма. (Индивидуально-коллективная).
Группа делится на подгруппы.Основания для комплектации: личная симпатия, общность интересов, но не по уровням развития. При этом педагогу, в первую очередь, важно обеспечить взаимодействие детей в процессе обучения.
Таб. 5 Формы и организация обучения математического развития детей дошкольного возраста.
Таб. 6 Формы работы по математическому развитию дошкольников
Форма Задачи время Охват детей Ведущая роль
Занятие Дать, повторить, закрепить и систематизировать знания, умения и навыки Планомерно, регулярно, систематично (длительность и регулярность в соответствии с программой) Группа или подгруппа (в зависимости от возраста и проблем в развитии) Воспитатель
Дидактическая игра Закрепить, применить, расширить ЗУН На занятии или вне занятий Группа, подгруппа, один ребенок Воспитатель и дети
Индивидуальная работа Уточнить ЗУН и устранить пробелы На занятии и вне занятий Один ребенок Воспитатель
Досуг (математический утренник, праздник, викторина и т. п.) Увлечь математикой, подвести итоги 1—2 раза в году Группа или несколько групп Воспитатель и другие специалисты
Самостоятельная деятельность Повторить, применить, отработать ЗУН Во время режимных процессов, бытовых ситуаций, повседневной деятельности Группа, подгруппа, один ребенок Дети и воспитатель
Оборудование для игр и занятий (наборное полотно, счетная лесенка, фланелеграф, магнитная доска, доска для письма, ТСО и др.).
Комплекты дидактического наглядного материала (игрушки, конструкторы, строительный материал, демонстрационный и раздаточный материал, наборы «Учись считать» и др.).
Литература (методические пособия для воспитателей, сборники игр и упражнений, книги для детей, рабочие тетради и др.)[52].
Одной из главных форм в процессе образования и воспитания детей в детском саду является самостоятельная деятельность детей. Самостоятельная деятельность детей – свободная деятельность воспитанников в условиях созданной педагогами предметно – пространственной развивающей образовательной среды, обеспечивающей выбор каждым ребенком деятельности по интересам и позволяющая ему взаимодействовать со сверстниками или действовать индивидуально. Развитию самостоятельности способствует освоение детьми умений поставить цель, обдумать путь к ее достижению, осуществить свой замысел, оценить полученный результат с позиции цели.
ФЭМП у детей дошкольного возраста осуществляется в разных видах детской деятельности. Одним из таких видов деятельности является конструирование. Известно, что конструирование занимает значимое место в дошкольном образовании и является сложным познавательным процессом, в результате которого происходит интеллектуальное развитие детей: ребёнок овладевает практическими знаниями, учится выделять существенные признаки, устанавливать отношения и связи между деталями и предметами. Под детским конструированием понимается деятельность, в которой дети создают из различных материалов (бумаги, картона, дерева, специальных строительных наборов и конструкторов) разнообразные игровые поделки (игрушки, постройки, другими словами, конструирование – продуктивный вид деятельности дошкольника, предполагающий создание конструкций по образцу, по условиям и по собственному замыслу.
На занятиях конструированием у детей формируются обобщенные представления о предметах, которые их окружают. Они учатся обобщать группы однородных предметов по их признакам и в то же время находить различия в них в зависимости от практического использования. У каждого дома, например, есть стены, окна, двери, но дома различаются по своему назначению, а в связи с этим и по архитектурному оформлению. Таким образом, наряду с общими признаками дети увидят и различия в них, т. е. они усваивают знания, отражающие существенные связи и зависимости между отдельными предметами и явлениями.
Среда развивает ребенка только в том случае, если она представляет для него интерес, подвигает его к действиям, исследованию. Среда организовывается таким образом, чтобы каждый ребенок имел возможность заниматься своим любимым делом.
Дидактические игры,разработанные авторами: Л. Л. Венгером, игры В. В. Воскобовича, Б. Н. Никитина и других или созданы самостоятельно, учитывая уровень познавательного развития детейи требования к самостоятельным дидактическим играм:
• Правила игры должны представлять детям возможность выбрать нужные для данной ситуации знания и умения, которыми они уже овладели в процессе обучения;
• Необходима вариативность каждой игры, усложняющая игровую ситуацию, что позволяет детям применять разнообразные действия и вновь полученные знания, сохраняет длительный интерес детей к выполнению заданий;
• Большинство игр должны предполагать взаимный контроль и оценку действий, решений детьми, что подводит их к сотрудничеству, совместным действиям, обсуждению, обмену опытом, а также активизирует имеющиеся у них знания и способы их применения к каждой конкретной ситуации[21,62].
Так же на занятии по математике хорошо использовать игры и упражнения с блоками Дьенеша. Логические блоки придумал венгерский математик и психолог Золтан Дьенеш. Игры с блоками доступно, на наглядной основе знакомят детей с формой, цветом, размером и толщиной объектов, с математическими представлениями и начальными знаниями по информатике. Развивают у детей мыслительные операции (анализ, сравнение, классификация, обобщение, логическое мышление, творческие способности и познавательные процессы (восприятие, память, внимание и воображение). Играя с блоками Дьенеша, ребенок выполняет разнообразные предметные действия (разбиение, выкладывание по определенным правилам, перестроение и др.). Блоки Дьенеша предназначены для детей от трех лет[54].
Более активно и творчески дошкольники играют в самостоятельные дидактические игры тогда, когда в совместной деятельности они предварительно получили знания, необходимые для выполнения игровых заданий, а также усвоили основные правила игры. В группе имеются такие игры В. В.Воскобовича: «Геоконт», «Прозрачный квадрат», «Квадрат Воскобовича», «Фонарики», «Восьмерка», «Чудо-конструкторы»; игры Б. Н.Никитина: «Сложи узор», «Сложи квадрат», «Уникуб», «Палочки Кюизенера». Такие игры развивают конструкторские способности, пространственное мышление, внимание, память, творческое воображение, мелкую моторику, умение сравнивать, анализировать и сопоставлять. В зоне математического развития представлены игры «Магнитная мозаика» со схемами, «Части и целое», «Изучаем время», «Считаем до …», «Сложение и вычитание с Карлсоном», «Разноцветные фигуры», «Все о времени», «Домино с цифрами», «Маленький дизайнер». Где дети могут закреплять свои знания о геометрических фигурах, пространственно- временные представления, познают числа и осваивают действия с числами. Конструкторы.
Создание условий для организации совместной деятельности в соответствии с требованиями ФГОС из опыта работы.
Для организации совместной самостоятельной деятельности детей в группе должны быть созданы соответствующие условия.
Во-первых, у детей должен быть сформирован определённый уровень умений и навыков. Ребёнок приступает к новой для себя деятельности сначала под руководством педагога, по показу и объяснению взрослого и только получив определённый опыт выполнения этой деятельности совместно, может выполнять её самостоятельно.
Создавая развивающую среду в группе используем большое количество пооперационных карт, они напоминают детям последовательность выполнения действий во время изобразительной деятельности, в опытно-экспериментальной, игровой, трудовой деятельности.Методические основы организации занятий по ФЭМП в процессе конструирования:
Построение занятий по математикебазируется на основных современных подходах к процессу образования:
— развивающем;
Наиболее эффективному проведению занятий по математике способствуетсоблюдение следующих условий:
1. учёт индивидуальных, возрастных психологических особенностей детей;
2. создание благоприятной психологической атмосферы и эмоционального настроя (доброжелательный спокойный тон речи воспитателя, создание ситуаций успешности для каждого воспитанника);
3. широкое использование игровой мотивации;
4. интеграция математическойдеятельности в другие виды : игровую, музыкальную, двигательную, изобразительную;
5. смена и чередование видов деятельности в связи с быстрой утомляемостью и отвлекаемостью детей;
6. развивающий характер заданий.
На занятиях можно применить: игровые методы, проблемно-поисковые методы, частично-поисковые методы, проблемно-практические игровые ситуации, практические методы.
Игровые технологии математического развития детей дошкольного возраста Игровые технологии математического развития детей дошкольного возраста Современные технологии математического развития дошкольников направлены.
Конспект ситуации игрового взаимодействия педагога с детьми в процессе сенсорного и математического развития детей Программное содержание: ЦЕЛЬ: Продолжать обогащать сенсорный (чувственный) опыт, активизировать словарь по теме. ЗАДАЧИ: Образовательные:.
Методическое обеспечение математического развития детей 5–6 лет по теме «Страна детства» Методическое обеспечение математического развития детей 5-6 лет по теме «Страна детства». Воспитатель Костина А. Н МБУ д/с № 16 «Машенька».
Нетрадиционные игры как средство математического развития детей раннего возраста в соответствии с ФГОС Актуальность. Второй год жизни ребенка характеризуется следующими важнейшими особенностями: он начинает говорить, ходить, овладевает разными.
Особенности развития речи детей старшего возраста Особенности развития речи детей старшего возраста Речь – инструмент развития высших отделов психики дошкольника. Обучая ребенка речи, мы,.
Особенности развития эмоциональной отзывчивости у детей Эмоциональная сфера ребёнка рассматривается как одна из базовых предпосылок общего психического развития, как ядро становления личности.
Особенности речевого развития у детей с нарушениями зрения В логопедии особую значимость приобретает проблема сложного дефекта зрения при котором нарушение речи сопровождается другими отклонениями.
Специфические особенности детей с ОНР Психологические особенности развития детей 5-летнего возраста с ОНР В соответствии с принципом рассмотрения речевых нарушений во взаимосвязи речи с другими сторонами психического развития необходимо проанализировать.