на какое наибольшее число можно разделить делимое и делитель

Деление натуральных чисел

Вы уже знакомы с общими понятиями о делении и о том как делить в столбик, рассмотрим более подробно деление натуральных чисел и его свойства.

Рассмотрим задачу:

У Вани 7 кроликов, он собрал для них 28 яблок. Сколько яблок досталось каждому кролику?

Действие, с помощью которого по произведению и одному из множителей находят другой множитель, называют делением.

Данное действие записывают так: на какое наибольшее число можно разделить делимое и делитель, на какое наибольшее число можно разделить делимое и делительили на какое наибольшее число можно разделить делимое и делитель, где:

на какое наибольшее число можно разделить делимое и делитель

Частное показывает во сколько раз делимое больше делителя, то есть в нашем примере: 28 больше 7 в 4 раза. Поэтому, если в задаче звучит вопрос «во сколько?», для её решения мы используем деление. При этом не всегда возможно одно число поделить на другое, тогда возникает необходимость деления с остатком.

Из вышесказанного мы можем сделать вывод:

Пример: на какое наибольшее число можно разделить делимое и делитель, следовательно, на какое наибольшее число можно разделить делимое и делитель, то есть на какое наибольшее число можно разделить делимое и делитель.

Пример: на какое наибольшее число можно разделить делимое и делитель, по смыслу деления на какое наибольшее число можно разделить делимое и делитель— это произведение 4 и 9, следовательно, на какое наибольшее число можно разделить делимое и делитель, то есть на какое наибольшее число можно разделить делимое и делитель.

Свойства деления

Распределительные свойства:

1. Деление суммы на число: на какое наибольшее число можно разделить делимое и делитель

2. Деление разности на число: на какое наибольшее число можно разделить делимое и делитель

3. Деление произведения на число: на какое наибольшее число можно разделить делимое и делитель

4. Деление числа на произведение: на какое наибольшее число можно разделить делимое и делитель

Действия с единицей и нулем

1. Деление числа на единицу: на какое наибольшее число можно разделить делимое и делительто есть, при делении числа на единицу получается само число

2. Деление числа на себя: на какое наибольшее число можно разделить делимое и делитель, то есть при делении числа, не равного нулю, на само себя получается единица.

3. Деление нуля на число: на какое наибольшее число можно разделить делимое и делитель, то есть при делении нуля на любое число, не равное нулю, получаем ноль.

НА НОЛЬ ДЕЛИТЬ НЕЛЬЗЯ!

Свойства деления

Распределительные свойства :

1. Деление суммы на число:

а) Мы можем сложить яблоки, которые нашли Маша и Ваня, а потом разделить полученное число на количество кроликов, то есть:

б) Мы можем разделить яблоки, которые собрала Маша, затем разделить яблоки, которые собрал Ваня, а результат сложить:

Мы видим, что в обоих случаях получается один и тот же результат, и можно записать, что: (9+15):3=9:3+15:3.

Вывод: Чтобы разделить сумму на какое-нибудь число, можно разделить на это число каждое слагаемое отдельно (если это возможно) и полученные частные сложить.

на какое наибольшее число можно разделить делимое и делитель

2. Деление разности на число:

Всего трем братьям папа дал 150 рублей. На 72 рубля они купили сестре цветы на день рождения. Сколько рублей осталось у каждого брата?

а) Мы можем из общей суммы вычесть то, что братья потратили, а затем поделить сдачу:

б) Мы можем найти, сколько получил каждый брат, затем посчитать, сколько потрачено каждым из них, а затем вычесть из полученной суммы денег потраченную:

Вывод: Чтобы разделить разность на какое-нибудь число, можно разделить на это число уменьшаемое и вычитаемое отдельно (если это возможно) и из первого частного вычесть второе.

на какое наибольшее число можно разделить делимое и делитель

3. Деление произведения на число:

В зооуголке в саду 3 кролика. 12 детей принесли по 6 яблок для кормления питомцев. Сколько яблок досталось каждому кролику?

а) Сначала можем найти общее количество яблок, которые принесли дети, а затем поделить на число кроликов:

б) Мы можем найти сколько детей принесли яблоки одному кролику, а затем умножить на количество принесенных яблок:

б) Мы можем найти по сколько яблок принес 1 ребенок для 1 кролика, а затем умножить на количество детей:

Мы видим, что в всех случаях получается один и тот же результат, и можно записать, что: (12 · 6) : 3 = (12 : 3) · 6 = (6 : 3) ·12.

Вывод: Чтобы разделить произведение двух множителей на число, можно разделить на это число любой из множителей (если деление выполнимо) и частное умножить на второй множитель.

на какое наибольшее число можно разделить делимое и делитель

4. Деление числа на произведение:

В 4 клетках сидят по 3 кролика. Ваня принес 48 яблок. Сколько яблок досталось каждому кролику?

а) Мы можем найти сколько кроликов всего, а потом поделить яблоки на полученное число:

б) Мы можем найти сколько яблок положат в каждую клетку, а затем, сколько получит яблок каждый кролик:

Если мы рассадим наших кроликов по 4 в три клетки, решая задачу аналогично получим:

Мы видим, что в всех случаях получается один и тот же результат, и можно записать, что: 48 : (4 · 3) = (48 : 4) : 3 = (48 : 3) : 4

Вывод: Чтобы разделить число на произведение двух множителей, можно разделить это число сначала на один из множителей, а затем на второй.

на какое наибольшее число можно разделить делимое и делитель

Действия с единицей и нулем

1. Деление числа на единицу:

У Вани один кролик. Он принёс 3 яблока. Сколько яблок достанется кролику?

Будем рассуждать, у Вани всего один кролик, значит все яблоки достанутся ему:

2. Деление числа на себя:

Из свойств умножения мы знаем, что: на какое наибольшее число можно разделить делимое и делитель, а мы знаем, что по смыслу деления можно записать, что: на какое наибольшее число можно разделить делимое и делитель, то есть при делении числа, не равного нулю, на само себя получается единица.

3. Деление нуля на число:

Рассуждая аналогично пункту 2 получаем: на какое наибольшее число можно разделить делимое и делитель, то есть при делении ноля на любое число, не равное нулю, получаем ноль.

Обратите внимание, что НА НОЛЬ ДЕЛИТЬ НЕЛЬЗЯ!

Это легко объяснить следующими рассуждениями: пусть мы взяли на какое наибольшее число можно разделить делимое и делителькарандашей, попробуем разложить их в 0 коробок, и предположим, что получилось по на какое наибольшее число можно разделить делимое и делителькарандашей в каждой коробке: на какое наибольшее число можно разделить делимое и делитель, из смысла деления на какое наибольшее число можно разделить делимое и делитель, в то же время мы знаем из свойств умножения, что: на какое наибольшее число можно разделить делимое и делитель, то есть получаем, что на какое наибольшее число можно разделить делимое и делитель, а это противоречит условию задачи, следовательно делаем вывод, что на ноль делить нельзя.

Поделись с друзьями в социальных сетях:

Источник

Как найти первое неполное делимое и количество цифр в частном?

В самом начале обучения навыку деления чисел дети часто допускают ошибки. Одними из самых распространенных, помимо ошибок непосредственно в совершении промежуточных вычислений, являются появление «лишних» цифр и потеря нулей в частном. Их возникновение зачастую связано с такими причинами:

Этой статьей я хочу помочь школьникам восполнить пробелы в вышеупомянутых базовых знаниях, чтобы в дальнейшем они смогли избегать ошибок при совершении действия деления в столбик.

Как найти первое неполное делимое?

Рассмотрим подробно по шагам на таком примере \( <\color75184\div 12>\).

1. Смотрим, сколько разрядов в делимом и какая цифра стоит на позиции самого старшего разряда этого числа.

1. 1. Проверяем, можно ли это количество единиц этого разряда разделить на делитель так, чтобы получилось натуральное число?

1. 2. Если разделить нельзя, смотрим на количество единиц следующего разряда и проверяем, можем ли мы их разделить на делитель?

В числе 75184 всего 75 единиц разряда тысяч. 75 тысяч можно разделить на 12 – получится 6 полных тысяч, и 3 тысячи неразделенные.

2. Если можно разделить количество единиц разряда на делитель, то это количество единиц и будет первым неполным делимым.

В нашем примере это 75 тысяч.

Каждая оставшаяся цифра делимого будет участвовать в формировании остальных неполных частных, о чем подробно рассказано в уроке Деление натуральных чисел.

Как найти количество цифр в частном?

Так как первое неполное делимое в данном примере – это 75 тысяч, то есть, мы делим единицы тысяч, тогда самый старший разряд частного также будет тысячи. Значит, помимо цифры самого большого разряда, будут ещё три цифры: в сотнях, десятках и простых единицах.

Итак, чтобы узнать количество цифр в частном, нужно:
1. Найти первое неполное делимое.
2. Посчитать, сколько в делимом остальных цифр.
3. Прибавить к этому количеству единицу (цифра частного, полученная после деления первого неполного делимого).
4. Результат и будет количеством цифр в частном.

Поделим, и убедимся:

на какое наибольшее число можно разделить делимое и делитель

В конце хочу сказать, что определение количества цифр в частном помогают развить и укрепить очень необходимый для младших школьников навык – самоконтроль.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.5 / 5. Количество оценок: 13

Источник

Признаки делимости чисел

на какое наибольшее число можно разделить делимое и делитель

Что такое «признак делимости»

Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.

Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.

Однозначные, двузначные и трехзначные числа

Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.

Трехзначные числа — числа, в составе которых три знака (три цифры).

Чётные и нечётные числа

Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!

Признаки делимости чисел

Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.

Признак делимости на 3. Сумма цифр числа должна делиться на 3.

Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.

Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.

Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.

Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.

Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.

Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.

на какое наибольшее число можно разделить делимое и делитель

на какое наибольшее число можно разделить делимое и делитель

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Записаться на марафон

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Урок 19 Бесплатно Основы деления

С детства нам приходится решать задачи, связанные с делением.

Хотим ли мы разделить с кем-то еду или же разделить лист бумаги на части, нам всегда приходится выполнять деление.

Сегодня вы узнаете, как математически определяется деление натуральных чисел, какие оно содержит в себе элементы.

Также мы разберем, как делить “уголком”, узнаем про то, что такое остаток, какие существуют способы его записи.

Важно будет понять, как записать деление в буквенном виде, узнать, как упростить процесс деления, применяя связанные с ним свойства.

А после мы применим все эти знания к решению уравнений и текстовых задач.

на какое наибольшее число можно разделить делимое и делитель

Основные определения

Представим, что по 3-м пачкам чая разложили поровну 75 пакетиков.

Сколько пакетиков чая будет в каждой коробке?

Для ответа на вопрос составим уравнение.

Пусть х— количество пакетиков чая в одной пачке.

Тогда в 3-х пачках будет лежать (\(\mathbf\)) пакетиков чая.

Зная, что всего в 3-х пачках лежит 75 пакетиков, составим уравнение:

Известно, что только одно число при умножении на 3 даст 75, это число равняется 25-ти, значит, (\(\mathbf\)), соответственно, 25 пакетиков чая лежит в одной пачке.

Как мы видим, мы сделали некоторое действие, обратное умножению.

Запишем то, что мы сделали проще:

Рассмотрим еще несколько определений, которые необходимы в разговоре про деление.

Число, которое делят, называется делимым, что весьма логично, ведь его делят.

В примере выше это число 75, ведь именно его необходимо разделить.

Делителем называют то число, на которое делят.

В примере выше это число 3.

Название результата деления не столь очевидно, но его тоже надо знать.

Результат деления называется частным.

В примере выше это будет число 25, ведь именно это является результатом деления 25 на 3.

Так же, как произведением двух чисел может называться не только число, но и само выражение, частным также можно назвать выражение, состоящее из делимого, делителя и знака деления между ними.

То есть в примере выше частным можно назвать не только 25, но и выражение (\(\mathbf<75:3>\)).

на какое наибольшее число можно разделить делимое и делитель

Зная определение деления довольно легко проверить, правильно ли было выполнено действие.

Допустим, были известны делимое и делитель, далее было выполнено деление и получено некоторое частное.

Чтобы проверить, что частное получено верно, необходимо перемножить его и делитель.

Если получилось число, равное делимому, значит, в делении не было ошибок, в противном случае частное не удовлетворит определению и нужно будет искать ошибку.

Посмотрим на примерах.

Пример 1.

Проверим корректность выражения \(\mathbf<45:5=9>\).

Для начала, вспоминаем, что в этом выражении чем является.

Понимаем, что делимое- 45, делитель- 5, частное- 9.

Затем перемножаем частное и делитель:

Остается сравнить полученное число с делимым.

Значит, деление было выполнено верно.

Пример 2.

Проверим корректность выражения \(\mathbf<51:4=13>\).

В данном выражении делимое- 51, делитель- 4, частное- 13.

Перемножаем частное и делитель.

Как видно, полученное число не равно тому, что было определено как делимое.

Значит данное деление было выполнено неверно.

Выражение \(\mathbf<51:4=13>\) некорректно, так как содержит в себе неверное равенство.

Пройти тест и получить оценку можно после входа или регистрации

Деление уголком

После того, как становится понятно определение деления, возникает вопрос, как же собственно выполнять деление, ведь каждый раз подбирать такое частное, чтобы произведение его и делителя сошлось с делимым, может отнимать много времени.

Тут на помощь может прийти деление столбиком или же калькулятор.

И если с калькулятором все понятно, достаточно ввести в него выражение и нажать кнопку подсчета, то в случае деления уголком есть о чем поговорить.

Немного забежав вперед, обозначим, что деление уголком дает больше информации, чем деление с помощью калькулятора.

Представим, что необходимо разделить число 99 на 9.

Можно представить, что сначала делиться 90 на 9, получается, что в числе 90 10 девяток.

Разделив 9 на 9 получим единицу, которая говорит о том, что в числе 9 содержится одна девятка.

Это значит, что если в числе 90 содержится 10 девяток, а в числе 9 одна девятка, значит, в числе 99 их будет \(\mathbf<10+1=11>\)

Таким образом, не деля непосредственно 99 на 9, можно получить результат, что \(\mathbf<99:9=11>\)

Примерно на таких идеях и строится деление уголком.

1) Определить, что является делимым, а что является делителем, записать их правильно расположив относительно черты

2) Выбрать число, которое необходимо разделить на делитель

Это число совпадает с началом делимого, причем является наименьшим таким началом, которое больше делителя

3) Определить, сколько раз делитель умещается в выбранном числе

4) Записать это количество раз в частное

5) Умножить на него делитель, вычесть произведение из выбранной части делимого

6) Повторять действия, пока часть делимого не будет выбрана до конца исходного делимого

При повторении каждый раз надо добавлять по одной цифре из исходного делимого.

Звучит довольно сложно, давайте смотреть на примерах.

Пример 1: разделим 224 на 4 применяя деление уголком.

1) Делимым является число 224, делителем- 4.

Делимое пишется слева от черты, делитель справа.

на какое наибольшее число можно разделить делимое и делитель

2) Выбираем число.

Есть три варианта чисел, которые являются началом числа 224, это числа 2, 22 и само число 224.

Необходимо выбрать такое число, которое будет больше делителя, то есть больше 4-х, из трех чисел, приведенных выше, такими являются два: 22 и 224.

Дальше необходимо выбрать из них наименьшее, таким будет число 22, значит, его и выбираем.

3) Определяем, сколько раз делитель помещается в выбранном числе.

В данном случае делитель будет помещаться в выбранном числе 5 раз, так как \(\mathbf<5\cdot4=20>\)

6 раз делитель встречаться не может, так как число \(\mathbf<6\cdot4=24>\) уже больше 22-х, а 4 раза не подходят, так как помещается больше, чем 4 делителя, а именно 5.

4) Делитель помещается в выбранном числе 5 раз, значит, пишем 5 в частное, которое располагается под чертой.

на какое наибольшее число можно разделить делимое и делитель

5) Вычитаем из выбранного числа произведение делителя и числа, которое записали в частное, то есть вычитаем из 2220.

на какое наибольшее число можно разделить делимое и делитель

6) Так как исходное делимое еще не кончилось, дописываем к разности одну цифру из делимого.

на какое наибольшее число можно разделить делимое и делитель

1) Делимым становится число 24, делитель все тот же: число 4.

2) Это число уже является наименьшим началом себя, которое делится на 4, поэтому именно его и делим.

3) Число 4 6 раз помещается в число 24.

4) Пишем число 6 в частное.

5) Вычитаем из выбранного числа, то есть из 24-х, произведение числа, которое записали в частное и делителя, то есть 24, получаем 0 как разность.

6) Мы использовали все цифры из исходного делимого, значит, процесс деления закончен.

Частное записано под чертой.

на какое наибольшее число можно разделить делимое и делитель

Можно проверить себя, перемножив частное и делитель и сравнив полученное число с делимым.

Представим, что в какой-то момент еще не на последнем шаге в разности появляется ноль.

В данном случае абсолютно ничего не меняется.

Надо понимать, что если делитель помещается в выбранное число 0 раз, но это и можно записать в частное, а затем уже приписывать следующую цифру.

Пример 2: Разделим 1428 на 14.

1) Делимое- 1428, делитель- 14

на какое наибольшее число можно разделить делимое и делитель

2) Выбираем число 14, так как это наименьшее начало числа 1428, которое больше делителя (14-ти).

на какое наибольшее число можно разделить делимое и делитель

3) Число 14 помещается в число 14 один раз.

4) Записываем это в частное:

на какое наибольшее число можно разделить делимое и делитель

5) Вычитаем из выбранного числа произведение делителя и числа, которое только что записали в частное.

на какое наибольшее число можно разделить делимое и делитель

6) Добавляем цифру из делимого и продолжаем процесс.

на какое наибольшее число можно разделить делимое и делитель

Следующую группу шагов можно описать сразу.

на какое наибольшее число можно разделить делимое и делитель

Мы видим, что 14 помещается в число 2 только 0 раз, соответственно, надо записать в частное 0 и из 2-х вычесть тоже 0, так как произведение любого делителя на 0 будет равно нулю.

Теперь приписываем к 2 последнюю цифру и проделываем цикл снова.

на какое наибольшее число можно разделить делимое и делитель

Как видите, даже если в процессе появляется 0, это никак не меняет и не усложняет алгоритм.

Приведем еще несколько примеров без подробных пояснений. Будет полезно, если вы самостоятельно проследите действия, которые в них выполняются.

Пример 3:

на какое наибольшее число можно разделить делимое и делитель

Пример 4:

на какое наибольшее число можно разделить делимое и делитель

Пример 5:

на какое наибольшее число можно разделить делимое и делитель

Пройти тест и получить оценку можно после входа или регистрации

Остаток

Представим, что необходимо раздать 9 яблок 2-м людям поровну.

Мы можем дать каждому из них по 4 яблока, а еще одно яблоко останется, так как непонятно, кому его дать.

Таким образом, если 9 делить на 2, то останется 1, это число называется остатком, а процесс деления, когда появляется остаток, называется делением с остатком.

Это легче понять, если записать такое деление уголком:

на какое наибольшее число можно разделить делимое и делитель

Как видим, делимое записывается сверху слева от черты, в данном случае делимое- 9, делитель записывается сверху справа от черты, в данном случае делитель- 2.

Частное, как и раньше располагается под чертой под делителем, частным в данном случае будет число 4.

Также частное в делении с остатком называют неполным частным.

Остатком же является результат последней разности.

В данном случае остатком будет единица.

Про остаток нужно знать одно интересное свойство: остаток всегда меньше делителя.

Чтобы не запоминать это как аксиому, дадим некоторое объяснение.

Допустим, мы делим те же 9 яблок на 2-х человек и каждому дали по 3 яблока.

Тогда осталось еще 3 яблока.

Но это нельзя назвать остатком, ведь из этих трех яблок можно выделить 2 (по числу делителя) и раздать людям поровну.

И остаток тогда будет равен единице.

По сути если остаток выходит больше делителя, то из него выделяется делитель и число в частном увеличивается.

Рассмотрим еще одно несложное определение.

Если остаток равен нулю, то говорят, что делимое делится на делитель без остатка, также можно сказать, что делимое делится на делитель нацело.

Примеры такого деления были в прошлой главе, например, 1428 делится на 14 без остатка.

В делении уголком последняя разность была равна нулю.

Деление уголком само подсказывает, как найти делимое при делении с остатком.

Рассмотрим пример, разделим с остатком 35 на 8.

на какое наибольшее число можно разделить делимое и делитель

Из 35-ти (делимого) вычли 32 (делитель, умноженный на частное), и после этого остался остаток равный 3-м.

Значит, делимое равно сумме произведения делителя и частного с остатком.

на какое наибольшее число можно разделить делимое и делитель

Иногда бывает нужно записать деление с остатков одну строку, но писать через сумму не хочется.

Тогда можно записать остаток в скобках после неполного частного.

\(\mathbf<13:6=2>\) (ост. 1)

\(\mathbf<17:5=3>\) (ост. 2)

\(\mathbf<161:13=12>\) (ост. 5)

В случае если нужно будет посчитать исходное делимое, надо будет также домножить неполное частное на делитель и прибавить к полученному числу остаток, записанный рядом.

Пройти тест и получить оценку можно после входа или регистрации

Свойства деления и их применение

Как и у любой другой математической сущности, у деления есть свойства, сейчас про них поговорим.

Но для начала стоит познакомится с буквенной записью деления, чтобы говорить про свойства было удобней.

на какое наибольшее число можно разделить делимое и делитель

Почти все также, как и в числовой записи: делимое стоит перед знаком деления, делитель же стоит после.

Но, как и в случае с произведением, частным называют не букву, к которой приравнивается выражение \(\mathbf\), а само это выражение.

Как и раньше, за буквами может скрываться любое натуральное число.

Также если пишется какой-то свойство в буквенной записи, значит, эта же запись будет верна, какое бы число не подставить вместо букв (кроме случаев, когда отдельно обговариваются ограничения на числа).

Перейдем к самим свойствам.

Особняком идет известное утверждение на нуль делить нельзя.

В дальнейшем в курсе математики будут уточнения, появятся новые понятия, можно будет говорить о предположениях, чему равняется деление на нуль, но все это далеко впереди и не с натуральными числами.

Пока что факт, что на нуль делить нельзя, достаточно просто запомнить.

Представим, что нужно разделить 4 конфеты на 2-х человек, мы знаем, как это сделать. Теперь представим, что надо разделить те же 4 конфеты, но теперь всего один человек, тогда мы просто отдадим все конфеты ему.

1. При делении любого числа на 1 получается это же число.

И в буквенной записи: \(\mathbf\)

Заметим, что это же свойство верно и для нуля, в самом деле \(\mathbf<0:1=0>\)

Теперь представим, что надо разделить 5 конфет на 5 человек.

В таком случае каждому достанется по одной конфете.

Такой же результат будет, если делить 7 конфет на 7 человек, 33 конфеты на 33 ученика и так далее.

2. При делении любого числа на это же число получается единица.

Как вы можете догадаться, здесь нужно сделать поправку и сказать, что a не равно нулю, ведь делить на нуль нельзя.

Теперь представим, что надо на пять человек разделить 0 конфет.

В таком случае очевидно, что никому ничего не достанется.

3. При делении нуля на любое число получается нуль.

Опять же, при условии что деление возможно, то есть делитель не равен нулю.

Казалось бы, зачем нужны свойства, если можно просто подбирать множители и делить “уголком”.

Но свойства иногда помогают вычислять значения выражения, даже не доходя до непосредственно самих вычислений, а если до вычислений и приходится доходить, то это значительно их упрощает.

Например, требуется вычислить значение такого выражения:

Заметим, что после знака деления выражение в скобках равняется нулю: \(\mathbf<13-13=0>\)

А значит, деление невозможно и вычислить значение всего выражения не представляется возможным.

Или же надо найти значение выражения:

Зная порядок действий, начать стоит с выражения в скобках.

Но можно заметить, что выражение представляет из себя частное, а делимое равно нулю, следовательно и все выражение будет равно нулю.

Попрактикуемся в применении свойств в тесте:

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *